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Abstract Spontaneous capillary flow (SCF) is a powerful

method for moving fluids at the microscale. In modern

biotechnology, composite channels—sometimes open—are

increasingly used. The ability to predict the occurrence of a

SCF is a necessity. In this work, using the Gibbs free

energy, we derive a general condition for the establishment

of SCF in any composite microchannel of constant cross

section, i.e., a microchannel comprising different wall

materials and even open parts. It is shown that SCF occurs

when the Cassie angle is smaller than p/2 (h* \p/2). For a

homogeneous confined channel, this relation collapses to

the well-known hydrophilic contact angle h\ p/2.

Keywords SCF (spontaneous capillary flow) �
Gibbs thermodynamic equation � Cassie law

1 Introduction

In modern biotechnology, composite channels—sometimes

partly open or with apertures—are increasingly used and

spontaneous capillary flow (SCF) is a convenient method to

move fluids in such geometries. Spontaneous capillary flow

occurs when a liquid volume is moved spontaneously by

the effect of capillary forces—without the help of auxiliary

devices such as pumps or syringes. These devices using

SCF are especially useful for portable systems, which

greatly benefit to be equipment-free. Geometries facilitat-

ing the establishment of capillary flows in confined chan-

nels have been experimentally and numerically

investigated (Juncker 2002; Kitron-Belinkov et al. 2007;

Zimmerman et al. 2007, 2008; Chen et al. 2009). A general

law for determining the condition for a SCF in composite

microchannels is needed. A first approach has been pro-

posed by Berthier and Brakke (2012) for an open channel

of uniform cross section. In this paper, we generalize this

former approach and present a theoretical model—based

on the Gibbs free energy—to derive the condition for SCF

in any composite channels of uniform cross section, i.e.,

microchannels with non-homogeneous walls and partly

open to external air, as sketched in the Fig. 1. We show

that the condition for SCF is simply that the generalized

Cassie angle for the composite surface be smaller than 90�.

Let us recall that the generalized Cassie angle h* is the

average contact angle defined in the appropriate way, i.e.,

cos h� ¼
X

i

cos hi fið Þ ð1Þ

where hi is the Young’s contact angle with each component

i (including air for the open parts), and fi the areal fraction

of each component i in a cross section of the flow (Fig. 1).

The areal fractions are fi ¼ wi

� P
i wi þ wF

� �
and

fF ¼ wF

� P
i wi þ wF

� �

2 Theory

Our starting point is the Gibbs thermodynamic equation

(Gibbs 1873)
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dG ¼ c dA� p dV � S dT ð2Þ

where G is the Gibbs free energy, A the liquid surface area,

c the surface tension, V the liquid volume, p the liquid

pressure, S the entropy, and T the temperature. Generally,

in biotechnology (except for the very special cases where

heating is used, such as for polymerase chain reaction

PCR), the temperature is kept constant and the last term of

(2) vanishes. Assuming a constant temperature, we

consider the two following cases: first, the liquid volume

is constant, as for a drop with negligible or slow

evaporation, and second, increasing volume of liquid. In

the first case, (2) reduces to

dG ¼ c dA ð3Þ

The equilibrium position of the droplet is obtained by

finding the minimum of the Gibbs free energy. In this case,

the minimization of the Gibbs energy is equivalent to the

minimization of the liquid surface area.

The second case—that of a SCF—is different: there is

not a constant volume of liquid in the system (dV 6¼ 0), and

the system evolves in the direction of lower energy. Hence,

dG ¼ c dA� p dV\0: ð4Þ

The morphology of the free interface is such that it evolves

to reduce the free energy G. For simplicity, we first con-

sider a single solid wall and air. The liquid (L) is then at the

contact of a solid (S) and air (G) as sketched in Fig. 2.

Let us investigate first the upstream conditions. As

mentioned earlier in the text, SCF is used as a self-pro-

pelling phenomenon and no pump or syringe is present.

The upstream condition is most of the time given by the

pressure condition of a reservoir of liquid. If we suppose

that the reservoir is sufficiently large, as did Bruus (2007),

the curvature of its free interface is small and nearly con-

stant, and the upstream pressure is constant and approxi-

mately equal to the atmospheric pressure (zero pressure

difference).

