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Abstract The paper addresses the hydrodynamic behav-

ior of a sphere close to a micropatterned superhydrophobic

surface described in terms of alternated no-slip and perfect-

slip stripes. Physically, the perfect-slip stripes model the

parallel grooves where a large gas cushion forms between

fluid and solid wall, giving rise to slippage at the gas–liquid

interface. The potential of the boundary element method in

dealing with mixed no-slip/perfect-slip boundary condi-

tions is exploited to systematically calculate the mobility

tensor for different particle-to-wall relative positions and

for different particle radii. The particle hydrodynamics is

characterized by a nontrivial mobility field which presents

a distinct near-wall behavior where the wall patterning

directly affects the particle motion. In the far field, the

effects of the wall pattern can be accurately represented via

an effective description in terms of a homogeneous wall

with a suitably defined apparent slippage. The trajectory of

the sphere under the action of an external force is also

described in some detail. A ‘‘resonant’’ regime is found

when the frequency of the transversal component of the

force matches a characteristic crossing frequency imposed

by the wall pattern. It is found that under resonance, the

particle undergoes a mean transversal drift. Since the res-

onance condition depends on the particle radius, the effect

can in principle be used to conceive devices for particle

sorting based on superhydrophobic surfaces.

Keywords Superhydrophobic surfaces � Boundary

element method � Particle sorting � Mobility tensor

1 Introduction

Superhydrophobic (SH) surfaces have raised a large

interest in the last decades for their self-cleaning

(Nosonovsky and Bhushan 2009; Bottiglione and Carbone

2012) and drag reducing (Ybert et al. 2007; Ng and Wang

2010; Lee and Kim 2011; Vinogradova and Belyaev 2011)

properties. These features are associated with gas or vapor

bubbles trapped into the asperities of the solid surface.

Commonly, SH surfaces are fabricated by patterning the

solid substrate with regular microstructures (holes,

grooves, pillars). In the presence of a hydrophobic sub-

strate, the liquid, usually water, hardly penetrates the hol-

lows. This state is called the Cassie–Baxter state (also

known as fakir-state). In the Cassie–Baxter state, the liquid

is in contact with a patterned boundary consisting of

alternated regions of liquid–solid and liquid–air/vapor

interfaces.

Since the trapped air or vapor acts as an almost

perfect-slip cushion, a simple model of a SH surface is

given as a smooth wall with patterned boundary condi-

tions. The standard no-slip condition applies to the

liquid–solid interface and the perfect-slip condition at the

liquid–air/vapor interface (Ng and Wang 2010; Philip

1972).

Purpose of the present paper is analyzing the hydro-

dynamics of a micrometer bead moving close to a SH

surface. The patterned wall is modeled with alternating

perfect-slip/no-slip parallel stripes (Fig. 1). All the typical

length scales (particle radius, wall pattern length, and

particle–wall gap) considered here are on the order of
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micrometers, sufficiently large to describe the fluid as a

continuum obeying the Navier–Stokes equations (Li 2009;

Chinappi et al. 2008; Benzi et al. 2006; Cottin-Bizonne

et al. 2004; Gentili et al. 2013) with no slippage at the

solid wall (Chinappi et al. 2011; Chinappi and Casciola

2010; Huang et al. 2008; Zhang et al. 2012; Zhu et al.

2012; Cottin-Bizonne et al. 2008; Pan and Bhushan 2012).

Our model corresponds to the real case of sufficiently

deep grooves where it can be safely assumed perfect-slip

at the liquid–gas interface (see, e.g., the discussion

reported in Vinogradova (1995); Belyaev and Vinogradova

(2010)).

At the same time, the particle is sufficiently small to

neglect fluid inertia in the limit of vanishing Reynolds

number. Following standard dimensional analysis, the fluid

acceleration in the Navier–Stokes equations can be

neglected altogether leading to the linearized time-inde-

pendent Stokes equations (Happel and Brenner 1965).

In these conditions, the coupling between the particle and

the fluid is entirely described by the mobility tensor field

M(x). In fact, for any particle position x, the solution of the

Stokes problem is achieved by using the so-called bound-

ary element method (BEM) where the system of partial

differential equations is rewritten in terms of a vector

boundary integral equation. The unknown reduces to the

complementary data at the boundary, the stress vector

where velocity (no-slip) is enforced or the velocity where

the stress is prescribed (perfect-slip). From the Stokes

solution, the mobility tensor can be calculated (see, e.g.,

Kim and Karrila (2005) for details). The x dependence of

the mobility field is then recovered by placing the particle

at different positions with respect to the patterned wall. The

mobility tensor summarizes all the relevant hydrodynamic

information needed to solve for the particle trajectory, once

external forces are applied. All the complexity due to the

patterned wall is lumped together in the mobility tensor

field allowing for a simple parametric study of the particle

response.

2 Mathematical model

The linear Stokes system,

r � u ¼ 0 ð1Þ

r2u�rp ¼ 0 ð2Þ

for the velocity u and the pressure p, here written in

dimensionless form with half the perfect-slip stripe width

w as reference length and l/(w q) and l2/(q w2) as velocity

and pressure scale, respectively, is recast in terms of a

boundary integral formulation

EðnÞujðnÞ ¼
1

8p

I

oX

tiðxÞGijðx; nÞdSx

� 1

8p

I

oX

uiðxÞT ijkðx; nÞnkðxÞdSx: ð3Þ

Here oX is the boundary of the flow domain X, which

consists of the particle surface and the patterned wall. Gij

is the fundamental solution (free-space Green’s function

or Stokeslet), T ijk the associated stress tensor, ui the ith

velocity component, and ti the traction vector,

ti = -pdij ? qui/qxj ? quj/qxi with dij the Kronecker

delta. The velocity at n is expressed as the convolution

of the densities (velocity and stress vector) with the

appropriate convolution kernels (Green’s function tensor

and associated stress). The coefficient E equals 1 inside

the fluid domain and 1/2 at regular boundary points.

Collocating the representation at boundary points

provides a boundary integral equation where the

unknowns are the complementary data to those

prescribed at the boundaries (i.e., the unknown is the

velocity where the traction vector is prescribed and

the traction vector where the velocity is given). In the

present case, the data are the velocity where no-slip

holds and a combination of vanishing wall-normal

velocity and tangential traction at the impermeable

perfect-slip regions. The integral equation can be

solved numerically by the so-called boundary element

method (Pozrikidis 1992; Kim and Karrila 2005), a

standard approach for linear systems of partial

differential equation with constant coefficients (see the

‘‘Appendix’’ for a few more details). After the traction at

the particle surface is evaluated, the hydrodynamic forces

and torques are obtained by integration, thus determining

the resistance matrix and, by inversion, the mobility

tensor.

