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Abstract We present a hybrid molecular-continuum

simulation method for modelling nano- and micro-flows in

network-type systems. In these types of problem, a full

molecular dynamics (MD) description of the macroscopic

flow behaviour would be computationally intractable, or at

least too expensive to be practical for engineering design

purposes. Systems that exhibit multiscale traits, such as

this, can instead be solved using a hybrid approach that

distinguishes the problem into macroscopic and micro-

scopic dynamics, modelled by their respective solvers. The

technique presented in this study is an extension and

addition to a hybrid method developed by Borg et al.

(J Comput Phys 233:400–413, 2013) for high-aspect-ratio

channel geometries, known as the internal-flow multiscale

method (IMM). Computational savings are obtained by

replacing long channels in the network, which are highly

scale-separated, by much smaller, but representative, MD

simulations, without a substantial loss of accuracy. On the

other hand, junction components do not exhibit this length-

scale separation, and so must be simulated in their entirety

using MD. The current technique combines all network

elements (junctions and channels) together in a coupled

simulation using continuum conservation laws. For the

case of steady, isothermal, incompressible, low-speed

flows, we use the conservation of mass and momentum flux

equations to derive a set of molecular-continuum con-

straints. An algorithm is presented here that computes at

each iteration the new constraints on the pressure differ-

ences to be applied over individual MD micro-elements

(channels and junctions), successively moving closer to

macroscopic mass and momentum conservation. We show

that hybrid simulations of some example network cases

converge quickly, in only a few iterations, and compare

very well to the corresponding full MD results, which are

taken as the most accurate solutions. Major computational

savings can be afforded by the IMM-type approximation in

the channel components, but for steady-state solutions,

even greater savings are possible. This is because the

micro-elements are coupled to a steady-state continuum

conservation expression, which greatly speeds up the

relaxation of individual micro-components to steady con-

ditions as compared to that of a full MD simulation.

Unsteady problems with high temporal scale separation can

also be simulated, but general transient problems are

beyond the capabilities of the current technique.

Keywords Multiscale simulations � Hybrid methods �
Molecular dynamics � Coupled solvers � Scale separation �
Microfluidics � Nanofluidics

1 Introduction

Molecular dynamics (MD) is a useful numerical tool for

probing microscopic phenomena and non-equilibrium

dynamics in merging nano- and microfluidic technologies.

MD can capture macroscopic hydrodynamics, or even

operate as an ab initio tool for continuum-based solutions

in which it provides the microscopic constitutive or
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boundary information (Koplik and Banavar 1995; Okumura

and Heyes 2004; Todd 2001). However, its demand for

massive computational power as system size and simula-

tion time scale upwards prohibits simulations (even run on

modern processing clusters) much above the nanoscale. So

there has been a recent methodological drive to optimise

the use of MD by coupling smaller domain sizes to com-

putationally cheaper continuum solutions, creating a hybrid

model for a given flow geometry (see Mohamed and

Mohamad 2010 for a comprehensive review).

In this study, we propose such a hybrid method for

simulating flows in networks of micro/nanochannels, for

which Navier–Stokes solutions are inaccurate (because the

smallest important scale of the network geometry means

the use of conventional boundary conditions and constitu-

tive models are invalid) and Molecular Dynamics is too

computationally expensive (because of the largest scale of

the network geometry). Many applications fall into this

class of multiscale network flow. For example, lab-on-a-

chip devices for health diagnostics (Jiang et al. 2011);

flows through nanopipe membranes for sea-water desali-

nation (Mattia and Gogotsi 2008), or air-purification

(Mantzalis et al. 2011); and miniaturised heat exchangers

for cooling electronic circuits (Yarin et al. 2009).

Hybrid molecular-continuum techniques developed so

far for dense fluids can be grouped as follows: (a) domain-

decomposition methods (O’Connell and Thompson 1995;

Hadjiconstantinou and Patera 1997; Wagner et al. 2002;

Delgado-Buscalioni and Coveney 2003; Nie and Robbins

2004) and (b) heterogeneous multiscaling (Ren and E 2005;

Yasuda and Yamamoto 2008; E et al. 2009; Asproulis et al.

2012). Domain decomposition (DD) is a methodology

suitable for flows next to bounding surfaces or interfaces.

The DD method applies an MD solver to the boundary/

interface, coupled to a continuum solver by matching

hydrodynamic flux or state properties solely in an over-

lapping region (see Fig. 1a, b). DD methods have some

serious disadvantages in certain classes of flow (Hadjicon-

stantinou 2005). For example, a major disadvantage for

solving the kind of micro/nano-network problems in this

paper is that the majority of the flow can be considered

‘near-wall’, as shown in Fig. 1b for a generic flow geom-

etry: the MD component needs to be applied along the entire

length of the channel walls to capture the slip and near-wall

atomistic effects. As a consequence, this restricts the

channel lengths and heights that can be modelled practically

by DD. The coupling method may also not work properly if

the viscosity selected in the continuum grid does not match

exactly to that derived from the fluid in the MD sub-

domains (Delgado-Buscalioni and Coveney 2003).

The heterogeneous multiscale method, known as HMM

(E et al. 2003), is more appropriate for simulating multi-

scale fluidic network systems (see Fig. 1c). In HMM, a

continuum macro-model is regarded as applicable in the

whole domain and defined everywhere (although no

assumptions regarding constitutive models or boundary

conditions are made); unlike domain decomposition, there

is no distinct macro/micro-partitioning involved. Small

micro-elements are introduced into the multiscale tech-

nique by dispersing them only on nodes of the continuum

computational grid, with the sole objective being to pro-

vide the microscopic information and physics that the

macro-model does not incorporate. For a flow in a channel

or pipe, for example, MD micro-elements are placed on the

surface and in the fluid region, as illustrated in Fig. 1c.

Non-equilibrium MD (NEMD) simulations are carried out

using the local continuum strain rate as a constraint, and

from which only the necessary information is measured

and supplied to the macro-model to close the continuum

governing equations. The shear stress measured in micro-

boxes located in the bulk of the fluid replaces any form of

constitutive relation or requirement for transport coeffi-

cients, while wall micro-elements measure accurate slip

velocity and shear stress, replacing any need for phenom-

enological slip boundary conditions (Ren and E 2005).

