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Abstract This paper presents an artificial neural network-

based multiscale method for coupling continuum and

molecular simulations. Molecular dynamics modelling is

employed as a local ‘‘high resolution’’ refinement of

computational data required by the continuum computa-

tional fluid dynamics solver. The coupling between atom-

istic and continuum simulations is obtained by an artificial

neural network (ANN) methodology. The ANN aims to

optimise the transfer of information through minimisation

of (1) the computational cost by avoiding repetitive

atomistic simulations of nearly identical states, and (2) the

fluctuation strength of the atomistic outputs that are fed

back to the continuum solver. Results are presented for

prototype flows such as the isothermal Couette flow with

slip boundary conditions and the slip Couette flow with

heat transfer.
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1 Introduction

Over the past decade, the study of micro and nanoscale

flows has attracted significant scientific and industrial

interest due to the increasing number of devices operating

on small scales. Applications of micro and nanofluidic

devices, for example, have benefited various disciplines

spanning from nanomedicine to nanomanufacturing and

environmental sciences (Kamholz et al. 1999; McClain and

Sims and Ramsey 2003). Due to their large surface-to-

volume ratio, the flows in these devices are sensitive to the

surface properties. Improving our physical understanding

of micro and nanoscale phenomena is thus essential for

further exploiting the application of micro and nanofluidics

(Nicholls et al. 2012; Gad-El-Hak 2006; Singh et al. 2008,

Prasianakis and Ansumali 2011).

In the framework of continuum modelling the micro-

scopic mechanics tends to be neglected and the micro-

scopic effects are usually represented through averaged

quantities such as viscosity and thermal conductivity

(Sofos et al. 2009; Liu et al. 2007; Priezjev 2007). There-

fore, as the operational dimensions are downsized to

smaller scales, where the surface properties dominate the

flow characteristics, the macroscopic constitutive relations

and boundary conditions become inadequate and micro-

scopic models, such as molecular dynamics (MD), have to

be employed. Various MD studies have been presented in

the literature with respect to effects of surface properties,

such as wettability and nanoscale roughness and the slip

generated in solid-fluid interfaces (Thompson and Troian

1997; Asproulis and Drikakis 2010; Priezjev et al. 2005;

Yang 2006; Asproulis and Drikakis 2010; Niavarani and

Priezjev 2010; Asproulis and Drikakis 2011; Nagayama

and Cheng 2004; Sofos et al. 2012). However, the appli-

cability of atomistic models to larger temporal and spatial

scales is restricted due to their high computational cost

(Asproulis et al. 2012; Asproulis and Drikakis 2009; Lor-

enz et al. 2010; Valentini and Schwartzentruber 2009;

Koishi et al. 2005; Plimpton 1995). Aiming to confront the

efficiency and accuracy limitations of the molecular and

continuum models, respectively, and provide a unified

description across the various scales, hybrid continuum-

molecular approaches have been developed (Liu et al.
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2007; O’connell and Thompson 1995; Hadjiconstantinou

and Patera 1997; Delgado-Buscalioni and Coveney 2003;

Werder et al. 2005; Ren and Weinan 2005; Delgado-

Buscalioni et al. 2008; Lei et al. 2010).

The multiscale methods in the explicit hybrid atomistic

continuum context can be broadly classified as geometrical

coupling (domain decomposition) and embedded coupling

(Karniadakis et al. 2005; Kalweit and Drikakis 2008;

Garcia-Cervera et al. 2008). The geometrical coupling

methods (O’connell and Thompson 1995; Delgado-Bu-

scalioni and Coveney 2004; Hadjiconstantinou 1999; Nie

et al. 2004; Kalweit and Drikakis 2008; Fedosov and

Karniadakis 2009; Delgado-Buscalioni et al. 2009; Lei

et al. 2011; Borg et al. 2010) embrace a domain decom-

position approach for spatial scales separation exploiting

the fact that although the continuum equations may fail to

describe the phenomena in a particular area, they are still

valid in large regions of the domain. Hence, the application

of the computationally intensive molecular solver is min-

imised to a small region and the rest of the computational

domain is covered by the less computationally intensive

continuum solver. In the embedded methods introduced by

Ren and Weinan (2005) as an application of the generic

heterogenous multiscale method (HMM) (Weinan et al.

2007), the entire domain is resolved by the macroscopic

model and the microscopic solver is used as a local

refinement technique to provide data required by the con-

tinuum description (Ren and Weinan 2005; Karniadakis

et al. 2005; Asproulis et al. 2009). The main difference

between the two coupling approaches, geometric and

embedded, lies in the treatment of the molecular solver. In

the former, atomistic simulations are utilised to model

certain regions that have been explicitly defined, whereas

in the latter, microscopic simulations are performed locally

as high-order resolution to enhance the accuracy of the

continuum solver. In the embedded frameworks the

atomistic simulations are employed to provide accurate

boundary conditions, such as slip velocity or temperature

jumps; to substitute constitutive relations; and to calculate

transport properties, such as viscosity, thermal conductivity

or accommodation coefficients. The embedded multiscale

methods are ideal for cases where the characteristic time

scales of the flow phenomena are large compared with the

microscopic time scales and, therefore, from the molecular

perspective the flow is in a quasi-steady state during the

continuum time steps. Additionally, in the embedded

framework the employed atomistic regions do not have

direct communication; instead, they exchange information

with the continuum model and establish an indirect com-

munication with each other through the macroscopic sol-

ver. The same concept applies to the equation-free

approach (EFA) (Kevrekidis et al. 2004) where the patches

of the atomistic simulations communicate through

temporal and spatial extrapolated equations. The objective

of EFA is to bridge the time and length scales and predict the

macroscale dynamics by performing only microscopic simu-

lations. The advantage of EFA is that circumvents the need for

a closed analytical description of the macroscale systems.