In all the cases considered below, the solid fraction

0 B /s B 1 of the patterned wall, ratio of no-slip to total

surface area, is /s = 0.5 (equal width for the perfect-slip

and the no-slip stripes), such that the dimensionless pattern

F

h

λ

No Slip 
  (NS)

Perfect slip 
       (PS)

Fig. 1 System geometry. A sphere of radius a moves at a distance

h from a planar wall. The wall is a superhydrophobic surface in Cassie

state with a flat meniscus. The pattern period is indicated with k. The

perfect-slip condition is used at the air/liquid interface (PS, dashed

line), and the no-slip condition is used at the solid–liquid interface

(NS, solid line)
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periodicity is k = 4 (see sketch in Fig. 1). No difficulty is

found to extend the numerical model to other solid frac-

tions, providing resolution issues are treated with adequate

care for the extreme cases (very small or very large /s). In

the following, unless otherwise explicitly stated, only the

case of a no-slip particle will be addressed. Again, given

the flexibility of the approach, no substantial difficulty is

encountered for different boundary conditions (perfect-slip

or partial-slip boundary conditions at the particle bound-

ary). The SH wall coincides with the Oxy plane of the

reference system with the alternating perfect-slip (PS) and

no-slip (NS) stripes parallel to the y-axis (see Fig. 1) being

z the wall-normal coordinate. Where convenient, the dif-

ferent components of vectors and tensors will be denoted

by indices, e.g., x : x1, y : x2, and z : x3. The dimen-

sionless sphere radius is a with h the normalized gap

between sphere and wall.

In the context of Stokes flows, the response is linear

with respect to the external force applied to the particle. It

follows that the problem of determining the linear and

angular velocity of the sphere, given forces and torques,

can be conveniently formulated in terms of the mobility

tensor Mab; a; b ¼ 1; . . .; 6 (see, e.g., the classical textbook

(Kim and Karrila 2005)). Indeed, the mobility tensor

relates the generalized (linear and angular) velocities to the

generalized forces (forces and torques), namely

U1

U2

U3

x1

x2

x3

2
6666664

3
7777775
¼

M11 M12 M13 M14 M15 M16

M21 M22 M23 M24 M25 M26

M31 M32 M33 M34 M35 M36

M41 M42 M43 M44 M45 M46

M51 M52 M53 M54 M55 M56

M61 M62 M63 M64 M65 M66

2
6666664

3
7777775

F1

F2

F3

T1

T2

T3

2
6666664

3
7777775

ð4Þ

where Ui; i ¼ 1; . . .; 3, are the components of the particle

center velocity U, xi the components of the angular velocity

x, and Fi and Ti the components of force F and torque T,

respectively. With this notation, Mi, j?3 gives the coupling

between the jth component of the torque and ith component

of the linear velocity of the sphere. The reciprocity theorem

guarantees the symmetry of the mobility tensor, Mab = Mba.

In more compact notation, Eq. (4) is rewritten as

~U ¼M � ~F ð5Þ

where ~U and ~F are the generalized velocities and forces and

M is the mobility tensor. In the general case, the mobility is

a tensor field M(x) depending on the position of the sphere

center. The symmetry of the problem induces a corre-

sponding symmetry on the tensor field. For instance, in free

space the mobility tensor reduces to a diagonal matrix for a

spherical body, consistently with the absence of any cou-

pling among the different degrees of freedom. A homo-

geneous wall breaks the translation symmetry of the sphere

in the wall-normal direction and induces the coupling

between wall-parallel translations in direction ê and wall-

parallel rotations with axis parallel to ẑ� ê where ê is any

wall-parallel unit vector and ẑ is the wall-normal unit

vector pointing toward the fluid [see, e.g., the review

(Brady and Bossis 1988) and the textbook (Kim and

Karrila 2005)].

3 Sphere moving along a homogeneous wall

The solution of the Stokes equations (2) in the geometry

described in Fig. 1 is obtained by an in-house boundary

element code based on the BEMLIB library1 released by

Pozrikidis (2002). This approach allows us to tackle com-

plex boundaries where the complexity relies both on the

geometrical configuration and on the assigned boundary

conditions, the alternation in PS/NS regions in the present

case, ‘‘Appendix.’’ When dealing with wall-bounded

Stokes flows, the effect of a single planar wall can in

principle be included in the Green’s function (wall Green’s

function), thus avoiding the discretization of the wall itself

[see, e.g., Blake (1971)]. However, the use of a specialized

Green’s function becomes too cumbersome to deal with

alternated PS/NS boundary conditions at the wall as

required to model the present SH surface. It is more con-

venient to work with the free-space Green’s function and

use a boundary integral equation extending to particle and

wall surfaces. Clearly, the infinite planar wall is truncated

in numerics where it is modeled as a finite square of size

L� k. The appropriate truncation length L, in the range of

sphere-to-wall clearance h considered here, is selected by

comparison with the results of the wall Green’s function

formulation (corresponding to an actually infinite wall) for

the simple case of a no-slip wall.

3.1 No-slip wall

A first validation of the numerics concerns the sphere in

free space. As for the homogeneous wall, the reference

length w introduced in the previous section is, strictly

speaking, undefined. It is fixed in this case by requiring the

dimensionless sphere radius to be a = 1. The numerically

estimated resistance of the no-slip sphere in free space was

checked to recover the well-known Stokes results for rigid-

body translation in direction ê and rigid-body rotation

x;D ¼ �6paê and Q ¼ �8pax, respectively. It may be

worthwhile calling the reader’s attention on the fact that

F and T as defined in Eq. (4) are external forces applied to

the sphere while D and Q denote the drag force and torque

1 The library is available under the terms of the GNU Lesser General

Public License at http://dehesa.freeshell.org/BEMLIB/.
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experienced by the sphere in the relative motion with

respect to the fluid. In other words, for constant translation

and rotation velocities, D ? F = 0 and Q ? T = 0. As a

second check, the drag law for the perfect-slip sphere

moving in direction ê;D ¼ �4paê and Q = 0, was also

reproduced [see Landau (1987)].

More interesting are the tests in the presence of the wall.

In Stokes flows, the velocity disturbance decays in space as

the inverse distance from the momentum source, i.e., the

sphere in the present case, as easily shown from the far-

field asymptotic of representation (3) where Gij * 1/r. For

this reason, domain truncation effects must be carefully

addressed. In the presence of a homogeneous wall, the

hydrodynamic force D due to a wall-parallel translation of

the sphere in direction ê has, by symmetry, a vanishing

wall-normal component D3. Indeed, D3 depends linearly on

the particle velocity and should change sign under velocity

inversion. Clearly, D3 should instead be independent of the

direction of the wall-parallel velocity. The only possible

conclusion is that D3 : 0. Hence, the only nonvanishing

component of the hydrodynamic force is the one opposed

to the velocity,

R11 ¼ R22 ¼ �D � ê ¼ ê �
Z

oB

tdS [ 0;

where t is the stress exerted by the body on the fluid.

Figure 2 shows the normalized resistance coefficient

R11
* = R11/(6pa) for a no-slip sphere of radius a = 1

moving in the wall-parallel direction ê1 close to a no-slip

wall. Data are reported as a function of the gap h for dif-

ferent domain truncation lengths L. As L is increased, the

results show apparent convergence toward the infinite wall

result, compare data at L = 32 and L = 64. For further

comparison, the analytic results obtained in Goldman et al.