The main disadvantage of HMM is that it is not suitable

for modelling very narrow parts of a fluidic channel sys-

tem, since micro-elements can then be forced to overlap (as

seen in Fig. 1c), which is less efficient and less accurate

than full MD. In the cases presented in this paper, the

channel heights are of the same order as the sizes of

individual micro-elements, which are typically constrained

by a minimum dimension in MD (e.g. *3 nm for simple

Lennard–Jones fluids). A reasonably fine macro-grid is also

required for a good approximation of the hydrodynamic

variables in the transverse directions (e.g. the velocity

profile). While the number of grid points and sizes of

micro-elements, in Fig. 1c, are drawn for clarity of illus-

tration; they are, in fact, greater in number, proportionally

much larger in size and therefore considerably overlap.

In this study, we build on our recent method called the

internal-flow multiscale method (IMM) (Borg et al. 2013)

(see Fig. 1d). The IMM is a hybrid method tailored to

studying flows in high-aspect-ratio channels. The exploit-

able multiscale feature of this type of flow configuration is

the existence of length-scale separation between hydrody-

namic processes occurring along the direction of flow

(characterised, say, by the length of the channel), and

molecular processes occurring on scales transverse to the

flow direction (characterised, for example, by the channel

height). As such, in this method every micro-element

covers the entire cross section of the channel/tube, enabling

the use of simple parallel-wall MD simulations. As a result,

the method does not suffer from non-periodicity require-

ments as in DD; the common periodic boundary condition

in this case can be applied in every direction.
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In the IMM coupling method, micro-elements do not

communicate directly with each other. Instead, they inter-

act indirectly via constraints applied by the local macro-

scopic component of the simulation. From the macroscopic

perspective, the conservation of mass and momentum is a

perfectly adequate description for channel flows. No con-

stitutive behaviour or slip is required in the continuum

formulation because this is provided (indirectly) by the

micro-elements. The IMM algorithm consists of a series of

iterations, which involve a two-way exchange of infor-

mation between macro- and micro-constituents until con-

vergence is obtained. It first imposes individual pressure

gradients to every micro-element using common uniform

‘gravity’-type forcing techniques. Mass fluxes in these

micro-simulations are then measured and, following a

continuity constraint, a corrected set of pressure gradients

are computed for the next iteration.

While the IMM method presented in Borg et al. (2013) is

capable of capturing variations in pressure and velocity

within a channel of high aspect ratio, it is not accurate in

‘junction’ components, where abrupt changes in channel

geometries occur and no obvious scale separation exists.

For example, a reservoir inlet/exit junction cannot make use

of micro-resolution using the parallel-wall micro-elements

of Borg et al. (2013). Even if the micro-resolution is

increased in junction regions, micro-elements will be forced

to overlap and thus will be far more computationally costly

and less accurate than a full MD approach.

In this study, we propose a method for simulating

multiscale fluidic networks by coupling an IMM-type

(Borg et al. 2013) approach for high-aspect-ratio channels

with full MD simulations of the connecting junction

components. Figure 2 provides an illustration of this con-

cept. As such, the scope of the current method is more

general than IMM (Borg et al. 2013) alone and will enable

the study of realistic fluidic systems for NEMS/MEMS

applications.

We maintain the same flow assumptions as in Borg et al.

(2013), i.e. low speed, isothermal, incompressible, steady

flows. In this adaptation of the hybrid methodology, and for

increased generality, the macro-to-micro-constraint proce-

dure is modified so that individual pressure drops across

junction and channel components can be applied (rather

than pressure gradients as in IMM). The micro-to-macro-

constraint remains similar to IMM and consists of mea-

suring mass fluxes through disconnected micro-elements,

and subsequently readjusting the applied pressure drops to

conserve overall mass flux. In this hybrid approach, the

(c) (d)

(a) (b)

Fig. 1 Schematic of different types of hybrid methods applied to a a

generic internal-flow problem, b the domain-decomposition method

(DD), e.g. (O’Connell and Thompson 1995), c the heterogeneous

multiscale method (HMM), e.g. (Ren and E 2005), and d the internal-

flow multiscale method (IMM) (Borg et al. 2013)
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computational saving is obtained only from long scale-

separated channel sections that are replaced by shorter, but

hydrodynamically equivalent, periodic channels. There is

no computational advantage from simulating junction

components, except that smaller MD simulations in the

hybrid approach can converge far quicker to steady state

than they would in the larger full MD system, since cou-

pling is performed with steady-state continuum conserva-

tion equations.

The paper is set out as follows. We first describe the

general multiscale method in Sect. 2, followed by testing

and validation on flows through simple nanochannel net-

works in Sect. 3.

2 The hybrid method

A nanofluidics network typically consists of a number of

different components, in two categories: junctions and

channels. Some examples of junctions include kinks,

bends, localised channel defects, mixers, and pumping

chambers, bifurcation channel connectors (T- and

Y-shapes). Our hybrid algorithm models each junction and

channel using MD sub-domains (hereon referred to as

micro-elements) that are disconnected from each other in

the streamwise direction. Each micro-element covers the

entire height of the channel and includes a molecular

description of both the bounding wall and liquid. In this

way, micro-elements provide an accurate prediction of the

local mass flux and pressure loss caused by wall–liquid and

liquid–liquid molecular interactions.

Junctions typically do not exhibit exploitable length-

scale separation, i.e. there is no obvious way in which a

multiscale approach can be used to reduce the computa-

tional burden of simulating the junction region using MD.

However, in NEMS/MEMS devices, the channel/tube

components will tend to be much longer in their length (or

some other scale that characterises their geometry in the

streamwise direction) than the characteristic scale of their

cross section. Therefore, computational savings can be

made by applying a multiscale approach to these long

channel components that connect the junctions. The fluid

properties in the streamwise direction of nanoscale chan-

nels are either uniform or only gradually varying. It is

therefore very reasonable, in terms of accuracy, if these

long channels are modelled by shorter periodic MD ele-

ments, as demonstrated in Borg et al. (2013). Note, despite

the fact that a form of scale separation exists in these nano/

microchannel elements, there is not likely to be Navier–

Stokes behaviour (Travis et al. 1997), nor is this assumed

in the method.

Figure 2a illustrates a simple nanofluidics network

configuration in which inlet and outlet reservoirs are set at

different pressures. The pressure drop Dp ¼ pin � pout

generates a flow through the long channels and the junction

of its midpoint, where pin is the inlet pressure and pout is the

pressure at the outlet. The junction in the middle could

represent any sort of nanoflow device or a local defect in

the material, for example.