Recently, a seamless coupling scheme for speeding up the

multiscale process by circumventing the need for re-initial-

ising the microscopic solver at every continuum time step has

been proposed (Weinan et al. 2009).

One of the most challenging tasks in the development of

hybrid atomistic-continuum is the transfer of information

from the continuum description to the atomistic system

(Kalweit and Drikakis 2008; Delgado-Buscalioni 2012;

Hadjiconstantinou 2005; Steijl and Barakos 2010). The

main difficulty lies in the disparity between the degrees of

freedom modelled by the atomistic and continuum models.

In the geometrical coupling there are two main approaches

regarding the boundary condition transfer (BCT):

• The coupling through fluxes (Delgado-Buscalioni and

Coveney 2004; Flekkoy et al. 2005; Wagner and

Flekkoy 2004; Ren 2007), where the momentum, mass

or energy should be able to flow seamlessly from one

description to the other and vice versa.

• The coupling through state (Werder et al. 2005; Hadji-

constantinou 2005; Hadjiconstantinou 1999; Koumoutsa-

kos 2005; Bugel et al. 2011), where the profiles of the

primitive variables such as density, temperature and

velocity must be consistent between the two descriptions.

The selection of the most suitable coupling method is a

non-trivial task and is primarily problem dependent.

Compressible and incompressible formulations are associ-

ated with different physical and mathematical hydrody-

namics limits (Hadjiconstantinou 2005; Ren 2007;

Hadjiconstantinou 2006). Compressibility can be a crite-

rion for determining the most suitable coupling approach

with time-explicit coupling through fluxes usually used for

compressible formulations and the state coupling for

incompressible ones (Hadjiconstantinou 2005). In the vast

majority of the geometrical coupling techniques the time

scales between the macroscopic and microscopic descrip-

tions are fully coupled. Therefore, the overall computa-

tional time is limited to the time scales computed by the

microscale solver. A time decoupling approach, applicable

only for steady-state cases under the state coupling scheme,

has been proposed by Hadjiconstantinou and Patera (1997)

utilising Schwartz alternating method (Werder et al. 2005;

Hadjiconstantinou 1999). Furthermore, in the multiscale

frameworks the size of the overlapping region, where the

exchange of information between the continuum and

molecular description takes place, has a big impact on the

convergence of the macroscopic solver (Kalweit and Dri-

kakis 2008; Kotsalis et al. 2007; Yen etal. 2007). Kotsalis
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et al. (2009) proposed a control algorithm that has been

applied to liquid water and monoatomic liquids and elim-

inates any spurious density fluctuations introduced by the

coupling procedure.

In the embedded formulations the information trans-

ferred from the continuum description to the molecular

solver is the macroscopic state, meaning the continuum

density, velocity and temperature (Ren and Weinan 2005;

Mohamed and Mohamad 2010; Ren 2007). The embedded

coupling developments lack of a unified framework able to

expand their application envelop and employ larger tem-

poral and spatial scales. In the current implementations the

macroscopic quantities of interest, measured from the

atomistic solver, are fed back to the CFD solver at every

continuum time step. This procedure leads to repetitive MD

simulations of nearly identical states and hence constitutes

a major burden for the efficiency of the multiscale scheme.

Additionally, the information transferred to the continuum

description is subject to fluctuations that can significantly

affect the stability and convergence of the macroscopic

solver. Generally, simulating almost identical states allows

the molecular fluctuations to propagate in the continuum

description and, consequently, to dictate the convergence

of the overall procedure.

In the paper a new artificial neural network-based cou-

pling (ANN-b-C) is proposed. This method inherits char-

acteristics of the embedded framework and aims to further

improve the computational efficiency of the embedded

modelling approaches utilising artificial intelligence tech-

niques such as ANN. The aim of this paper is to provide the

basic formulation of the ANN based method by giving a

detailed description of the techniques that can be employed

for transferring the continuum information to the molecular

domain and the numerical optimisation procedures that are

utilised for feeding the information back from the micro-

scopic model to the macroscopic one. This paper is

organised as follows: Sect. 2 provides a brief overview of

the continuum and molecular models that are employed in

this study along with a brief introduction to neural net-

works. In Sect. 3 the ANN-based methodology and the

techniques for exchanging information between the mac-

roscopic and microscopic description are presented. Sec-

tion 4 presents the results of the numerical investigation for

the boundary condition problem and, finally, Sect. 5 sum-

marises the conclusions drawn from the present study.

2 Computational models

2.1 Continuum model

For the scope of the present study the incompressible

Navier-Stokesnumerical model has been employed.

ou

ot
þ ðu�rÞu ¼ � 1

q
rpþ mr2u; ð1Þ

r � u ¼ 0 ð2Þ

where u is the velocity field, q the density, p the pressure

and m is the kinematic viscosity. The CFD simulations have

been performed using a high-resolution parallel solver

(Shapiro and Drikakis 2005a, b; Drikakis et al. 1994,

2000). The CFD approach is based on the artificial com-

pressibility method (see Drikakis and Rider 2004 and ref-

erences therein), characteristics-based schemes up to third-

order accurate (Drikakis et al. 1994) and third-order in time

explicit Runge-Kutta schemes (Drikakis et al. 1994, 2000)

(also Drikakis and Rider 2004 and references therein).