(1967) are also reported. The resistance coefficient R11
GF for

the actual infinite planar wall was also obtained by using a

companion numerical solution that employed the wall

Green’s function. The inset (a) concerns the relative error,

E11
G = (R11

G - R11)/R11
G , where the superscript G refers to

Goldman et al. (1967) between the present numerics and

the analytical solution. The three curves correspond to a

reference solution with L = 32 and a characteristic wall

panel dimension dw/a = 0.5, to a second solution with

the same truncation length and a finer discretization

dw/Type="Italic">a = 0.25 and to a third case with the

same grid of the reference numerical solution and increased

truncation length L = 64. From the comparison, it is

apparent that the typical panel dimension controls the error

when the particle is close to the wall. Instead, when the

wall-normal distance increases, the effect of truncation

becomes dominant, requiring a larger portion of the wall to

be retained in the numerical configuration. The inset

(b) reports the relative error E11
GF = (R11 - R11

GF)/ R11
GF with

respect to the wall Green’s function approach vs the trun-

cation length L for different gaps h. As already commented

on, E11
GF increases with h at fixed wall truncation and

decreases with L at fixed wall distance, confirming that a

finite portion of the planar wall is seen to better approxi-

mate the infinite wall case when the distance of the object

from the wall gets smaller and smaller. For the typical gaps

to be further considered in this paper, namely

h 2 ð0:125; 2Þ, no significant improvements are achieved

by increasing L from 32 to 64 with the relative error in both

cases below *2 %. Hence, where not explicitly stated, the

value L = 32 is used throughout the paper. Similar con-

vergence is observed for all other nonzero resistance tensor

coefficients (data not shown). For this range of parameters,

the particle surface was discretized by means of a hierar-

chical triangular mesh of 512 elements whose typical size

is dp/a = 0.1567. A nonuniform discretization consisting

of about 1,500 elements is adopted for the wall. In fact, the

tessellation of the wall is locally refined below the sphere

and is progressively coarsened away from it.

3.2 Perfect-slip wall

After the preliminary validation provided in the previous

subsection, numerical results worth being discussed con-

cern the motion of a no-slip sphere close to a perfect-slip

homogeneous wall. In this case symmetry considerations

can be exploited to provide a reference solution to compare

h

R
* 11

0 2 4 6 8 10

1

1.5

2

2.5

3

L=16

L=32

L=64

Goldman,Cox,Brenner (1967)

Free Space R*11=1

L

E
11G

F

20 30 40 50 60

0.02

0.025

0.03

0.035

h=0.5
h=1
h=5

b)

h

E
11G

10-1 100 101

0.015

0.02

0.025
L=32, dw/a=0.5
L=64, dw/a=0.5
L=32, dw/a=0.25

a)

Fig. 2 The R11
* resistance coefficient of a sphere of radius a = 1 over

a truncated no-slip wall plotted against the gap h for three different

truncation lengths: L = 16 (squares, dash-dotted line), L = 32

(circles, solid line), L = 64 (triangles, dashed line). Black inverted

triangles refer to the analytical solution by Goldman et al. (1967).

Inset (a): relative error between the present data and (Goldman et al.

1967), E11
G = (R11

G - R11)/R11
G where the superscript G refers to

Goldman et al., for L = 32 and L = 64. Inset (b): relative error

E11
GF = (R11

GF - R11)/R11
GF, where GF refers to numerical results

obtained by using the Green’s function for an infinite no-slip wall

(Blake 1971), plotted against L for three different gaps: h = 0.5

(squares, solid line), h = 1 (diamonds, dashed line), h = 5 (circles,

dash-dotted line)
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the present result with. Indeed, considering the image of

the sphere with respect to the perfect-slip wall, one ends up

with a two-sphere system translating parallel to the wall in

otherwise infinite space. By symmetry, it is clear that

taking the two-sphere solution restricted to the half-space

above the wall provides the required solution for the

present perfect-slip wall problem. The solution of two-

sphere problem was discussed by Batchelor (1976) where

reference data for the mobility are provided. Alternatively,

one can exploit the equivalent two-sphere problem to

derive a boundary integral equation only involving the

unknown traction on the physical sphere that accounts for

its image below the wall in such a way that the solution

provides the desired results for the perfect-slip wall case.

The main results are summarized in Fig. 3 where the

mobility coefficient M11
* for the sphere is reported as a

function of the dimensionless gap h. Even in this case

a few wall truncation lengths are considered, namely

L = 16, 32, 64. As expected, M11
* decreases (resistance

increases) approaching the free-space value for increasing

gap. On the contrary, the mobility coefficient increases

(resistance lowers) when the gap is progressively reduced.

This is a consequence of the perfect-slip boundary condi-

tion that allows a finite fluid velocity at the wall. It follows

that strong velocity gradients cannot occur in the gap

between sphere and wall in contrast to the case of a no-slip

surface. Also, in this case the numerical solution shows

good agreement with respect to the equivalent Batchelor

two-sphere problem (black inverted triangles in Fig. 3).

Even for the perfect-slip wall, the results are only negli-

gibly affected by the wall truncation for sufficiently large

L, as shown by comparing M11
* at L = 32 and L = 64 for

the present values of the gap h 2 ð0:125; 2Þ.

4 Mobility tensor for a superhydrophobic wall

By symmetry, the matrix representing the mobility tensor of

a sphere close to the superhydrophobic surface sketched in

Fig. 1 takes on a checkerboard structure. The (symmetric)

matrix can easily be recast into block-diagonal form by a

simple reordering of generalized velocity and forces, namely

U1

x2

U3

x1

U2

x3

2
6666664

3
7777775
¼

M11 M15 M13 0 0 0

M15 M55 M35 0 0 0

M13 M35 M33 0 0 0

0 0 0 M44 M24 M46

0 0 0 M24 M22 M26

0 0 0 M46 M26 M66

2
6666664

3
7777775

F1

M2

F3

M1

F2

M3

2
6666664

3
7777775
:

ð6Þ

In this form the cross-coupling between the different

degrees of freedom becomes apparent showing, e.g., that

the rotation around the axis parallel to the stripes (x2)

couples with a force in the wall-normal direction x3

through the mobility coefficient M53 = M35. The mobility

tensor depends on the wall-normal distance expressed by

the gap clearance h and on the wall-parallel coordinate

normal to the stripes x1 = x, Mab(x, h).

In the following, the (dimensionless) mobility tensor

is normalized by the free stream value M111 ¼ 1=ð6paÞ;
M� ¼M=M111 . Figure 4 reports M11

* as a function of h and

x for different particle radii a = 0.25, 0.5, 1, 2. Appar-

ently, M11
* is symmetric with respect to the center of both

the perfect-slip (x = 1) and the no-slip (x = 3) stripe. Two

features of the plots are noteworthy. (1) Far from the wall

M11
* is unexpectedly larger for x 2 ð2; 4Þ (i.e., when the

center of the sphere is above the no-slip stripe) than for

x 2 ð0; 2Þ (sphere above the perfect-slip stripe). (2) This

behavior is reversed close to the wall where, as expected,

M11
* is larger above the perfect-slip stripe, see cases

a = 0.25 and a = 0.5 in particular.