Spontaneous capillary flow occurs as long as the pres-

sure at the flow front is smaller than that of the reservoir

(p * 0), i.e.,

X

i

ci

dAi

dV
\0: ð5Þ

where the index i scans all the surfaces Ai (with surface

tension ci with the liquid). Equation (5) can be written in

the form

X

i

ci

dAi

dV
¼ cSG

dASG

dV
þ cSL

dASL

dV
þ cLG

dALG

dV
\0 ð6Þ

Considering that any change of ASL is made at the

expense of ASG, and using Young’s equation

cLG cos h ¼ cSG � cSL, (6) becomes

dALG

dV
\ cos h

dASL

dV
ð7Þ

where h is the Young’s contact angle. In other words, SCF

occurs when

dALG

dASL

\ cos h: ð8Þ

If we denote by w the wetted perimeter, i.e., the length

of the contact line between the solid and the liquid in a

(A) (B)

Fig. 1 Cross section of a partly

open composite microchannel:

the lengths wi stand for the

wetted perimeters and wF for

free perimeter

Fig. 2 Sketch of the liquid front advancing along the solid surface by

capillarity
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cross section, and wF the free perimeter, i.e., the length of

the front not in contact with the walls in the same cross

section, (8) yields the condition (Berthier and Brakke

2012).

wF

w
\ cos h: ð9Þ

Condition (9) is a universal criterion for SCF, which is very

simple to use and confirmed by numerical and experi-

mental results.

Now, consider the general case of a composite, non-

homogeneous channel walls, as in Fig. 1. The condition (6)

becomes

X

i

ci

dAi

dV
¼
X

i

cSG;i

dASG;i

dV
þ cSL;i

dASL;i

dV

� �

þ cLG

dALG

dV
\0 ð10Þ

Again, using Young’s law and remarking that any

change of ASL,i is made at the expense of ASG,i we derive

X

i

� cos hi

dASL;i

dV

� �
þ dALG

dV
\0 ð11Þ

where the angles hiare the Young’s contact angles with

each solid. Now, because dV is arbitrary
X

i

� cos hi dASL;i

� �
þ dALG\0: ð12Þ

Even if the real interfaces A are not flat surfaces, there is

no loss of generality in writing

dASL;i ¼ dx wi ð13Þ

where dx is an infinitesimal progression of the fluid front

along the axial direction of the channel (Fig. 2). This

property just stems from the fact that the capillary force is

identical along any contour left by the triple line (Fig. 3).

Indeed,
Z

pW

c cos h i~: dl~¼
Z

realinterface

c cos h i~: dl~ ð14Þ

On the other hand, the ‘‘open’’ part of the cross section

cannot be too large because it would prevent SCF. Then,

the interface in the ‘‘open’’ part of the cross section is not

much deformed and we can approximate

dALG � dx wF: ð15Þ
A discussion about this hypothesis will be given later in

the text in Sect. 4. It will be shown that the hypothesis

underlying (15) is nearly always satisfied, except when the

contact angle is very small. Upon substitution of (13) and

(15) in (12)X

i

� cos hi wið Þ þ wF\0: ð16Þ

This latter relation can be rewritten as

X

i

cos hi

wi

L

� �
þ cos p

wF

L
[ 0; ð17Þ

where L ¼
P

i wi þ wF. By analogy, upon introduction of

the generalized Cassie angle h* defined by

cos h� ¼
X

i

cos hi fið Þ; ð18Þ

where fi is the fractional area of each composite materials

(fi ¼ wi=L,fF ¼ wF=L), and using the convention that for

contact with the air, the contact angle is p, Eq. (16)

collapses to the condition

cos h�[ 0 ð19Þ

or

h� ¼ a cos
X

i

cos hi fið Þ
 !

\
p
2
: ð20Þ

We find that the condition for SCF in a composite

channel is simply that the generalized Cassie angle be

smaller than 90�, i.e., the Cassie angle must be lyophilic. It

is straightforward to see that the relation (20) collapses to

the usual criterion for confined homogeneous channels.