The network is decomposed into channel and junction

components as shown in Fig. 2b. Note that each junction

incorporates also an extra channel section of reasonable

length so that local entrance/exit effects are contained

within the junction simulation. First we will describe the

method for coupling the disconnected MD micro-elements

shown in Fig. 2b, then we will describe how scale sepa-

ration can be exploited in the channel elements to make

this a multiscale method (Fig. 2c).

2.1 Coupling methodology

Mass conservation is the foundation of the coupling

approach. In steady state, and for the serial-type network

shown in Fig. 2, we require that the mass flow through

each micro-element to be equal (and thus equal to the

mean):

_mi ¼
1

P

XP

j¼1

_mj ¼ _m; for i ¼ 1; . . .;P; ð1Þ

where _mi denotes the mass flow rate in the ith of P
micro-elements, and _m is the mean mass flux across all

the elements. Note that, in non-periodic junctions of a

network, molecules must therefore be created/deleted at

the inlet/outlet at the same rate. At the beginning of the

(a) Nanofluidic network

(b) Segmented components

(c) Multiscale decomposition

Channels
Junctions

MD micro 
elements

Fig. 2 Schematic of a a simple nanofluidics serial network connected

between two reservoirs, b the segmented network into channels and

junctions, and c the multiscale decomposition simplified into separate

MD sub-domains
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coupling procedure, the mass flow rates in each micro-

element are unequal, and only approach a solution to

Eq. (1) after the iterative scheme described below is

performed; the mass flux common to all micro-elements

_m in Eq. (1) is thus an output of the converged coupled

simulation.

In this paper, for simplicity, we restrict our attention to

incompressible isothermal flow through the network. Given

this, a constant density and temperature are specified. The

total pressure difference Dp between the first and last ele-

ment of the network, which is specified by the problem (i.e.

an input to the coupled simulation), is related to pressure

drops across all micro-elements by:

Dp ¼
XP

i¼1

Dpi; ð2Þ

where Dpi is the pressure drop over the ith micro-element.

2.2 Numerical scheme

The coupling we propose is an iterative scheme to enforce

the mass flow rate and pressure-difference constraints,

Eqs. (1) and (2), respectively. The simulation is stopped

once all micro-elements converge to a single value of mass

flux (given a predefined convergence criterion), from

Eq. (1). Given the reasonable assumption that, in the steady

state, _mi varies monotonically with Dpi; a straightforward

iteration scheme towards a common mass flow rate in each

of the micro-elements is provided by:

Dpi
lþ1 ¼ Dpi

l þ ci _m
lþ1 � _ml

i

� �
; ð3Þ

where l is the iteration index, and ci is a relaxation coef-

ficient for each micro-element. Inspection of Eq. (3)

reveals that as the mass flow rate in each micro-element

converges to the mean (and Eq. 1 is satisfied), the pressure

drop in each micro-element will cease to be updated. The

mean mass flux _m is implicitly defined, i.e. it is evaluated at

the updated iteration index l ? 1. This means that Eq. (3)

represents P equations with Pþ 1 unknowns. The missing

equation is provided by the pressure-difference constraint,

Eq. (2). The system of linear equations given by Eqs. (2)

and (3) can thus be solved using LU decomposition or

similar.

What must be determined at each iteration, before the

system of equations can be solved, are the individual

relaxation coefficients ci for each micro-element. We base

these on approximating a linear relationship between Dpi

and _mi:

ci ¼
Dpi

l

_ml
i

: ð4Þ

Note, the accuracy of this approximation does not affect

the converged solution, but the speed of convergence.

Equation (3) can therefore be reduced to a simpler form:

Dpi
lþ1 ¼ Dpi

l _m
lþ1

_ml
i

 !
: ð5Þ

The channel components of the network are typically

long narrow geometries (e.g. a carbon nanotube). Given

that entrance and exit effects are contained within the

junction components (as described above), the flow in these

channels can be approximated accurately by short periodic

channel micro-elements with the same pressure gradient

applied. For example, if a full-scale channel is Li in length,

with a pressure drop of Dpi; then this can be approximated

by a periodic channel of the same dimensions except that

its new length L0i is equal to Li/gi with a pressure drop Dp0i
equal to Dpi=gi (see Fig. 2c). The dimensionless factor gi

represents the speed-up for treating this component as a

shorter micro-element—and is referred to here as the

numerical gearing of the multiscale component.

This multiscale approach for the efficient simulation of

channel elements is of the form of IMM presented in Borg

et al. (2013). More general high-aspect-ratio geometries, as

opposed to ones with constant cross section can be con-

sidered in this full network model, as illustrated in the

example of Fig. 2.

2.3 Algorithm

We now describe our iterative hybrid algorithm applied to

multiscale serial network configurations:

1. The initial condition at iteration l = 0 starts with an

estimated value of pressure difference on each ele-

ment: Dpi ¼ LiDp=L; where Li is the streamwise length

of the ith micro-element, and L is the total length of the

configuration, inlet to outlet.

2. Run all micro-element MD simulations at their applied

pressure differences, Dpi; until steady state. At steady

state, measure the mass fluxes, _ml
i; in all micro-

elements.

3. New iteration, l ? 1.

4. Solve the system of Eqs. (2) and (5), to obtain a

corrected pressure difference, Dplþ1
i ; and a closer

estimate of mass flux, _m
lþ1
:

5. Repeat from 2 until a convergence criterion is met:

flþ1
i \ftol; with flþ1

i ¼ j _m
lþ1 � _ml

i j
_m

lþ1
; ð6Þ

where ftol is a predetermined tolerance used for all

micro-elements.
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2.4 Molecular dynamics

Junction and channel micro-elements are solved by non-

equilibrium molecular dynamics simulations (NEMD)

(Rapaport 2004; Allen 1987), with pressure-difference

constraints to allow implementation of the numerical

scheme described above. We run MD simulations using the

mdFoam solver (Macpherson and Reese 2008; Borg et al.