In Fig. 5 M11
* is reported as a function of h for different

particle positions x for a = 0.5. Two distinct regions can

be identified: a near-wall and a far-field region. In the near-

wall region, the mobility coefficient is larger for x corre-

sponding to the perfect-slip stripe and strongly depends on

the position along the wall pattern. In the far field, the

mobility is larger for x corresponding to the no-slip portion

of the wall, with a less pronounced x-dependence and a

monotonic approach to the free-space value (recovered up

to 90\,% at h = 2). In order to define the two regions, their

boundary is set at the gap hinv where M11
* (1, hinv) =

11M*(3, hinv) (i.e., the gap where the mobility for a particle

above the PS stripe equals the mobility above the NS

stripe). From the inset of Fig. 5, it is apparent that hinv

decreases with the particle radius.

Figure 6 shows the dimensionless averaged mobility

coefficient hM�11i as a function of the gap-to-particle-radius

h

M
* 11

0 2 4 6 8 10

1

1.05

1.1

1.15

1.2

1.25

1.3

L=16
L=32
L=64
Batchelor
Free space M*11=1

Fig. 3 Mobility coefficient M11
* of a no-slip solid sphere of radius

a = 1 in the presence of a perfect-slip wall as a function of the

sphere-to-wall gap h for different wall truncations L = 16 (squares,

dashed line), L = 32 (circles, dash-dotted line), L = 64 (triangles,

solid line). Black inverted triangles refer to the analytical solution by

Batchelor (1976)
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ratio, h/a, for spheres of different radii. The angular

brackets denote the spatial average of the complete field

M11
* (x,h) in the periodic direction x. In the plot the present

data (symbols) are compared against the mobility over a

homogeneous wall with a suitably defined partial-slip

boundary condition (solid lines),

x

h

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5
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2 M*11
0.9
0.9
0.8
0.8
0.7
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0.6
0.6
0.5
0.5
0.5

PS NS

(a) a=0.25
x
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0.9
0.9
0.8
0.8
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0.6
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0.5
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(b) a=0.5

x
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0.9
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0.6
0.6
0.5
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(c) a=1
x

h

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2 M*11
0.9
0.9
0.8
0.8
0.7
0.7
0.6
0.6
0.5
0.5
0.5
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(d) a=2

Fig. 4 M11
G fields for different sphere radii. Near the wall the mobility strongly depends on the x-position of the sphere center. The x-dependence

is weakened as the gap h is increased

h

M
* 11

0 0.5 1 1.5 2
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0.7

0.8

0.9

1
x=0
x=0.5
x=1
x=2.5
x=3

hinv 1/a

h in
v

0 1 2 3 40

0.2

0.4

0.6

0.8

Fig. 5 M11
* as a function of the gap h for different x (a = 0.5).

Different behaviors are observed in the near-wall region h \ hinv and

in the far field h [ hinv. Near the wall strong changes occur when

moving the particle from a perfect-slip stripe (e.g., x = 1) to a no-slip

stripe (e.g., x = 3), and the mobility is larger above a perfect-slip than

above a no-slip stripe. In the far field, M11
* is more uniform in x and

the mobility of the particle is larger just above a no-slip stripe. In the

inset, inversion gap hinv for different particle radii
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Fig. 6 Mobility profiles as a function of h/a for particles of different

radii a 2 ½0:25; 2�. Spatially averaged mobility hM�11i for the patterned

wall (symbols). Mobility of an homogeneous wall with a partial-slip

boundary condition (solid lines). No-slip homogeneous wall (dashed

lines). Inset M11
* profiles at the center of PS zone (x = 1). The dashed

vertical lines denote the critical distance hinv
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ux=y w ¼ ‘x=y

oux=y

oz

����
����
w

: ð7Þ

Philip formula (Philip 1972; Ng and Wang 2010)

expresses the effective slip lengths, ‘x and ‘y, in the lon-

gitudinal and transversal directions to the stripes, in terms

of the pattern solid fraction /s and length k,

‘y ¼ 2‘x ¼
1

p
ln sec

p 1� /sð Þ
2

� �� �
: ð8Þ

In the original papers, these expressions were derived

for a flow over a patterned wall dragged by a constant

shear stress in the far field. The same expressions are

used here to reconstruct an effective wall boundary

condition to model the fluid–wall interaction in the case

of the moving sphere over the patterned surface. In other

words, Eqs. (7, 8) are used as boundary conditions at the

patterned wall in the BEM solver. Figure 6 shows that as

h/a is increased, the mobility approaches the free-space

value independently of the detailed boundary condition

used at the patterned wall. For further comparison, also

the data pertaining to a homogeneous no-slip wall are

reported (dashed lines). The mobility profiles calculated

with the partial-slip boundary condition closely follow

those computed for the actually patterned wall for nearly

all the considered gaps. Clearly, the accuracy in

reconstructing the correct mobility is better in the far-

field region, even though the discrepancy is always

below 5 % in the worst cases when the sphere gets

closest to the wall. These results indicate that the

spatially average mobility experienced by the particle is

weakly dependent on the geometrical details of the wall

pattern and can be described by a suitably defined

effective slippage at the wall. The mobility profiles

M11
* (x = 1,h) extracted at the center of the perfect-slip

region are plotted in the inset of Fig. 6. In the near-wall

region (h \ hinv), the mobility is strongly affected by the

perfect-slip stripe, and at least for the spheres of radius

a = 0.25, 0.5 (i.e., for a sphere diameter smaller than

one stripe width), a mobility minimum is achieved at a

certain (small) distance from the wall. The location of

the minimum approaches the wall as the sphere radius is

increased. In the far field (h [ hinv, dashed vertical

lines), the mobility approaches the free-space value

closely following the curves obtained from the effective

slip model of the wall.

The discussion of the mobility is completed in Fig. 7

which provides coefficients M22
* and M13

* for a = 0.5. As

expected, M13
* is antisymmetric with respect to the

midpoint of the two stripes. For comparison, in free

space the mobility matrix is purely diagonal and isotro-

pic, meaning that there is no coupling among the degrees

of freedom, M11 = M22 = M33, and M44 = M55 = M66.