2.2 Atomistic model

For the atomistic model MD simulations are employed.

The governing system of equations for MD is a system of

Newton’s equation of motion

mi €ri ¼ �
oVi

ori

ð3Þ

for each atom i. These are modelled as mass points with

position ri and mass mi. Each atoms potential energy Vi is

the sum of semi-empirical analytical functions that model

the real interatomic forces. The atomic trajectories are

calculated by time integration of Eq. 3 for all atoms. The

time integration is performed by a finite difference method

such as the predictor-corrector method or the Verlet algo-

rithm (Verlet 1967; Allen and Tildesley 1987). Despite the

apparent simplicity, the simulations are very computa-

tionally demanding due to the huge number of atoms

involved, even for small systems. Only with the use of

modern parallel computers can the MD simulations of

several millions of atoms (Sutmann 2002) be performed.

In the test cases examined in the current study the

interatomic interactions of the particles are modelled by the

shifted Lennard-Jones (LJ) 6–12 potential (Hadjiconstan-

tinou 1999). The molecular simulations of the current study

have been performed using the LAMMPS software

(Plimpton 1995). Additional information regarding the

parametrization of the atomistic models such interaction

parameters, time-step used and number of time steps

employed are case specific and, therefore, are provided in

the description of test cases.

2.3 Artificial neural networks

The development of artificial neural networks was origi-

nated 50 years ago and was motivated by a desire to

understand and mimic the human brain and intelligence.

Specifically, neural networks were first introduced in 1943
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by McCulloch and Pitts (1990; Krose and Smagt 1996).

Since then, neural networks have found applications in a

number of disciplines across the board of science and

engineering such as electrical engineering, signal and

speech processing, medicine, pattern recognition, business

and applied mathematics. Their main advantage is their

ability of modelling problems where the relationships

among certain variables are not explicitly known (Fausett

1994).

The neural networks are information processing systems

that have certain performance characteristics in common

with the biological neurons. The artificial neural networks

have been developed as mathematical models based on the

following assumptions:

• The processing of information occurs in many elements

called neurons.

• There are connection links for passing the signals

between the neurons.

• All the connection links have a corresponding weight.

• The output is determined by an activation function

which is applied at each neuron. The activation

function is adding non linearity to the network.

The structure of a typical neuron consists of two parts:

the net function and the activation function. The net

function determines how the inputs are combined inside the

neuron while the activation function determines the output

of the neuron. The activation functions are essential parts

of the neural network because they introduce non linearity

to the network Fig. 1. Without the activation functions the

neural networks are not capable of representing non linear

relationships between inputs and outputs. Another impor-

tant element for the neural networks is the training algo-

rithms. The term training characterises the entire procedure

that determines the values of a neural network’s weights.

This procedure is not unique and is crucial for the behav-

iour of the network. Generally two types of training can be

identified, the supervised and the unsupervised. In the

scope of the current study the supervised training and

specifically the back-propagation algorithm is employed.

Optimising the architecture of one neural network is a

crucial and challenging task. Generally, the neural net-

works’ architecture is directly related to the performance

and behaviour of the networks and at the same time there is

no theoretical background or systematic methodology of

how this architecture will be found. The traditional meth-

ods follow a trial and error process which is time con-

suming, is based on the developer’s experience and

involves a high degree of uncertainty (Benardos and Vos-

niakos 2007). In the context of hybrid atomistic continuum

modelling an optimisation methodology based on genetic

algorithms (GA) that search over the networks topology by

varying the number of hidden units and layers is employed.

An analytic description of the utilised methodology can be

found in (Benardos and Vosniakos 2007).

Overfitting is one of the major problems faced during

the training procedure of artificial neural networks (Schi-

ttenkopf et al. 1997; Huang et al. 2009). In the context of

the present study the approach followed to minimize

overfitting is twofold: (1) The data available for training

are divided to two sets a training and a validation one. The

training set contains 80% of the data originally available,

(a) Neural network with 2
inputs and more than 1

outputs

(b) Neural Network with 2 input, 1
hidden and 3 output layer

Fig. 1 Types of neural

network’s architecture
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the validation set the remaining 20% and during training a

cross-validation is performed aiming to minimise the error

in both sets; (2) in the second approach during the geom-

etry optimisation procedure neurons with small variance in

the output are penalised and removed allowing only the

most important information to be transmitted.

3 ANN-based coupling

The basic idea of the ANN-based coupling is to perform

tailored atomistic simulations aiming to provide parameters

for the accuracy of the macroscopic solver. In the proposed

approach information is transferred in both ways, initially

from the continuum to the molecular description and,

subsequently, the atomistic information is fed back to the

continuum solver. The atomistic model is constrained by

the continuum information to be consistent with the local

macroscopic state under the local equilibrium assumption.

In the ANN-b-C the entire domain is covered with the

macroscopic solver and the atomistic model enters as a

local refinement. Thus, the results from the microscale are

embedded in the continuum simulation and in that sense

ANN-b-C inherits characteristics of an embedded frame-

work. This scheme naturally decouples the time scale

between the atomistic and continuum description.