2010), which has been developed in OpenFOAM, an open-

source set of C?? libraries for fluid dynamics simulations

(OpenFOAM: http://www.openfoam.org). To demonstrate

the validity of our multiscale method, we simulate only

simple spherically symmetric monatomic particles (hereon

referred to as ‘molecules’) that interact through pair-wise

potentials. The method is applicable to more general and

realistic molecular models, however. The external geom-

etry of the channel or junction is described by rigid wall

molecules that are kept fixed in space and time. The non-

equilibrium motion of liquid molecules is implemented

using Newton’s equations of motion with added external

forcing, fext:

d

dt
rk ¼ vk; ð7Þ

mk

d

dt
vk ¼ f 0k þ fext; ð8Þ

where k is a molecule in the system and rk ¼ ðxk; yk; zkÞ is

its time-instantaneous position in a fixed Cartesian

co-ordinate reference system. Each molecule has a mass,

mk and a velocity, vk ¼ ðuk; vk;wkÞ: The total intermolecular

force on each molecule, f 0k ¼ �
P

jrUðrkjÞ; is determined

from neighbouring molecules j, where U(rkj) is the pair

potential and rkj ¼ jrk � rjj is the pair-molecule separation.

The Lennard–Jones (LJ) 6–12 potential, widely used to

model simple liquids, is used here in our MD simulations:

U12�6ðrkjÞ ¼ 4� r
rkj

12 � r
rkj

6
h i

if rkj\rc

0 if rkj� rc;

(
ð9Þ

where r and � are the length and energy characteristics of

the potential, and rc is the cut-off separation. The r and �

properties for the liquid–liquid and wall–liquid interactions

are taken from Thompson and Troian (1997), with the

intention to generate slip at the solid–liquid interface.

The values for these are, rl-l = 3.4 9 10-10 m, �l�l ¼
1:65678� 10�21 J and rw-l = 2.55 9 10-10 m, �w�l ¼
0:33� 10�21 J. The solid mass density is qw = 6.809 9

103 kg/m3, and the liquid mass density is ql = 1.437 9

103 kg/m3, where the mass of one wall or liquid molecule

is 6.6904 9 10-26 kg.

All MD simulations are three-dimensional, with periodic

boundary conditions applied in the x-(streamwise) and

z-directions. In some cases, periodicity is also applied in

the y-direction, for example, the reservoir component in

Fig. 3. The cases are all set up with no gradients of prop-

erties in the z-direction, so the thickness (6.9 nm) in the z-

direction has been chosen mainly to generate sufficient data

for averaging.

The external forcing fext in Eq. (8) is used to impose a

pressure difference, as described later for network com-

ponents and junctions. The heat generated indirectly by this

forcing is removed to enforce a thermally homogeneous

system. To do this, we activate the unbiased velocity-

rescaling Berendsen thermostat (Berendsen et al. 1984)

which operates on the thermal velocities, and as a result

minimises the impact on the streaming velocity. The

thermostat is implemented using localised bins distributed

everywhere in the domain, where each bin is set at a tar-

get temperature of T = 292.8 K using a time-constant

sT = 21.61 fs.

A flux measurement plane is placed at the midpoint of

each micro-element to measure the net mass flow rate _mi

(kg/s). Over a long averaging time Dtav; the mass of the

total number of molecules that cross the flux-plane in the

x-direction are counted as positive, and those which cross

in the opposite direction are counted as negative:

h _mii ¼
1

Dtav

XdN

k

mk sgnðvk � n̂xÞ; ð10Þ

where n̂x is the x-direction unit vector perpendicular to the

flux-plane, and dN is the total number of molecules that

cross the plane during the time period t! t þ Dtav: The

direction of crossing is obtained by the signum function,

sgn(x).

Inlet Outlet 

Fig. 3 Schematic of the network inlet and outlet reservoirs combined

into one MD micro-element (see also Fig. 2). This illustration

highlights the forcing due to the pressure drop Dp imposed by the

application of a Gaussian forcing Fx in an external region (R), and a

counter force Fx
* applied in the channel section marked by R� that

emulates the pressure drop Dpm from the central network components

shown in Fig. 2. Black solid lines are walls, and black dashed lines

are cyclic boundary conditions
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In the next sections, we describe the method for

applying pressure drops across different types of network

components. The most convenient and common way of

emulating a pressure gradient in simple MD channels is to

apply a uniform ‘gravity’-type body force to all liquid

molecules in the channel (Koplik et al. 1988; Travis et al.

1997; Travis and Gubbins 2000; Xi-Jun Fan Nhan Phan-

Thien and Diao 2002), accompanied by periodicity in the

flow direction. However, when the geometry is non-uni-

form in its cross section, the pressure gradient will vary; as

such, a uniform body forcing is no longer hydrodynami-

cally equivalent to the flow generated by an imposed

pressure difference over the same geometry. For this rea-

son, in the work of Zhu et al. (2002, 2004) modelling flow

through carbon nanotubes, a step forcing is applied in

cross-sectionally uniform regions only, thus creating a

known pressure drop over non-uniform regions of the

geometry. A similar approach is adopted here, except we

use a Gaussian distributed forcing to maintain a spatially

smooth imposition of momentum to the MD fluid. This

local forcing is applied only in the inlet and outlet regions

of the micro-element and so it allows the pressure differ-

ence across the element to be imposed, no matter whether

the internal middle section is a straight channel or of some

other complex shape. The method also maintains the sim-

plicity of applying periodic boundary conditions in all our

simulations. The limitation of this method is that it requires

symmetry of the component between the inlet and outlet

sections of the micro-element. For more complex compo-

nents (e.g. Y-connectors), there is the option of enforcing

pressure drops through non-periodic boundary conditions

(NPBCs), such as setting inlet and outlet regions of the

channel at different pressures or using fluxes to control

incoming/outgoing particles. For example, see Brooks III

and Karplus (1983), Sun and Ebner (1992), Delgado-

Buscalioni and Coveney (2003), Werder et al. (2005), Borg

et al. (2010) and Nicholls et al. (2012).

2.5 Reservoir component

The decomposition of the network seen earlier in Fig. 2c

presents the inlet and outlet reservoirs as disconnected

components. For convenience, we combine these reservoirs

into a single MD micro-element (as shown in Fig. 3), as

this enables periodic boundary conditions to be used in the

streamwise direction.