A homogeneous wall in the x - y plane breaks the

homogeneity in the z-direction, i.e., M = M(h), and

introduces the coupling between translations in wall-

parallel directions and rotations along the orthogonal

wall-parallel axis (see the discussion at the end of

Sect. 2). The coupling is provided by the mobility

coefficients M15(h) = M24(h) = M51(h) = M42(h). For

the homogeneous wall, the nonvanishing terms are

M33(h), M11(h) = M22(h), M15(h) = M24(h) = M51(h) =

M42(h), M66(h), and M44(h) = M55(h). Indeed, the non-

vanishing coefficient M13(x,h) shown in Fig.7(b) is a

feature induced by the breaking of the x-invariance

introduced by the pattern. More generally, as already

discussed in connection with Eq. (6), in the presence of

the stripes, the mobility matrix splits into two 3 9 3

blocks. One describes the coupling among x-translations,

y-rotations axis, and z-translations. The other block

couples y-translations, x, and z-rotations. The existence

of the nonvanishing coefficient M31 = M13 in the first

block implies that a force parallel to the wall and normal

to the stripes generates a wall-normal velocity such that the

issuing motion is no more contained in a wall-parallel plane.
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Fig. 7 M22
* (a) and M13

* (b) vs. (x, h). The maximum of M22
* above

the PS region (x = 1) and the minimum above NS (x = 3) are

apparent. M13
* is antisymmetric with respect to the center of both the

PS (x = 1) and the NS (x = 3) region
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5 Application to particle separation

The mobility field evaluated in the previous section can be

exploited to compute the sphere trajectory under the action

of an external force F parallel to the wall. The equation of

motion reads

_x ¼MUFðx; hÞ � F; ð9Þ

where x = (x, y, h) defines the sphere position and

MUF(x, h) is the upper 3 9 3 block of the mobility

tensor M defined in Eqs. (4) and (5) where the subscripts

U and F denote the linear velocity–force coupling.

Rotations and torques are not explicitly addressed since

they are irrelevant to the trajectory of the sphere center.

The purpose is investigating the potential of SH surfaces

in combination with suitable forms of external forcing to

achieve particle separation, i.e., focusing particles with

different characteristics in different regions of the flow

domain. Although calculated for a single particle, the

present results can be used also for dilute suspensions.

The limit concentration above which the results loose

validity can be estimated by considering that the

hydrodynamic interactions between neighboring spheres

vanish as 1/r, with r the distance between their centers.

The results in Batchelor (1976) and Jeffrey and Onishi

(1984) indicate that the interaction terms are negligible

for r [ rd / â, where â is the average radius in the

particle suspension and the proportionality constant is

order of a few tens. It follows a rough estimate for the

particle concentration threshold above which hydrody-

namic interaction matter, c � 1/(rd)3. Hence, the present

results can be consistently used also for dilute suspen-

sions with a concentration c B cd � rd
-3.

In the following subsections, no wall-normal force is

applied, F3 = 0, while the wall-parallel force normal to the

stripes is taken to be constant, F1 = 1. Different cases are

considered concerning the transversal force component,

namely F2 = const in Sect. 5.1, F2 = F2(x) in Sect. 5.2,

and F2 = F2(t) in Sect. 5.3.

5.1 Constant forcing along the stripes

In the case of a constant force with vanishing wall-normal

component, system (9) reduces to

dx

dt
¼ M11ðx; hÞF1 ð10Þ

dy

dt
¼ M22ðx; hÞF2 ð11Þ

dh

dt
¼ M31ðx; hÞF1: ð12Þ

In Fig. 8 the xh- and xy-projections of a typical

trajectory are reported, top and bottom panel,

respectively. The finite mobility coefficient M31 couples a

wall-normal motion to the wall-parallel force component

F1 acting along the stripe normal. The wall-normal motion

occurs in periodic fashion with no mean drift. Typically,

the oscillation amplitude is quite small, as expected given

the small values of M31. The motion in the wall-parallel

plane xy occurs at an average angle to the force direction,

here oriented 45� from the stripe normal (x-direction). Both

mean deflection and wall-normal oscillations are clearly

induced by the alternating pattern of perfect- and no-slip

stripes at the solid wall.

The mean deflection observed in Fig. 8 is worth being

investigated in more detail, given its potential interest for

particle separation. The deflection is measured by the

average trajectory slope m ¼ hdy=dxi, where angular

brackets denote averaging over the spatial period k of the

stripes. The slope m is reported in Fig. 9 (top panel) for

different particle radii a and initial positions (0, 0, h0) for a

45� inclination of the force, F2/F1 = 1. The behavior

illustrated in the figure is generic and does not depend on

the force inclination nor on the particle initial position

along the stripe pattern. By inspection of the data, the

deflection increases as the gap h is reduced and as the

particle radius a is augmented. This not trivial behavior is
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Fig. 8 Trajectory in the xh plane (top panel) for a particle of radius

a = 2 released at x0 = 0, y0 = 0 for three different initial gaps:

h0 = 0.25 (dashed line), h0 = 0.5 (solid line), and h0 = 0.75 (dash-

dotted line). The trajectory in the xy for the case h0 = 0.25 is reported

in the bottom panel
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induced by the elliptic nature of the Stokes equations.

However, its physical interpretation can be at least sket-

ched for particles with radius much smaller than the stripe

width, a� k. Far from the border between perfect- and no-

slip regions, the small particle experiences a locally iso-

tropic wall (i.e., M11 = M22), implying no deflection.

However, in a region of characteristic size � / a straddling

the border, M11 and M22 differ significantly inducing a

local deflection of the particle path. The overall deflection

is somehow a weighted average between the nondeflecting

portions of the trajectory and the deflection regions located

at the stripe borders. By increasing the particle radius a, the

size of the nondeflecting portions decreases. At the same

time, the deflecting effect of the border gets stronger, since

it scales only with the ratio a/h under the assumption

a � k. It follows that the overall deflection increases with

a. This argument, even though strictly valid only in the

limit a � k, can provide a guideline in interpreting the

general behavior.

Clearly, the amount of deflection does indeed depend on

the forcing directions and vanishes for forces perfectly

normal or parallel to the stripes. In any case, the maximum

deflection turns out to be small, at most a few percent with

respect to the forcing angle. This finding is consistent with

similar results discussed in Zhang and Koplik (2012) where

molecular dynamics is used to compute the trajectory of a

particle dragged by the underlying flow and in Zhou et al.

(2012) where a Poiseuille flow over a patterned wall is

considered.

Given the slope of the particle trajectory in the xy plane,

dy

dx
¼ M22ðx; hÞ

M11ðx; hÞ
F2

F1

; ð13Þ

a rough approximation for the average slope based on the

small oscillations of h(x) is

m ¼ dy

dx

� �
’ M22ðx; h0Þ

M11ðx; h0Þ

� �
F2

F1

: ð14Þ

The above estimate corresponds quite well to the actual

data, as shown in Fig. 9 (top panel) by the comparison of

symbols and dashed lines. Significant discrepancies

become apparent for small gaps h0, where M31(x,h)

becomes significant (see Fig. 7) and the wall-normal

oscillation is no more negligible (see the top panel of

Fig. 8).