3 Numerical verification

In this section, we present a comparison between the the-

oretical criterion for SCF given by Eq. (19) and a numer-

ical approach with the Surface Evolver numerical program

(Brakke 1992). Note that Surface Evolver does not describe

the dynamics of the motion, but iteratively relocates the

interface to lower the energy. In the case of SCF, no

equilibrium location exists, but we can still use Evolver to

predict the direction of motion in SCF (but not the precise

dynamics of motion).

Spontaneous capillary flow in two different types of

composite channels has been investigated: first, a confined,

rectangular microchannel, and second, two different

geometries of ‘‘open’’ channels, i.e., channels having a

boundary with the surrounding air.

w

Real interface

i

dl

i
dl

Fig. 3 Sketch of the real interface and the w line
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3.1 Composite confined channel

Let us start with the SCF in a confined rectangular mi-

crochannel of dimensions 250 9 150 lm with three dif-

ferent solid walls: the top plate has a hydrophilic contact

angle of 45� with the liquid while the bottom plate has a

contact angle of 120� and the vertical walls a contact angle

of 100� (Fig. 4). Substitution in (18) shows that cos

h* * 0.02, or h* * 89.2�. Using Evolver, we find that it

is the onset of SCF. A general comparison between Evolver

results and theoretical formula is shown in Fig. 5.

3.2 Composite open channel

Open channels with virtual walls have appeared recently in

the literature. In such geometries, the liquid is partly in

contact with the surrounding air and partly in contact with

different solid walls. Some open channels are simply rails,

i.e., a channel wall with air gaps on both sides (Satoh et al.

2005); other open channels are more complex such as open

liquid

air
side wall

side wall
liquid

air

marker
bottom wall

cover plate

Fig. 4 SCF in a confined microchannel with three different solid

walls (bottom, cover, and side walls). Yellow lines are markers to

check the motion of the interface; some walls have been demateri-

alized for visualization (color figure online)
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Fig. 5 Comparison between theoretical criterion and Evolver for

SCF onset in the case of a rectangular channel with three different

contact angles with the liquid. Angles 1 and 2 are, respectively, the

top and bottom plate contact angles

actuated plate (θ= 31°)

cover plate (θ= 100°)

liquid

air

Fig. 6 SCF limit in a two-rail situation
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Fig. 7 Comparison between theoretical criterion and Evolver for

SCF onset in the case of the two parallel horizontal rails

Fig. 8 Composite cylindrical channel
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Fig. 9 Comparison between theoretical criterion and Evolver for

SCF onset in the case of the composite cylinder
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U-grooves with circular apertures in the bottom plate

(Berthier et al. 2012).

In the geometry used by Satoh and colleagues, two

parallel, horizontal plates—the rails—are used to guide the

SCF; the capillary flow is triggered by electrowetting, i.e.,

the contact angle with the bottom rail is adjusted by a

proper level of the electric potential in the electrodes

embedded in the rail. The width of the rails is 60 lm and

the vertical gap 20 lm. The contact angle with the top plate

is 100�, and we find with Evolver that the actuated contact

angle with the bottom plate for SCF onset should be 31�
(Fig. 6). Substitution of these values in (18) produces the

value h* * 89.5�. A more detailed comparison is shown in

Fig. 7, where the SCF limit has been plotted versus the two

contact angles with the solid walls. The discrepancy

between the two curves—theoretical and numerical—is

less than a few degrees.

Finally, we investigate the case of a cylinder partly

open, with two different wall materials (Fig. 8). The radius

of the cylinder is 200 lm and the width of the opening is

280 lm. Using contact angles of 66� and 80� with the

walls, we find h* * 90�. Again, the value predicted by

(18) corresponds to the SCF limit found with Evolver.

A more detailed comparison is shown in Fig. 9, where

the SCF limit has been plotted versus the two contact

angles with the solid walls. The discrepancy between the

two curves—theoretical and numerical—is again less than

a few degrees.