The type of the problems that ANN-b-C is applied can

be classified as follows (Ren and Weinan 2005):

Boundary condition problem: in the majority of the

macroscopic simulations the no-slip hypothesis is assumed,

or in the cases of rarefied gases in high Knudsen numbers

continuum slip models are employed. However, there are

cases like the liquid flow over hydrophobic surfaces where

further molecular level information is required. For this

problem molecular simulations are performed around

specific grid points (see Fig. 2) to examine the fluid

behaviour in the context of fluid-solid interaction and,

consequently, to calculate the appropriate boundary con-

ditions. The MD simulations are constrained through the

local continuum state and the slip velocities are calculated

by the microscopic simulations and fed back to the con-

tinuum solver. The constrained factors for the molecular

simulations and the data transfer to the continuum solver

may vary depending on the nature of the problem.

Transport coefficient problem accurate knowledge of

transport coefficients such as viscosity, thermal conduc-

tivity or accommodation coefficients can significantly

improve the quality of the continuum model. When these

coefficients are not explicitly known particle based meth-

ods can be directly applied in order to provide the missing

data. For example, in the gas slip simulations the values of

the accommodation coefficients can affect significantly the

amount of slip generated. However, these values can be

affected by local conditions and, therefore, there are

problems where they have to be evaluated on the fly.

Constitutive relations problem in the macroscopic sim-

ulations the constitutive relations, for example, the relation

between the stresses and the strain rate, cannot be explicitly

known. For these cases, molecular simulations can be uti-

lised to calculate the constitutive relations that are needed

for the continuum solver. The MD simulations are then

performed around specific grid points, constrained through

the velocity gradients, and the calculated stresses are fed

back to the continuum solver.

3.1 From continuum to molecular

The accuracy and efficiency of multiscale approaches

depend to a great extent on the BCT method that constrains

the atomistic region to the continuum conditions. The

Fig. 2 Schematic

representation of a grid with the

MD simulations. The atomistic

domains near the wall are

employed to provide accurate

boundary conditions whereas

the MD domains within the flow

region are utilised for the

transport coefficient and

constitutive relations problem
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problem of imposing macroscopic conditions on a molec-

ular system is a very challenging task and has not yet been

addressed for a general case (Kalweit and Drikakis 2008;

Hadjiconstantinou 2005; Drikakis and Asproulis 2010).

The main difficulty is the disparity between degrees of

freedom modelled by the atomistic and continuum models.

The current subsection provides a brief description of the

BCT techniques employed under the ANN-based frame-

work. Further investigations regarding the accuracy and

efficiency implications of the BCT can be found in (Asp-

roulis et al. 2009).

For this type of problems MD simulations are employed

in specific grid points near the walls to model molecular

interactions and produce more accurate boundary condi-

tions. The local continuum state, for example velocity,

density, pressure and temperature, is applied to the

microscopic simulations through the appropriate boundary

conditions and then the data calculated from the molecular

simulations are fed back to the continuum solver. In gen-

eral continuum boundary conditions can be applied not

only at the upper boundary but also at the other faces

except the lower one that faces the solid wall. This region

plays a twofold role: it ensures that the molecular simula-

tions are consistent with the continuum state and it serves

as a particle reservoir for the rest of the molecular domain.

Enforcing the continuum constraints requires to alter the

properties of the atoms inside the constrained region to

match the continuum velocity, ucon; and temperature, Tcon.

Generally, in the hybrid frameworks two alternative

methods are employed under the scheme for imposing the

continuum boundary conditions. The first one is based on

periodic re-scaling of the atomic velocities (Liu et al. 2007;

Delgado-Buscalioni and Coveney 2003; Delgado-Buscali-

oni and Coveney 2004; Nie et al. 2004, 2006; Delgado-

Buscalioni and Coveney 2003; De Fabritiis et al. 2006),

and the second one on a periodic re-sampling from a

velocity distribution functions, such as the Maxwell-

Boltzmann (Hadjiconstantinou and Patera 1997; Ren and

Weinan 2005; Hadjiconstantinou 1999) or the Chapman-

Enskog (Garcia and Alder 1998; Schwartzentruber et al.

2007, 2008a, b; Wijesinghe et al. 2004; Wijesinghe and

Hadjiconstantinou 2004) distribution. For the scope of the

current study re-scaling techniques are employed, and more

details for the applicability of each of the two methods can

be found in (Drikakis and Asproulis 2010) and (Hadji-

constantinou 2005).

3.2 From molecular to continuum

The transfer of information from the molecular to the

continuum description, although less complicated com-

pared to the reverse procedure, is crucial for the efficiency

and accuracy of the hybrid scheme. In atomistic

simulations the calculation of macroscopic variables is

performed through averaging the corresponding micro-

scopic properties. Thus, the information transferred to the

continuum description is subject to fluctuations in space

and time. The fluctuations introduced can affect the sta-

bility and convergence of the continuum solver; however,

this is a problem that primarily arises in the geometrical

decomposition approach. For ANN-b-C the fluctuations

can be reduced simply by increasing the number of atoms

and/or the number of time steps from which the respective

quantity is calculated. This is achieved by increasing the

volume of the cell and the overall simulation time for

which the calculations are performed.

In the current implementation of the embedded frame-

works, molecular simulations are performed at every time

step of the continuum solver. The macroscopic quantities

of interest are measured from the MD simulations and fed

back to the CFD solver, where they are used to advance the

solution forward in time. This basic procedure leads to

repetitive MD simulations of nearly identical states and,

thus, a more sophisticated algorithm that utilises already

performed MD simulations is employed. In the proposed

coupling framework two optimisation procedures have

been developed: (1) the linear optimisation and (2) the

neural network optimisation.