The bottom panel of Fig. 9 shows the absolute angular

deflection d ¼ H�HF with H ¼ tan�1ðmÞ and HF ¼
tan�1ðmFÞ, where mF = F2/F1. A maximum angular

deflection is apparent for HF ¼ 45	 while, as expected by

symmetry consideration, d = 0 for HF ¼ 0	 (perpendicular

to the stripes) and HF ¼ 90	 (parallel). Interestingly,

defined the relative slope difference

s ¼ m� mF

mF

; ð15Þ

Equation (14) implies that s ’ hM22ðx; h0Þ=M22ðx; h0i � 1,

i.e., s does not depend on the direction of the applied force.

This is consistent with the data reported in the inset of the

bottom panel of Fig. 9.

5.2 Spatially periodic forcing along the stripes

When the transverse force component F2 is an oscillating

function of the coordinate x normal to the stripes, certain

resonance effects may emerge. To address the problem,

one may exploit system (10–12) by noticing that the

equations for x(t) and h(t) are y-independent. Hence, the

system can be first solved for the unknowns x(t) and h(t) for

a constant force F1 = 1, F3 = 0, as in Sect. 5.1. The

solution of Eq. (11) then provides y(t) = y[t;x, h, F2] as a

h
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Fig. 9 Top panel observed (symbols) and predicted (dashed lines)

average slopes m for particles driven by a 45� constant forcing

F2/F1 = 1 as a function of the initial gap h0. Bottom panel absolute

deflection d (degrees) with respect to the forcing angle HF for

h0 = 0.25. The 45� forcing achieves the maximum absolute deflection

for a given radius. In the inset, measured relative difference between

the actual trajectory slope m and tangent of the forcing angle slope

mF = F2/F1, s = (m - mF)/mF
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functional of x(t), h(t), and F2(x). This functional is linear

in F2(x). The average deflection of the particle along the

stripes per wavelength of wall pattern will then depend on

amplitude and shape of F2(x). The force distribution can be

optimized to maximize the particle drift for given physical

constraints, e.g., periodic, zero average force hF2i ¼ 0 and

prescribed effective amplitude A ¼
ffiffiffiffiffiffiffiffiffi
hF2

2i
p

. It is not diffi-

cult to show that the solution of the optimization problem is

F
opt
2 ðxÞ ¼ A

M22 x; hðxÞ½ �
M11 x; hðxÞ½ �F1

� 1
k

M22

ðM11F1Þ

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M22
M11F1


 �2
� �

� 1
k

M22
M11F1

D E2

s ; ð16Þ

where hðxÞ ¼ h tðxÞ½ � with t(x) the inverse of x(t). From

Eq. (13) the optimized slope follows as

mopt ¼ A

kF1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M22

M11F1

2
� �

� 1

F1k
M22

M11F1

� �2
s

: ð17Þ

Instead of using the solution of the optimization

problem, in the following F2(x) is taken to be a sinusoid,

dy

dt
¼ M22ðx; hÞ

Affiffiffi
2
p sin

2px

k

� 

; ð18Þ

a simple shape that is, in many cases, not too far from the

optimal. Indeed, at least for trajectories not too close to the

surface, the two mobility coefficients are reasonably

well approximated by the expressions M22=11 ’ M0
22=11þ

M1
22=11 sin 2px=kð Þ, implying from Eq. (16) F

opt
2 
 sin 2px

k

� �
.

Figure 10 (top panel) shows the measured values of m as a

function of the initial gap h0 for several sphere radii. The

slope m is calculated as an average along an actual tra-

jectory, m ¼ hdy=dxi. For relatively small values of a, the

behavior of m vs h0 is monotonic. As the sphere reaches the

size a = 2 (i.e., its diameter equals the pattern period), a

new behavior emerges. This is presumably associated with

the strong oscillations in h(t) that occur in these conditions,

related to the increased M13. m scales linearly with the

amplitude of the forcing such that m/A depends only on the

initial gap h0 and on the particle radius.

A rough estimate of the deflection coefficient m, at least

for small oscillations in h, is

m ¼ dy

dx

� �
’ M22ðx; h0Þ sinð2px=kÞ

M11ðx; h0Þ

� �
A

F1

: ð19Þ

The results of this approximation (dashed lines)

compare well with the data shown by symbols in Fig. 10

for a \ 2. At a = 2, the accuracy is lost due to the strong

oscillations in h which spoil the approximation.

As a last remark, the trajectory under the optimal

force F2
opt(x), Eq. (16), is compared to the results with

the sinusoidal force, bottom panel of Fig. 10 for

a = 0.25. Two cases are considered, namely h0 = 0.25

and h0 = 1. As expected, far from the wall, i.e., at

h0 = 1, the two forces are almost equivalent. In the

near-wall region, the optimal force is indeed slightly

more effective in maximizing the drift. The shape of the

optimal force is compared for the wall distances

h0 = 0.25 and 1 in the inset of Fig. 10. At large dis-

tance, the optimal force approaches a sinusoid, while

substantial differences are found closer to the wall where

the optimal shape resembles a square-wave consistently

with the discontinuous boundary conditions enforced at

surface. Even in this case the comparison of the trajec-

tories confirms that the sinusoid is nearly optimal in

maximizing the drift. The drift coefficients m under

optimal forcing are reported in the top panel of Fig. 10

as filled circles highlighted by arrows.

It might be interesting to specialize the traction force F1

for the very common case where the force is proportional

to the particle volume, F1 / 4
3
pa3, as it happens, e.g., for

h
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Fig. 10 Top panel observed (symbols) and predicted (dashed lines)

average slopes m for particles driven by a constant force in the

x direction (F1 = 1) and x-dependent force in the y-direction (Eq. 18)

with A ¼
ffiffiffi
2
p

as a function of the initial gap h0. Circles are referred

to as average slopes m obtained using the optimal forcing in the

y-direction (Eq. 16). Bottom panel comparison of trajectories obtained

by sinusoidal and optimal forcing in the y-direction. The top curve

pair compares the trajectories at h = 0.25. The bottom pair provides

the comparison at h = 1, where the two curves are almost superim-

posed. The inset shows F2
opt(x) (Eq. 16) for two values h0 = 0.25,1
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the vertical settling of a particle under gravity. The cubic

dependence on the particle radius results in a strong

reduction in the velocity normal to the horizontal stripes

(crossing velocity) for smaller particles. The increased

crossing time Tc leads to a larger transversal impulseR Tc

0
F2dt, thus amplifying the oscillations and the mean

deflection of the particle. Indeed, the differences between

small and large particle radii apparent in Fig. 11 may

inspire simple particle-sorting devices based on the cou-

pling of the radius-dependent traction force with the

transversal oscillating field.

5.3 Time-dependent forcing along the stripes

The previous section showed that significant mean particle

drifts can be achieved by an oscillating spatial distribution

of the transverse force. This finding suggests looking at the

effect of a time-oscillating space-homogeneous transverse

force F2(t). As in the previous section, the particle is pulled

along the x-direction by a constant force F1 = 1 with a

superimposed transverse oscillating forcing with zero

mean. The resulting equation for the transverse motion of

the particle is

dy

dt
¼ M22ðx; hÞB sin

2pt

T

� 

; ð20Þ

to be solved together with Eqs. (10) and (12).