Connecting the reservoirs in this way requires a method

for controlling the entrance and exit pressure drops sepa-

rately or collectively; the collective approach works better

with the current setup. The overall pressure drop Dp (which

is set by the problem) is imposed through local forcing,

applied solely in the external reservoir regionR: The effect

of the central channels and junctions in the full network is

then emulated by applying a negative pressure forcing Dpm

given by

Dpm ¼
XP�1

i¼2

Dpi; ð11Þ

at R�; in the mid-point of the channel. The inlet/outlet

pressure drops are therefore implied by Eq. (2):

Dp1 þ DpP ¼ Dp� Dpm: ð12Þ

2.6 Channel and junction components

As above, the pressure drop in channels and junctions is

applied using local forcing at entrance/exit regions only, in

conjunction with periodic boundary conditions applied in

the x-direction; see Fig. 4a and b for channels and junc-

tions, respectively.

The multiscale approach proposed here simulates a

channel element of length Li by a shorter micro-channel

element of length Li
0. Therefore, the pressure drop applied

to the micro-element, Dp0i; is a factor Li/Li
0 less then the

pressure drop over the full channel it represents, i.e.

Dp0i ¼
Dpi

gi

; ð13Þ

where the factor is the numerical gearing, gi = Li/Li
0.

2.7 Pressure-drop forcing

Central to the coupling method is the ability to prescribe

pressure drops over the various MD components of the

network. This is achieved by streamwise body forcing in

localised regions of the domain, as illustrated in Figs. 3 and

4. The magnitude of this forcing is chosen such that it

produces an equal and opposite momentum flux (within

these localised areas) to that produced by the pressure

difference we wish to induce, i.e.

Dp ¼ qn

Zx2

x1

Fx dx; ð14Þ

where x1 and x2 are the extents of the localised region,1

qn is the number density and Fx is the applied force field

which is transferred to molecules through the term fext in

Eq. (8). Here we have assumed a constant cross-sectional

area and number density between x1 and x2. While a ‘step’

force distribution could have been used (for example, see

Zhu et al. 2002, 2004; Liang and Tsai 2012), we adopt a

Gaussian form because it enables a smooth application of

forcing on molecules over a short distance:

1 As shown in Figs. 3 and 4, x1 ! x2 crosses the periodic boundary.

This is accounted for in the derivation by modifying the local

co-ordinate system.
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FxðxÞ ¼ Feð�x2=2r2
s Þ if x1� x� x2;

0 otherwise;

�
ð15Þ

where F is the peak of the distribution and rs is the standard

deviation. Substitution of Eq. (15) into Eq. (14) gives:

Dp ¼ qn

Zx2

x1

Fx dx;

�
Z1

�1

Feð�x2=2r2
s Þ dx;

¼ qnFrs

ffiffiffiffiffiffi
2p
p

;

ð16Þ

which can be rearranged in terms of the desired Gaussian

forcing magnitude:

F ¼ Dp

qnrs

ffiffiffiffiffiffi
2p
p : ð17Þ

Note, the integral approximation in Eq. (16) is a very good

one because the distance between x1 and x2 is set signifi-

cantly larger than rs making the integral from �1 to x1

and from x2 to 1; negligible.

3 Results and discussion

Our hybrid algorithm is now tested on pressure-driven

flows through simple network configurations, with scale

separation exploited in the long connecting channels.

A pressure difference of Dp � 350 MPa is applied to all

network cases. High pressure gradients are required in MD

simulations of Poiseuille flows (Koplik et al. 1988; Travis

et al. 1997) to obtain statistically measurable flow rates

over thermal fluctuations. We validate the hybrid results by

also solving each network as a whole using a full molecular

dynamics description. The approach for applying the

overall pressure difference Dp in the full MD case is the

same as that applied in the reservoir component (Sect. 2.5).

We keep the test networks of moderate sizes, to be able to

compare the hybrid results with the computationally

expensive full MD simulations.

3.1 Simple channel network

The first test setup consists of two reservoirs with a rela-

tively long inter-connecting nanochannel, as shown in

Fig. 5a for the full molecular dynamics simulation. The

hybrid setup for this network case is shown in Fig. 5b and

c, and consists of two disconnected micro-elements, one

representing the combined entrance/exit regions, and the

other a short channel section that replaces the long nano-

channel. The extent of the exit/entrance channel sections of

the reservoirs micro-element has been chosen conserva-

tively to be roughly twice the channel flow entrance length

of laminar macroscopic flow theory. As will be shown later

by inspection of the full MD results, this is a sufficient

length to allow the channel flow to develop fully in the test

cases we are considering; however, a longer and even more

conservative entrance length could easily be used.

Two different channel lengths are chosen for this dem-

onstration: L = 95.2 nm and L = 217.6 nm, which are

then both replaced in the hybrid simulation by a much

shorter channel of length L0 = 13.6 nm. While there is no

gearing possible in the reservoir components (i.e. no

computational saving due to multiscaling), gearing in the

middle channel component, calculated using g = L/L0,
gives g = 7 and g = 16, respectively. The gearing of the

channel component can also be computed from the ratio of

molecules used in the full MD (the channel part only) and

its corresponding channel micro-element, as shown in

Table 1. The height of the middle channel for both cases is

4.08 nm, which is chosen to be small enough to generate

non-continuum behaviour in the LJ fluid (e.g. layering and

velocity slip) that could not be captured by a standard

Navier–Stokes solution. This also makes the method

computationally tractable, since a reasonable number of

molecules are used for every micro-element, as well as for

the full MD simulation. We set the hybrid algorithm with a

tight convergence criterion, Eq. (6), of ftol ¼ 0:01:

In the full MD simulations, the overall pressure drop Dp

is first converted into an estimate of the forcing parameter

F ¼ 9:21 pN using Eq. (17). The Gaussian distributed

(b)

(a)

Fig. 4 Schematic of a the forcing applied to a periodic MD element

channel due to a modified pressure drop Dp0i along a shortened length

Li
0 = Li/gi, and b the forcing through an arbitrary MD junction

element. Black solid lines are walls, and black dashed lines are cyclic

boundary conditions
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force, Eq. (15), is then applied to molecules located in the

constrained regions only, and the MD simulations are run

until steady state. The steady state results for density hqni
and pressure drop hDpi are measured in both simulations

and recorded in Table 2. The measured pressure drop

agrees within 0.6 % with the target pressure drop applied

using the Gaussian forcing. This simple test verifies the

Gaussian forcing method for applying pressure drops as

described in Sect. 2.7.