3.2.1 Linear optimisation

For simplicity, consider an example, where the MD sim-

ulation of the flow at the boundary have to be performed

for specified density, qcon, and velocity, ucon. The slip

velocity as function of qcon and ucon, i.e. uslip() is fed back

to the continuum solver. In the linear optimisation, instead

of performing atomistic simulations for every data set

required by the continuum solver, the macroscopic vari-

ables are discretised based on an initial value, uin, qin, and

an interval, du, dq. Therefore, when a set of ucon; qconð Þ is

given as an input, the discrete sets uin þ mdu; qin þ ndqð Þ;
uinþ mþ1ð Þdu;qinþndqð Þ; uinþmdu;qinþ nþ1ð Þdqð Þ; and

uinþ mþ1ð Þdu;qinþ nþ1ð Þdqð Þ are identified, where uinþ
mdu\ucon\uinþ mþ1ð Þdu and qinþndq\qcon\qinþ
nþ1ð Þdq and m;n2Z (see Algorithm 1). Molecular sim-

ulations are performed for the four data sets and through a

bilinear interpolation the outcomes for the input ucon;qconð Þ
are calculated. The calculated molecular data are stored

and are being utilised if another input is in the same or an

adjacent interval. Therefore, as the simulation evolves the

number of the performed MD simulations is minimised.

Furthermore, depending on the simulation set up, the

accuracy requirements and the resources available by

modifying the du, dq parameters the number of total

atomistic simulations will vary; larger values implies less

MD simulations.
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3.2.2 Neural network optimisation

In the NN optimisation, instead of predefining the input

sets for the atomistic simulations the parameters xin and

dx, are utilised to define a confidence interval around the

input data. If any library data are inside this confidence

interval then the output is based on the library data;

otherwise, atomistic simulations are performed for the

exact continuum input set. For example, assume a contin-

uum input xin and a parameter dx based on which a library

search is performed for data xlib with xin - dx \ xlib \
xin ? dx. If data that fulfill the aforementioned require-

ments are found, then the atomistic outputs are estimated

based on neural networks trained with the library’s infor-

mation. In the event that the information transferred from

the continuum is not in the library’s confidence limits, then

MD simulations are performed, the outputs are stored in the

library, the neural networks are trained to accommodate the

new information and are used to provide the atomistic

output (see Algorithm 2).

Depending on the efficiency and accuracy requirements

the dxi parameters that determine the confidence intervals

can be adapted. Smaller values imply higher number of

atomistic simulations and, therefore, larger data availability

for obtaining statistical averages, training and testing the

neural networks. On the other hand, larger values of dx

suggest that fewer MD will be performed and more

atomistic simulations will be substituted by neural net-

works contributing to the reduction of the computational

workload. Another parameter that can be defined based on

the problem’s requirements is the acceptable minimum

number of library data that should be included in the

input’s confidence intervals. As this number increases,

more atomistic simulations will be carried aiming to

enhance the problem’s computational accuracy.

The main advantage of the neural network optimisation

procedure is its flexibility to encompass additional number

of continuum input parameters, its implementation sim-

plicity and robustness. Every data provided from the

atomistic description to the continuum solver are trans-

ferred through the neural networks that act as filters that

suppress the inherent fluctuations of the molecular data.

The aim of the neural network optimisation is twofold: (1)

to initially utilise already performed data for similar states

and to minimise the overall computational procedure and

(2) to minimise any instabilities induced to the macro-

scopic description due to propagation of atomistic fluctu-

ations towards the continuum solver

4 Hybrid studies for the boundary condition problem

4.1 Slip Couette flow

The flow of a fluid inside a micro or nanochannel can be

significantly influenced by liquid slip conditions at the

solid boundary. There are fundamental open questions

regarding the applicability of no-slip boundary conditions.

The conditions under which the no-slip boundary

assumption becomes inaccurate and the relationship of

stress and strain rate becomes nonlinear are not known

from first principles (Nagayama and Cheng 2004; Sofos

et al. 2012; Gad-El-Hak 2005).

In the current example, the number of particles gener-

ated in the microscopic domain is defined from the con-

tinuum density and their velocities are initialised through a

Maxwell-Boltzmann distribution based on the continuum

temperature. The macroscopic velocity is imposed through

the upper boundary of the molecular domain, in a reservoir

region with height h = 4r, and by utilising velocity

rescaling. The simulations are assumed to be isothermal

and, therefore, since there is no need to exchange tem-

perature information, the temperature in the entire

molecular region is controlled through a Langevin ther-

mostat. The molecular simulations are employed at the

beginning of every continuum time step to calculate the

slip velocity in the solid–liquid interface, which is trans-

ferred to the continuum solver through the velocity

boundary conditions.

The solid wall is modelled as two immobile planes of a

(111) fcc lattice. The solid surface orientation along with

the orientation of the flow have major influence on the total

amount of slip (Soong et al. 2007) that is generated due to

the nanoscale roughness arising from the arrangement of

the wall atoms. For the current test case the (111) fcc plane

is employed to minimise the atomic surface roughness and

consequently maximise the slip at the boundary.
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The shifted Lennard-Jones (LJ) 6–12 potential, with cut

off distance rc = 2.2 r, is employed to model the inter-

atomic interactions of the wall and fluid particles. The

fluid’s density and temperature are q = 0.81 mr-3 and

T ¼ 1:1 �k�1
B ; respectively. The wall-fluid interactions are

also modelled by the LJ potential with energy �wf and

length scale rwf. The parameters used in the simulations are

summarised in Table 1.