In the top panel of Fig. 12, different xy trajectories are

reported for a = 1, B = 1, different initial positions

(0, 0, h0) and T = 114. The trajectory is characterized by

two different wavelengths. The shortest one is not

appreciated on the scale of the plot (see the close-up in the

inset). The long-wavelength behavior strongly depends on

the initial gap h0 and dominates the large-scale motion. Its

spatial period progressively increases as h0 approaches the

critical value hc = 0.5 where the periodicity is lost (infinite

oscillation period) and the particle drifts steadily. In these

limiting conditions, the trajectory degenerates in a recti-

linear motion with superimposed aforementioned small-

scale oscillations. The observed behavior can be under-

stood in terms of a simplified model amenable to analytical

solution. The model adopts a few assumptions that are

reasonably well justified by the results described in the

previous sections. A first simplification consists in freezing

the h dependence of the mobility coefficient M22(x, h) ^
M22(x, h0). Successively, the x dependence is approximated

by its dominating Fourier modes M22ðx; h0Þ ’
M22 þ b1 sin 2p

k x
� �

, where M22 and b1 are mean value and

first harmonic amplitude, respectively. Finally, the motion

along the x-direction under the action of the constant force

F1 is roughly approximated as x(t) = vp t ? x0, where vp is

the mean cross-stripe particle velocity. Equation (20) then

becomes

dy

dt
¼ M22 þ b1 sin

2p
k

vpt þ x0

� �� �� �
B sin

2pt

T

� 

: ð21Þ

The solution follows as

yðtÞ ¼ Bkb1

2pðvp � vf Þ
sin

2p
k
ðvp � vf Þt þ /

� 

ð22Þ

� Bkb1

2pðvp þ vf Þ
sin

2p
k
ðvp þ vf Þt þ /

� 

ð23Þ

�BM22k
2pvf

cos
2p
k

vf t

� 

þ y0 ð24Þ

where / = 2p x0/k is the initial phase. In the above

expression, vf = k/T is a characteristic velocity of the

system fixed by the wall pattern spacing k and the forcing

period T. The time dependence of y(t) results from the

superimposition of three signals with different frequencies.

The fundamental frequency is determined by the forcing

period, term (24), and the corresponding amplitude is

proportional to the transverse mean mobility M22. This

fundamental contribution remains the only relevant one far

from the wall, where the x dependence of M22 becomes

negligible (vanishing b1), i.e., the surface effectively

behaves as a homogeneous wall. The two sideband

contributions, (22) and (23), follow from the interaction

between the forcing frequency and the surface pattern, as

shown by their proportionality to the transverse forcing

amplitude B and to the first Fourier coefficient of

the pattern b1. For particles advancing in the positive

x-direction (vp [ 0), the first sideband term (22) is the more

interesting one, since by proper tuning, the relative velocity
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Fig. 11 Trajectories obtained for a sinusoidal forcing (Eq. 18) for

different particle radii, when the external force F1 in the stripe-normal

direction is proportional to the particle volume as, e.g., in the case of

the gravity force. The smaller the particle, the slower its stripe-normal

motion (curves from top to bottom correspond to particles with

increasing radii): The transversal force F2 acts for a longer time on the

smaller spheres producing larger oscillation amplitudes and mean

deflection in the trajectory
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vp - vf can be made to vanish. The other sideband term,

(23), is typically irrelevant since its amplitude is too small

to be detected in comparison with the fundamental

contribution given that, in general, M22 � b1. For this

reason, such small oscillations cannot be observed in

Fig. 12. Concerning the first sideband term, in the limit

vp - vf ? 0, its amplitude diverges while at the same time

the frequency 2p (vp - vf)/k vanishes, yielding the limiting

behavior

lim
vp�vf!0

yðtÞ ¼ 1

2
Bb1t: ð25Þ

This term, combined with x(t) = vpt ? x0, gives reason

for the (average) rectilinear trajectory of Fig. 12 that

occurs when the initial condition h0, x0 selects a mean

particle velocity vp(h0, x0) matching the system

characteristic velocity vf. Such case corresponds to

resonance, since the particle exactly travels one wall

pattern wavelength k in one oscillation period T of

the transversal force. In these conditions, a strong

amplification of the particle transversal motion occurs.

To complete the discussion, the bottom panel of Fig. 12

shows the period of the fast oscillations of the in-plane

trajectory y[x(t)] as a function of the velocity difference

(vp - vf). Also reported are the corresponding values from

the model system, term (22). The comparison confirms the

overall effectiveness of the simplified model.

6 Conclusion

The paper exploited the potential of the BEM in the

context of creeping flows in the Stokes regime. In a

number of applications at the microscales, the fluid

boundary condition at solid walls is best described by a

perfect-slip or partial-slip boundary conditions. The BEM

proved successful in dealing with such complex surfaces

characterized by a combination of perfect-slip (PS) and

no-slip (NS) regions. In the geometry addressed in the

present paper, the PS regions on the wall form a parallel-

striped pattern able to effectively model an actual super-

hydrophobic surface where gas bubbles are trapped in

parallel grooves.

In this context, the hydrodynamics of a spherical par-

ticle moving close to the patterned surface has been

characterized in terms of the mobility tensor. The wall

pattern induces a characteristic spatial behavior of the

mobility. Different regions have been identified. As

expected, near the wall the mobility is larger in corre-

spondence with the PS regions than in correspondence

with the NS regions. In contrast, in the far field this

behavior is reversed, i.e., the mobility becomes (slightly)

larger when the sphere is just above a NS region. The

modulation effects induced by the patterning become

progressively weaker increasing the distance from the

wall. In the far field, the oscillation in M11 is less

than 5 % of the average value M11. The wall-normal

distance hinv that separates the two regimes decreases with

the sphere radius. Interestingly, irrespective of the particle

radius, the average mobility M11 for a given gap h is well

described by an effective model consisting of a homoge-

neous wall equipped with a partial-slip boundary condition

accounting for an effective slip length [see, e.g., Philip

(1972); Ng and Wang (2010)]. The present results provide

solid physical ground for the safe application of analytical

models based on homogenization techniques (Asmolov

et al. 2011). This behavior is particularly evident for large

particles (diameter larger than the stripe dimension) where

the far-field regime sets in very close to the wall. It fol-

lows that, with the exception of a very thin area

(h \ hinv), the mobility field is well approximated by the

effective wall model.

The characteristic spatial dependence of the mobility

matrix can be potentially exploited for selective particle
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Fig. 12 Top panel trajectory in the x-y for the sphere of radius

a = 1 released at several wall-normal initial positions h0 which

ranges from 0.5 (straight line) to 0.45 (higher frequency curve). Inset

close-up view of the trajectory at the initial stages. Bottom panel the

fast oscillation period of y[x(t)] (symbols) is compared with the model

estimate (dashed line, Eq. 22) as a function of the velocity difference

(vp - vf)
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separation, as confirmed by simple numerical experi-

ments. For instance, towing the sphere with a constant

force in a wall-parallel plane leads to a deviation of the

trajectory. The resulting drift angle is in agreement with

results discussed in Zhang and Koplik (2012) in the

context of molecular dynamics simulations. Larger drift

angles can be achieved by other kind of forcing, as in

the case of a spatially or temporally oscillating force

parallel to the stripes. In the second case in particular, a

strong resonant effect occurs when the stripe-crossing

frequency matches the external forcing frequency. This

effect allows in principle to separate given particles from

their neighbors.