Mass flux results from the hybrid algorithm are presented

in Figs. 6 and 7, with the convergence characteristics of the

algorithm over consecutive iterations shown in Fig. 8. The

results show that convergence in both networks is very

quick, taking approximately 2–3 iterations. By running the

hybrid simulation over more iterations, we verified that the

coupling algorithm is numerically stable. This shows

that the approximation of the relationship between mass

flux and pressure drop, as defined in Eq. (4), works well.

The stability of the algorithm depends, however, on allo-

cating a reasonable averaging time per iteration to ensure

the fluid relaxes to the imposed pressure drop, and also to

decrease the uncertainty in the measured mass flux. We

found for this case that 2 ns per iteration was sufficient.

In Figs. 6 and 7, we additionally plot the mass flux that

is measured from the full MD simulation; it shows very

(b) Micro element 1 
Inlet/Outlet Reservoir junctions

(c) Micro element 2 
 Channel component

6.80
0

20.4 27.2

4.08

8.16

12.24

0
0

13.6

0.68

4.76

flux plane

flux plane

(a) Simple Network Case 
Full MD simulation

Fig. 5 a Full MD setup of a simple network case that can be reduced

to a hybrid network using two separate micro-elements: b MD

simulation of the inlet and outlet junctions combined in one micro-

element; c MD simulation of the interconnecting channel reduced to a

shorter micro-element. Dimensions are in nanometers

Table 1 Multiscale gearing g for the channel component of the two simple network cases

L (nm) L0 (nm) g (=L/L0) NF (-) NL (-) NR (-) g (=(NF - NR)/NL)

Short channel 95.2 13.6 7 222,570 24,488 55,730 6.8

Long channel 217.6 13.6 16 433,559 24,488 55,730 15.4

NF are the number of molecules in the full MD simulation, while NL and NR are the number of molecules in the channel and reservoir micro-

elements, respectively

Table 2 Percentage difference (error) f calculated between measured

and applied pressure drop using the Gaussian-forcing method

described in Sect. 2.7

hqni (m-3) Dp (MPa) hDpi (MPa) f (%)

Short channel 1,499.7 351.9 349.8 0.61

Long channel 1,506.4 353.5 355.3 0.50

hqni is the number density measured in the constrained regions,

required in Eq. (17)
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good quantitative agreement with the hybrid results. The

converged values for mass flux are displayed in Table 3.

The discrepancies in mass fluxes between hybrid and full

MD predictions are small (*4 %). The approximation of

subsonic and low-speed flow characteristics should be valid

in these simulations, as can be seen from the Reynolds

number and Mach number measured from the average

streaming velocity in the middle of the channel network:

Re = 3.7, Ma = 0.058 for the short channel case, and

Re = 1.8, Ma = 0.0286 for the long channel case. What is

not safe, however, is the incompressibility assumption on

which this hybrid model has been formulated. Our choice

of test fluid (a Lennard–Jones potential for argon) has an

isothermal compressibility of jT * 6 9 10-10 Pa-1 (Song

et al. 1991) at the state being simulated, which is 1.5 times

greater than water at room temperature (Kazi and

Motakabbir 1990). Even if the chosen test fluid has a low

isothermal compressibility value and low Mach number,

significant flow compressibility can still occur in micro-

and nanochannel geometries, as argued in Gad-El-Hak

(2006).

To investigate the effect of compressibility in these

simulations, we measured the centre-line density profiles

and plot these in Fig. 9. The variation of density in the full

MD profiles (maximum to minimum values) is quite large,

*19 % for both network cases.2 The relative percentage

error in the density difference between full MD and hybrid

elements, however, is \2 % for both networks.3 Although

small, this is likely to have a direct impact on our multi-

scale results, since the applied pressure drop over each

micro-element is directly related to the applied body forces

by fluid density (see Eq. 14).

For the simulation of compressible flows, the state at the

boundary (absolute pressure or density) needs to be set in

addition to the overall pressure-difference constraint,

otherwise the system is under-constrained. However, upon

close examination of Fig. 9, it can be seen that the density

at the inlet and outlet (the peak values) of the multiscale

simulation are not the same as in the full-scale MD. This is

a result of a slight asymmetry (in a rotational sense) in the

density distribution through the full geometry. Therefore,

to make a fairer comparison of the simulation methods, we

must match the inlet/outlet density in the reservoir micro-

elements to coincide with the corresponding density in

the full MD simulation. This is equivalent to prescribing
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Fig. 7 Mass flux measurements in the hybrid simulations progressing

with number of iterations (l) for the long channel case L = 217.6 nm.

Comparisons are also made with a full MD simulation. The error bars

for the micro-element mass flux measurements are smaller than the

size of the symbols used
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Fig. 6 Mass flux measurements in the hybrid simulations progressing

with number of iterations (l) for the short channel case L = 95.2 nm.

Comparisons are also made with a full MD simulation. The error bars
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definition of f: The solid horizontal line is the chosen tolerance
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2 Computed using ½qmax � qmin	=q� 100 %.
3 Computed using [qF - qH]/ qF 9 100 %, where F denotes the full-

scale result, and H the hybrid result.
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density boundary conditions to both simulations from

the outset, but in a way that is computationally more

convenient.

The channel micro-elements internal to the network

require an additional constraint procedure to accommodate

the variation of the density across the network system. For

consistency and simplicity, here we choose a linear inter-

polation of density between the values measured at the

entrance and exit channel parts of the reservoir micro-

element, as per the definition of the geared pressure drop in

Eq. (13). Thus, every micro-element (i) except the reser-

voir micro-element can be set an approximate target den-

sity a priori to the hybrid simulation, which is given by:

qt
i ¼

hqei � hqoi
xe � xo

� �
ðxi � xeÞ þ hqei; ð18Þ

where angle brackets denote MD measurements, subscripts

‘e’ and ‘o’ refer to the entrance and outlet regions respec-

tively, and xi is the streamwise position of the ith micro-

element. For example, xe = 12 nm and xo = 109 nm are

the density-measurement locations for the small channel

case (see Fig. 9a).

Following these density corrections, the hybrid simula-

tions are then repeated until convergence. The matching of

inlet/outlet boundary conditions with the full-scale simu-

lation, and the inclusion of a simple density constraint step

(18), creates major improvements to the results, reducing

relative percentage errors for mass flux from 4 to *0.1 %.