The first set of parameters is used for creating no-slip

boundary conditions and the other two correspond to slip

boundary conditions (Thompson and Troian 1997). The

heat exchange is controlled by a Langevin thermostat with

a random uncorrelated force and a friction term C ¼
1:0 s�1; where s is the characteristic time s ¼ ðmr2=�Þ1=2

(Sofos et al. 2009; Thompson and Troian 1997; Sofos et al.

2012; Yen et al. 2007). The thermostat is only applied in

the z direction to avoid any undesirable influences in the

flow direction.

4.1.1 Hybrid Couette flow

An important parameter for the realistic behaviour of the

hybrid methods is the size of the molecular domain which

has to be sufficiently large to capture the physics of the

problem. In order to explore the influence of the molecular

domain size, a number of MD simulations have been per-

formed with different domain sizes, with the slip length

Ls ¼ us
ou
onð Þw

used as validation criterion. MD simulations

were performed in four domains with different heights K ¼
5; 10; 15 and 20r and dimensions in the x - z plane

10 9 10 r2. The height H refers to the size of the

molecular domain in the direction y normal to the wall.

The variation of the slip length, for various shear

rates, with the height of the molecular domain is shown in

Fig. 3.

For heights less than 10 r, the slip length is underesti-

mated and for heights larger than 10 r the mean value of

the slip length for different shear rates exhibits small dif-

ferences. The results are in good agreement with (Yen

et al. 2007), where for channel heights larger than 10 r the

MD results were consistent with the continuum assump-

tions. Therefore, a height of 10 r has been selected for the

atomistic region. The size of the molecular domain should

be minimal to reduce the overall computational cost.

Previous MD studies (Sofos et al. 2009; Thompson and

Troian 1997; Sofos et al. 2012; Giannakopoulos et al.

2012) have identified that the degree of slip at the boundary

depends on a number of parameters, including the strength

of the solid–liquid interaction, the thermal roughness of the

interface and the ratio of wall and liquid density. To

investigate the effects of the solid–fluid interaction

strength, hybrid simulations of Couette flows have been

performed. In Fig. 4 the velocity profiles for a channel with

height H = 50 r are presented for three different sets of

parameters of the solid–liquid interaction. The time step for

the continuum solver was equal to 10s and the time step of

0.005s was used in the microscopic solver.

The results obtained from the multiscale procedure are

in good agreement with those obtained from other hybrid

Λ (σ)

L
s

(σ
)

5 10 15 20
1

2

3

4

5

6

shear rate Uwallτ=0.02
shear rate Uwallτ=0.04
shear rate Uwallτ=0.06

Fig. 3 Slip length variations for different channel heights and �wf ¼
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Fig. 4 Velocity profiles for H = 50 r under slip and no-slip

boundary conditions

Table 1 Parameters used in the Couette slip flow simulation

Case �wf =� rwf/r qw/q

(1) 0.6 1 1

(2) 0.6 0.75 4

(3) 0.2 0.75 4
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methods based on the domain decomposition (Wang and

He 2007) and those obtained from fully MD simulations

(Thompson and Troain 1997), where the maximum devi-

ation for the slip velocity ranges from 0 to 24% of the

upper wall velocity uwall for the no-slip and the slip

boundary conditions, respectively.

4.1.2 Linear optimisation

In the above Couette flow case MD simulations were

performed at the start of every continuum time step. As a

consequence, molecular simulations have been carried out

for almost identical continuum inputs resulting to an

increased computational cost without any subsequent

accuracy advantages. In addition to the computational

burden, simulating nearly identical continuum states may

contribute to the transfer of intrinsic molecular fluctuations

to the continuum solver, consequently impacting on its

stability and convergence. Figure 6 shows the history of

the root mean square (RMS) velocity residual. The fluc-

tuations of the velocity values reveal the presence of the

molecular solver. These fluctuations occur due to the

hybrid boundary condition applied at the lower wall,

however, the overall convergence trend in these cases is

not greatly affected.

Aiming to minimise the computational cost of the hybrid

simulations and reduce the residual oscillations a numerical

optimisation procedure has been employed. The input data

for the molecular solver, in the current test case, are

essentially the continuum velocity of the first cell above the

lower wall and the calculated data are the slip velocity at

the solid–liquid interface. In the numerical optimisation

procedure MD simulations were performed with ucon
in ¼

0:0 r=� and ducon ¼ 0:1 r=�: The simulations have been

carried out for channel height H = 50 r.

Figure 5 shows the velocity profiles as calculated with

and without the presence of the optimisation procedure.

The outcomes from both cases are in good agreement. Near

the lower wall small deviations are observed mainly due to

the inherent fluctuations of molecular solver. One of the

advantages of the numerical optimisation is the reduction

of oscillations in the data transferred to the continuum

domain. This can be identified in Fig. 6 where the fluctu-

ations’ magnitude and frequency have been suppressed.

The linear optimisation offers a significant enhancement of

the stability and convergence of the continuum solver. The

optimisation is dependent on the values of du. Specifically,

in cases where du is very small or du! 0 the advantages

of the linear optimisation are eliminated. Although the

linear optimisation prohibits the propagation of any insta-

bilities towards the continuum side, it does not take into

account the oscillating nature of the atomistic outputs and

provides statistically averaged data. To circumvent these

problems the discretisation parameters should selected

cautiously and in case where small values of du have to

employed more sophisticated interpolation techniques with

smoothing capabilities should be adopted.