4 Discussion

Let us come back on the assumption used for Eq. (15):

dALG � dx wF. This assumption is linked to a planar top

interface and seems to fail when this top interface is dis-

torted. In the following, we consider two examples where

the top interface is not planar and assess the effect of the

distortion on the SCF condition. It is concluded that rela-

tion (15) has a very wide scope of validity.

Consider first the case of three parallel square rods

shown in Fig. 10. When the rods are close enough from

each other, a reasonably hydrophilic angle is sufficient to

observe SCF. When the rods are at a larger distance, small

contact angles are needed to establish a SCF. The inter-rod

distance corresponding to the limit of SCF has been plotted

versus the contact angles in Fig. 11. The discrepancy

between the two curves—theoretical and numerical—is

very small for contact angles larger than 30�. Below this

value, the relative distance between the two curves is of the

order of 5 %. The approximation (15) can still be consid-

ered valid.

Another example of distorted interface is that on a

suspended V-channel (Fig. 12). When the distance between

the two plates at the bottom is very small, the interface is

very slanted (Fig. 12a); however, the SCF prediction still

corresponds to the results from the Evolver numerical

program (Fig. 12c).

5 Experimental verification

At the present time, Eq. (9) has been the basis for a few

new developments of open microfluidic systems.

The first developments concern point of care systems

(POC) for medicine where blood is directly tested using a

finger-pricking device and an open V-groove (Pouteau

et al. 2013). The V-groove system has been dimensioned

using the SCF condition (9) so that whole blood could flow

through the entire device. Fig. 13 shows the V-shaped

device and the liquid flowing by capillarity. In this par-

ticular case, the advantages of open channels are the

Fig. 10 SCF between three

parallel, square rods. Left front

view of the advancing liquid;

middle and right perspective

view of the advancing SCF
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Fig. 11 Comparison between theoretical criterion and Evolver for

SCF onset in the case of three parallel rods. The agreement between

the two approaches is good for contact angles larger than 30� and a

little accurate for contact angles smaller than 30�
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simplicity of fabrication on one hand and on the other

hand, the capillary pumping that does not require micro-

pumps—and automatic degasing—so that no air bubble is

trapped in the flow.

Another development based on the principle stated in

this text concerns the fabrication of lDOTS for cell biol-

ogy (Casavant et al. 2013). In this application, matrices of

suspended collagen membranes have been placed by a SCF

in a U-channel passing over holes (Fig. 14). Three possi-

bilities exist, they are follows: (1) the capillary flow is

blocked by the holes, (2) it flows around the holes, i.e., the

holes are not covered, and (3) the holes are covered, i.e.,

the SCF is general. Equation (9)—the simplified form of

Eq. (19)—is used to determine the geometry corresponding

to the required configuration (3).

6 Conclusion

Composite channels with walls of different nature, and

sometimes with virtual walls, i.e., open boundaries, are

increasingly used in modern biotechnology. In such

designs, capillarity is used to move the fluid through the

Fig. 12 a and b suspended SCF

in V-shaped channels.

c Comparison between

theoretical formula (9) and

Evolver results for the SCF limit

in suspended V-shaped channels

α

Fig. 13 Left cross section of the

device; right whole blood SCF

in the V-groove

Fig. 14 Capillary flow in a U-shaped channel with holes; w, h, and d
are, respectively, the channel width, height, and hole diameter; the

cases marked with a red X do not lead to the filling of the hole, while

the cases with a green V correspond to the filling of the holes

(reprinted with permission from Casavant et al. 2013) (color figure

online)
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system. In particular, spontaneous capillary flow (SCF) is

especially useful for portable systems, which greatly ben-

efit to be equipment-free.

In order to be able to correctly design such systems, the

ability to predict the occurrence of SCF is a necessity. A

criterion for the establishment of SCF in such composite

channels has been derived in this work. This criterion is

very simple: the corresponding generalized Cassie angle

must be smaller than 90�. For confined microchannels, the

result is straightforward since the capillary line force is the

product of the surface tension by the cosine of the contact

angle. It is interesting to see that the result is also valid for

open channels where a boundary of the fluid flow directly

contacts the surrounding air.
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