These results are plotted in Figs. 6 and 7. Despite

observing significant compressibility (as described earlier)

and non-linearities in streamwise pressure (*3–4 %), we

found that a linear density approximation was still good

enough to obtain very high accuracy; Eq. (18) brought the

density in the channel micro-element of the hybrid solu-

tions within 0.04–0.09 % of the full-scale simulations for

the small and long channel cases, respectively. These

density values are marked by a cross in Fig. 9. For the rest

of the analysis in this section only, we present results just

from hybrid simulations that adopt this additional density

constraint technique.

This method of accommodating compressibility within

the method will lose accuracy in highly compressible flows

and in cases where channels have non-uniform cross sec-

tions, i.e. when the pressure profile deviates substantially

from a linear variation through the geometry. In these

cases, a general compressible form of the IMM (Borg et al.

2013) will need to be developed. This will be the subject of

future work.

Further validation of the multiscale method was made

by plotting the streamwise pressure profiles in Fig. 10, and

the cross-channel profiles for density and velocity in

Figs. 11 and 12, respectively. Very good quantitative

agreement with the full MD results is obtained, which

includes the capture of pronounced non-continuum and

Table 3 Converged mass fluxes compared with measurements from full MD simulations for both the short and long channel cases

Hybrid Full MD Relative error

_m (910-12 kg/s) _mF (910-12 kg/s) ð _mF � _mÞ= _mF � 100 (%)

Short channel 2.121 2.206 3.82

Long channel 1.021 1.073 4.86
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Fig. 9 Comparison of the density profiles measured at the channel

centre-line between the multiscale simulation (with the addition of a

compressible approximation) and the full MD simulation for a the

short channel case and b the long channel case. (Cross symbol) is the

target density in the mid-channel micro-element, computed using

Eq. (18). Measurements are taken from an averaging time-interval of

*4 ns for both hybrid and full-scale simulations, in uniform bins of

0.25 nm thickness
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Fig. 10 Comparison of the pressure profiles measured using the

Irving–Kirkwood equation [Irving and Kirkwood 1950) in bins

(e.g. see Okumura and Heyes 2004) at the channel centre-line

between the multiscale simulation (with the addition of a compressible

approximation) and the full MD simulation for a the short channel

case and b the long channel case. Measurements are taken from an

averaging time interval of *4 ns for both hybrid and full-scale

simulations, in uniform bins of 0.25 nm thickness
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Fig. 11 Comparison of the density profiles measured in the channel

height direction at the mid-point of the network between the

multiscale simulation (with the addition of a compressible approx-

imation) and the full MD simulation for a the short channel case and

b the long channel case. Measurements are taken from an averaging

time interval of *8 ns for the hybrid simulation (channel micro-

element only) and *4 ns from the full-scale simulation, in uniform

bins of 0.1 nm thickness
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Fig. 12 Comparison of the velocity profiles measured in the channel

height direction at the mid-point of the network between the

multiscale simulation (with the addition of a compressible approx-

imation) and the full MD simulation for a the short channel case and

b the long channel case. Measurements are taken from an averaging

time interval of *8 ns for the hybrid simulation (channel micro-

element only) and *4 ns from the full-scale simulation, in uniform

bins of 0.1 nm thickness
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non-equilibrium effects, i.e. molecular layering in the

density profile, and slip in the velocity profile.

As noted above, the choice of channel section length at

the inlet and outlet of every component was taken to be two

times bigger than the flow development length calculated

from laminar macroscopic theory. To verify that this length

is adequate (in our hybrid simulations, 6.8 nm), we compare

in Fig. 13 velocity profiles4 at various streamwise sections,

starting from the inlet of the full MD network. Each

streamwise profile is compared with a reference profile in

the midpoint of the channel, where the flow can be assumed

to be fully developed; the root mean square (RMS) of the

deviation from the reference is plotted in Fig. 14a, and the

slip velocity (normalised by the peak velocity at the centre-

line) is plotted in Fig. 14b. Both figures show a develop-

ment region which is 2–4 nm for both network examples,

indicating that a channel section length of 6.8 nm is suffi-

cient in these multiscale simulations.

The primary motivation for employing multiscaling is to

obtain major computational savings over full molecular

simulation. There is no easy way to predict computational

savings a priori in these network simulations (although the

gearing parameter g, shown in Table 1, can give an indi-

cation). This is because computational expense is depen-

dent on both total molecules simulated and total time steps

performed (i.e. total molecule timesteps). While the former

is easy to compute beforehand, the latter depends on the

convergence rate of the multiscale algorithm. A direct

measurement of overall computational speed-up can be

obtained after the simulations are run, from the ratio of

executed clock times for full MD (sF) and hybrid (sH)

simulations. To make a fair comparison, the computational

time of each simulation is normalised by the assigned

processing power. The hybrid simulation, for example,

consisted of 1 processor per micro-element (i.e. 2 proces-

sors in total), while 24 processors decomposed the full MD

cases. The speed-up computed by sF/sH is then 7.6 for the

short channel network and 12 for the long channel network.

This is a very promising result for two reasons. First, the

multiscale method is an order of magnitude quicker than

full MD in these cases. Second, there is greater saving (as

we might expect) for the longer channel because of higher

scale separation, indicating that vast savings are likely if

extended to the micrometer scale. In this calculation, the

total problem run-time for the full MD cases was *10 ns,

which allowed the solution to reach steady state, as well as
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Fig. 13 Velocity profiles measured at different streamwise positions

for a the short channel network case, and b the long channel network
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entrance point of the channel
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enough time to average measurements within an acceptable

standard error of the mean. The hybrid simulation is run

for 2 ns per iteration until the solution converges (*3

iterations).

3.2 Channel networks with local defects

The full capability of this hybrid methodology for incom-

pressible flows can be demonstrated when it is applied to

(b) Micro element 1 
Inlet/Outlet reservoir junctions (c) Micro elements 2 & 3

Channel components
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(d) Micro element 4 
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(a) Full MD simulation
with asymmetric channel defect

A C E D B

Fig. 15 Multiscale setup of a simple channel network with a

localised defect located asymmetric of the channel midpoint;

a setup for the full MD simulation of the network (NF = 438,191

molecules); multiscale elements: b inlet/outlet reservoirs micro-

element, c left channel micro-element, d right channel micro-element,

and e micro-element with defect (ND = 24,816 molecules)

 0

 0.5

 1

 1.5

 2

 0  1  2  3  4  5  6

M
A

SS
 F

L
U

X
 (

x 
10

-1
2  k

g/
s)

ITERATION, l

Full MD (defect)
no defect

Reservoir micro element
Channel micro element

Defect micro element
Multiscale

Fig. 16 Mass flux convergence for the defect channel network case.