4.1.3 ANN optimisation

The ANN optimisation has been also employed to study the

slip Couette flow case. In the current example one neural

network has been used with one input, the continuum

velocity, one output, the slip velocity, and two hidden

layers with 3 neurons each. The hybrid simulations have

been performed for two confidence intervals du ¼
10�3; 5� 10�3: The confidence intervals determine to one

extent the number of atomistic simulations that are per-

formed. In the current case, 75 and 50 MD simulations
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have been performed for du = 10-3 and du ¼ 5� 10�3;

respectively. The differences in the outputs for the two

confidence intervals are less than 1% showing the consis-

tency of the method along with the predictive abilities of

the neural networks that can produce consistent outputs

even when trained with different amount of data. Table 2

shows the root mean square differences (RMSD) between

velocity outputs, for various values of du, as produced by

hybrid simulations with ANN optimisation with du = 10-3

and outcomes produced with linear optimisation. The

results are generally in good agreement;however, the out-

comes produced from the linear optimisation tend to

underestimate the slip velocity. The main reason for that

behaviour is the lack of statistical smoothing and averaging

of the atomistic outputs in the linear optimisation. Linear

optimisation takes into account only the outputs for specific

inputs and not the averaged output values for adjacent input

data. Figure 6 shows the velocity residual for all the cases

examined and the spike noticed in the ANN optimisation is

primarily due to a change in the architecture of the neural

network.

4.2 Heat transfer in Couette flow

The heat transfer in Couette flow with slip boundary con-

ditions has also been investigated. Coupled simulations are

employed near the bottom wall to provide adequate infor-

mation regarding the slip’s magnitude. Slip is not only

dependent on the local shear rate and the interfacial

interaction parameters between the solid and the fluid but

also on the local temperature. Therefore, in the hybrid set-

up the information transferred from the continuum to the

molecular description includes the local velocity, density

and temperature. Additionally, the hybrid simulations will

be able to model and capture the temperature jumps

noticed near the thermal walls.

In the continuum description the heat transfer is

described through the following equation (Liu et al. 2007)

oT

ot
þ u�rT ¼ k

qcu

r2T

þ 2l
qcu

oux

ox

� �2

þ ouy

oy

� �2

þ 1

2

oux

oy
þ ouy

ox

� �2
" #

ð4Þ

where cu is the specific heat, k is the thermal conductivity

and l is the dynamic viscosity. The CFL number employed

in the continuum solver is 0.25.

4.2.1 Hybrid simulations

For the current case the size of the molecular domain is

12 r in the x and y direction and 4 r in the z direction. The

upper region with height 2 r and 10 r\ y \ 12 r is used

as a reservoir for the application of the continuum condi-

tions to the atomistic description. In this region the parti-

cles’ velocities are rescaled every 100 molecular time steps

to match the continuum temperature and velocity figures. A

reflective plane is placed parallel to the solid in the upper

position along the x - axis to prevent any particles from

moving away from the simulation box. The solid wall is

modelled as two planes of (111) fcc lattice and its particles

are allowed to oscillate around their lattice site with a

harmonic potential with stiffness j ¼ 400 �r�2: The par-

ticle velocities at each wall plane are rescaled indepen-

dently through a velocity rescaling thermostat to

temperature T ¼ 1:1 �k�1
B : In the remaining molecular area

we do not apply any other thermostat and the heat gener-

ated during the simulations is dissipated through the ther-

mal wall and the buffer region.

The fluid’s density is q = 0.81 mr-3 resulting to a

1,760 number of fluid particles including the ones in the

buffer region. The density employed for the wall is q = 4.0

mr-3 corresponding to 470 solid particles. The interaction

parameters for the wall/fluid interface are �wf ¼
0:6�; rwf ¼ 0:75r that correspond (as described in Sect. 4)

to apparent slip. The fluid’s viscosity is l ¼ 2:08 �sr�3;

the thermal conductivity is k = 7.7 kB (r s)-1 and the

specific heat is cu = 2.43 kB/m (Liu et al. 2007).

Hybrid simulations are carried out with molecular

modelling being employed near the lower wall aiming to

provide accurate boundary condition regarding the slip

velocities and the temperature jumps. In particular, the size

of the continuum domain is H = 100 r with the upper wall

moving with velocity Uwall = 2.0 r/s at temperature

Twall ¼ 1:3 �k�1
B : MD simulations are performed every

continuum time step around the lower grid point for 106

number of time steps and the temperature jumps and slip

velocities are mapped back to the continuum solver.

Figure 7 shows the velocity and temperature profiles

across the channel. A linear velocity profile is noticed with

apparent slip near the lower wall. The slip’s magnitude, for

the current shear rate, surface orientation, wall-fluid inter-

actions and surface stiffness, is in perfect agreement with

previous molecular studies (Priezjev 2007). A parabolic

profile for the temperature is noticed due to the flow of heat

generated by viscous dissipation (Liu et al. 2007).

Table 2 Root mean square difference between hybrid outcomes with

NN optimisation with du = 10-3 and linear optimisation for various

du

du RMSD (%)

5� 10�3 5.7

10-2 7.2

5� 10�2 7.1
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In Fig. 8 the velocity and temperature residuals of the

continuum solver are shown. It is observed that as the

simulation evolves the residuals fluctuate between 10-2

and 10-3 for the velocity and around 10-3 for the tem-

perature; this is due to the inherent fluctuations of the

molecular information transferred. Small changes in the

continuum inputs produce atomistic outputs that oscillate

around a mean value. The fluctuating nature of the

molecular results prohibits the continuum solver of

achieving acceptable convergence. Therefore, a numerical

optimisation procedure is engaged to minimise the fluctu-

ations of the data transferred from the atomistic solver to

the continuum. The goal of this optimisation procedure is

twofold: (1) to reduce the fluctuation’s amplitude of the

atomistic information transferred; and (2) to optimise the

efficiency of the entire simulation procedure by minimising

the number of molecular simulations performed.