As a final comment, it is worth stressing that the model

here described for the superhydrophobic surfaces relies on

the assumption of a flat liquid–gas meniscus (PS region). A

number of studies show that this is hardly strictly true also

in simple systems (Steinberger et al. 2007; Giacomello

et al. 2012a, b; Bolognesi et al. under review). However,

the present results show that a detailed description of the

surface pattern is not required unless the particle is very

close to the wall. Indeed, it was shown that it is actually

often sufficient to model the surface as a homogeneous flat

wall with a suitable apparent slip length tensor. In this

effective description, the curvatures of the menisci enters

the problem by affecting the apparent slip length [see, e.g.,

Teo and Khoo (2010); Sbragaglia and Prosperetti (2007);

Gentili et al. (2013)]. Still, it should not be overlooked that

the near-wall behavior is dominated by the local effects

emphasizing the role of the actual shape of the liquid/gas

interface. The BEM approach here used can easily be

extended to tackle such conditions to deal with composite

boundaries on which perfect-slip, no-slip, and partial-slip

boundary conditions are imposed. This opens the way to

the characterization of more complex systems such as

slipping Janus particles motion (Boymelgreen and Miloh

2011) and microswimmers (Shum and Gaffney 2012; Zhu

et al. 2013).
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Appendix: Boundary integral formulation

In this section, the application of the boundary element

method (BEM) to the present geometrical configuration is

shortly described (see, e.g., Pozrikidis (1992); Kim and

Karrila (2005) for further details).

Due to linearity, the constant coefficient Stokes prob-

lem, Eq. (2), can be recast into a boundary integral repre-

sentation formula

EðnÞujðnÞ ¼
1

8p

Z
oB

tiðxÞGijðx; nÞdSB

� 1

8p

Z

WNS

tiðxÞGijðx; nÞdSNS

� 1

8p

Z

WPS

tiðxÞGijðx; nÞdSPS

� 1

8p

Z

oB

uiðxÞT ijkðx; nÞnkðxÞdSB

� 1

8p

Z

WNS

uiðxÞT ijkðx; nÞnkðxÞdSNS

� 1

8p

Z

WPS

uiðxÞT ijkðx; nÞnkðxÞdSPS: ð26Þ

In Eq. (3) the boundary oX of the fluid domain is

explicitly decomposed into three parts: the particle surface

qB, the no-slip stripes on the patterned wall, collectively

denoted WNS, and the complementary part of the wall with

the perfect-slip stripes WPS. The contributions arising from

the portion of the boundary at infinity (not included in the

present formulation where the fluid is assumed to be at rest)

can be easily incorporated under suitable assumption on the

asymptotic behavior of the field. The effects of body forces

such as gravity and electric fields can be accounted for by a

convolution integral extended to the fluid domain between

the force and the free-space Green’s tensor (see below). In

representation (26), ti and ui; i ¼ 1; . . .; 3, are the Cartesian

components of the surface stress and velocity, respectively.

The free-space Green’s function (the so-called steady

Stokeslet) is defined as

GijðrÞ ¼
dij

r
þ rirj

r3

� 

; ð27Þ

and the associated stress tensor is

T ijkðrÞ ¼ �6
rirjrk

r5
: ð28Þ

In the above expression, Gij(r) provides the contribution

to the jth velocity component at n due to a concentrated

force acting in the ith direction at x. The associated Green’s

stress tensor, as always, should be contracted with the

outward unit normal nk(x) to the boundary oX in order to

provide the effect on the jth velocity component at n of the

ith boundary velocity at x. The vector r is defined as r ¼
x� n with r ¼ ffiffiffiffiffiffiffiffi

rkrk
p

its modulus. In Eq. (3) EðnÞ ¼ 1

when n 2 X and EðnÞ ¼ 1=2 for n 2 oX (the existence of a

regular tangent plane is assumed throughout). When

n 2 oX, representation (3) becomes a boundary integral

equation where the unknowns can either be the three stress

vector components ti, the three velocity components ui, or a
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combination thereof, depending on the boundary conditions

assigned on the specific portion of boundary. This approach

allows us to discretize only the boundary surfaces of the

flow domain instead of considering the entire volume. This

results in: (1) a substantial reduction in the number of

unknowns; (2) the possibility to easily specify different

kinds of boundary condition on different surface patches;

and (3) the simple update of the geometry when dealing

with time-dependent configurations. Once the boundary oX
is discretized into panels, Eq. (3) is recast into an algebraic

linear system whose solution can be achieved by standard

linear algebra packages. In simple cases, part of the

boundary can be accounted for by symmetry, as it happens

for a flat homogeneous wall.

In this paper, given the generality of the boundary

condition to be used at the wall (either patterned perfect/

no-slip stripes or effective slip Navier-like boundary

conditions), the complete formulation of the boundary

integral problem based on the free-space Green’s function

has been retained, with the use of the wall Green’s

function demanded of providing reference results for

accuracy tests.

Finally, a few more words may be useful concerning

the specific boundary conditions used in the paper. On

the perfect-slip boundary patches, WPS, the normal

velocity vanishes u\ = 0 due to impermeability, while

the tangential velocity uk (two Cartesian components) is

unknown. Moreover, the tangential stress tk vanishes by

perfect slip such that the stress is aligned to the normal,

ti ¼ �UðxÞni, with U representing a further scalar

unknown. On the no-slip surfaces, WNS and qB, veloci-

ties are completely assigned while stresses are unknown.

Concerning the partial-slip condition used as an effective

model of the stripe pattern, zero normal velocity u\ = 0

at the wall is implied, while tangential velocities and

stresses are coupled by the Navier condition (Lauga

et al. 2007),

uk ¼ ‘sn � ðruþ ðruÞTÞ � ð1� n� nÞ: ð29Þ

Here ‘s is a 2 9 2 symmetric (Kamrin et al. 2010)

tensor describing the directionally dependent slip length. In

the present case, this tensor is diagonalized when expressed

in stripe-parallel and stripe-normal Cartesian coordinates.

In this case the two diagonal entries are different as a

consequence of the orientation of the stripe pattern. For a

flat wall, Eq. (29) is rewritten as

uk ¼ ‘s � tk; ð30Þ

that is the vectorial form of Eq. (7), the two nonzero

components of ‘s being reported in Eq. 8 (Philip 1972; Ng

and Wang 2010). The boundary integral Eq. (3) supple-

mented with Eq. (30) provides a closed system that after

inversion determines all the unknowns involved in the

problem.
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