Comparisons are also made with full MD simulations with and

without the defect

Table 4 Multiscale gearing, g for the defect channel case

L (nm) L0 (nm) g (=L/L0)

Channel C 115.6 13.6 8.5

Channel D 88.4 13.6 6.5
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more complex systems, in particular, by introducing addi-

tional components that collectively influence the macro-

flow. In this section, we show the effect of including an

extra junction in the channel network.

The setup consists of the same long channel network

(L = 217.6 nm) as before, but now it includes a ‘‘local

defect’’ placed asymmetrically along the length of the

channel, as shown in Fig. 15a. The hybrid setup of the

individual micro-elements is shown in Fig. 15b–d. In a

similar way to the previous two cases, inlet/outlet reser-

voirs are modelled together in one MD simulation, while

two periodic channel micro-elements are now used to

represent the two different channel lengths between the

defect and reservoirs. The region of the wall defect is

modelled as a junction-type micro-element as shown in

Fig. 15d.

Even though the two-channel micro-elements C and D

are of the same length, they each represent channel sections

of different length owing to the asymmetry of the defect’s

position. Two gearing parameters can thus be defined, as

quantified in Table 4. However, we found that the pressure

drops prescribed to both channel micro-elements are con-

sistently identical at every iteration of the hybrid simula-

tion, and since the density and channel height are also the

same (under the incompressible assumption), we only need

to simulate one of the two micro-elements. This further

improves the computational speed up of the hybrid

simulation.

In Fig. 16, we show the mass flux results. Convergence,

as shown in Fig. 8, is achieved in around 4 iterations. This

is more than in the previous cases, but is not unexpected

given the increased complexity of the system. A very close

agreement is obtained between the hybrid and the full MD

simulations, within *3 %. This could be further improved

by modifying the algorithm to account for compressibility

(as discussed above). In Fig. 16, the mass flux results from

the previous network simulation with no defect are

included.

The computational saving measured for this hybrid

simulation (sF/sH = 6.9) is less than the previous case

(sF/sH = 12) without the defect, but is still very sub-

stantial. The reduction in speed-up arises from: (a) the

extra micro-element required to model the defect in the

multiscale model; and (b) the extra iteration required to

converge the solution.

The introduction of micro-elements to model increasing

network complexity is relatively straightforward. This

makes our hybrid method highly attractive for modelling

very large systems using smaller MD portions, in particu-

lar, when high end computational resources are not avail-

able to run full MD simulations. The micro-elements can

easily be distributed to run in tandem if a small cluster of

CPUs or GPUs are available, or sequentially if fewer

computing resources are available. This is an important

advantage of this hybrid method over a full MD simulation,

because no matter how large the network is, supercom-

puting resources are not a requisite.

Note that the hybrid simulation will only be significantly

quicker (compared to a full MD simulation) if either

(a) length-scale separation exists in the channel compo-

nents, since smaller micro-elements can then be utilised to

describe the channel geometry, or (b) if a steady-state

solution is required to a problem that has a very long ‘start-

up’ time, for example, due to low flow rates through small

constrictions.

4 Conclusions

In this study, we have presented a hybrid algorithm to solve

multiscale fluid problems in simple channel networks by

simulating important local microscopic phenomena that are

integrated within a macroscopic description of the flow.

Molecular dynamics is used for the micro-model, while the

conservation of mass and momentum equations are used

for the macro-model. An advantage of this multiscale

approach is that there is no need to specify any constitutive

or boundary information in the continuum solver. Proper-

ties such as shear stress/strain rate and boundary slip need

not be computed per se, because they are accurately

encapsulated within the microscopic model, i.e. from the

choice of interaction potentials and the description of the

bounding surface. We assumed incompressible, isothermal,

low-speed, steady flows, as a basis for deriving the

coupling algorithm. Macro-to-micro-coupling involved

applying pressure drops across micro-elements, while

micro-to-macro-coupling consisted of measuring the mass

flux from the micro-elements and enforcing continuity in

the network.

Gearing was introduced as a means to identify the level

of scale separation and, similarly, to provide an indication

of the level of computational savings. In these types of

fluid problems, worthwhile computational saving is

achieved only in channels with relatively long lengths. Our

hybrid simulations of simple network configurations have

been shown to converge very quickly (in 2–4 iterations,

typically). Despite comparing very well with full MD

results in terms of mass flux, we did observe small errors of

the order of *4 %. We found that this was caused by a

slight violation of the incompressibility assumption (*2 %

mismatch with the full MD result), which can be rectified

by incorporating an extra constraint for density or pressure.

This will form part of future development and application

of the method.

Two promising advantages of our hybrid approach are:

(a) simulation of much longer, more complex channel

Microfluid Nanofluid (2013) 15:541–557 555

123



networks can be carried out with significant computational

savings, provided there is a reasonable scale separation in

long channel components, and (b) these simulations are not

constrained by the availability of high performance com-

putational resources. In fact, unlike a full MD simulation,

each MD micro-element need not be run at the same time

because there is no need to exchange micro/macro-infor-

mation at every time step of the simulation.

The method presented in this paper is tailored for

steady-state systems, but since the method converges

quickly to an accurate solution in only a few iterations, it

could also be applied to quasi-steady problems, as was

suggested by Hadjiconstantinou and Patera (1997) and

implemented by Hadjiconstantinou (1999), i.e. problems

that exhibit high time-scale separation (Lockerby et al.

2013). In these types of multiscale problems, the macro-

scopic variables vary gradually in time and so the contin-

uum time step that is required to capture the temporal

variation of the mass flux in the network would be much

larger than the MD time scale required to relax the solution

to a quasi-steady state. Notable alterations to our method

would need to be made if low time-scale separation prob-

lems are to be treated (E et al. 2009; Lockerby et al. 2013),

because in our method, the micro-simulations are coupled

to a steady-state continuum conservation rule.

Future work should include studying systems with non-

isothermal and compressible constraints; analysing more

complex network configurations (not only serial networks);

treating non-symmetric MD micro-elements using NPBCs;

studying unsteady/transient processes, such as mixing of

chemical species; simulating flows through large filtration/

desalination membranes; and applying the hybrid method

to model more complex channel-wall and fluid materials.
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