In the present case the linear optimisation procedure, as

described in Sect. 3 and applied in the previous test cases,

cannot be applied directly since the number of inputs and

outputs has been increased. The aforementioned procedure

can be extended for one additional input; however, it is not

straight forward to be generalised to accommodate multi-

dimensional inputs and outputs. Furthermore, even if the

number of input parameters is two, like in the current case,

the complexity of implementation for the linear optimisa-

tion procedure increases significantly and the computa-

tional benefits are not apparent. For example, in the case

studied here after the discretisation of the input variables

ucon, Tcon the following four input sets are generated

uinþmdu; Tinþ ndTð Þ; uinþ mþ 1ð Þdu; Tinþ ndTð Þ; uinþð
mdu; Tinþ nþ 1ð ÞdTÞ; and uinþ mþ 1ð Þdu; Tinþ nþ 1ð Þð
dTÞ; where uinþmdu\ucon\uinþ mþ 1ð Þdu and Tinþ
ndT\Tcon\qinþ nþ 1ð Þdq and m;n 2Z: Through this

procedure if none of the input sets has been previously

calculated then 4 MD simulations have to be performed.

Additionally, the four input sets lead to combination of 16

input states, where 0, 1, 2, 3 or 4 atomistic simulations are

required. This increases the computational cost and the

complexity of the algorithm that searches the library data.

Therefore, aiming to overcome these difficulties the Neural

Network optimisation procedure is engaged.
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4.2.2 ANN optimisation

In the ANN optimisation, instead of predefining the input

sets for the atomistic simulations through the parameters

xin and dx (where x is any continuum input), we define a

confidence interval around every new input and if any

library data are inside this confidence interval then the

output is based on the library data; otherwise, atomistic

simulations are performed for the exact continuum input

set. For example, in this case a continuum input uin and a

parameter du are defined. A search is performed in the

library for data ulib that belong to the interval uin -

du \ ulib \ uin ? du. If any data fulfill the aforementioned

requirements then the atomistic outputs are estimated based

on neural networks trained with the library’s information.

In the event that none of the library data belong in the

confidence interval of the continuum input then the fol-

lowing steps are performed: (1) for the exact continuum

inputs an atomistic simulation is executed; (2) the atomistic

outputs are stored to the library; (3) the neural networks are

being re-trained and updated to accommodate the new data;

and (iv) the neural nets are utilised to provide the micro-

scopic outputs. The molecular outputs are always estimated

through neural networks aiming to utilise the networks’

smoothing abilities and provide data devoid of large fluc-

tuations that may introduce instabilities in the continuum

solver. Figure 8 shows the RMS values of the velocity and

temperature residuals as have been calculated from the

hybrid simulations (1) with the atomistic data fed back

directly to the continuum solver and (2) the atomistic data

fed back through a neural net.

The velocity residual for the direct coupling case con-

stantly fluctuates and its minimum value is of the order of

10-3. These fluctuations are originated from the molecular

solver and represent the fluctuating values of the slip

velocity as it is calculated from similar continuum inputs; it

can also be easier realised if a logarithmic scale is

employed in the y axis (see inset in Fig. 8). The application

of neural networks compresses the strength of the fluctu-

ations and permit the continuum solver to achieve residuals

of the order of 10-5. Specifically, the residual initially

decreases smoothly and afterwards oscillations are noticed,

primarily due to the continuous changes in the network’s

parameters every time that a molecular output is generated.

The same behaviour is also noticed for the temperature

residual.

Figure 9 shows slip velocity data transferred to the

continuum solver as has been calculated by MD with and

without the application of neural networks. This figure

shows the smoothing of data achieved with the presence of

neural nets, and provides a better insight why neural net-

work optimisation contributes to elimination of any

numerical instabilities and artefacts induced to the

continuum solver. As the confidence limit increases the

neural nets’ outputs are based on fewer data and, therefore,

small deviations are observed. Although minimisation of

the number of the molecular simulations contribute to the

reduction of the computational cost, it implies that fewer

data will be utilised for estimating the fluctuating average

of the atomistic simulations.

Figure 8 shows the velocity and temperature residuals

compared to those obtained from the neural network opti-

masation with du ¼ 5� 10�3: In this case, the convergence

of the simulation is noticeable faster compared to the

extreme case where du! 0 and the neural networks have

been updated every time step.

Hybrid simulations have been performed for a number

of different confidence intervals (du, dT) spanning from

du = dT = 10-4 to du = dT = 0.1. Smaller values of the

confidence intervals imply that a larger number of MD

simulations will be performed generating larger number of

data for the training procedure. Therefore, the neural nets

would be able to reduce any uncertainties associated with

the oscillating nature of the atomistic outputs. The overall

computational cost is dictated by the atomistic simulations.

Figure 10 shows the number of MD simulations as a

factor of du = dT. As the confidence limit increases, the

number of atomistic simulations decreases in a non-linear

manner. For the example studied here, for du = dT = 10-4

a total number of 114 MD simulations are performed and

for du = dT = 10-1 the number of molecular simulations

is reduced to 8.

Figure 11 shows the root mean square deviation of the

atomistic outputs compared with the one obtained with

du = 10-4. The atomistic outcomes produced for different

confidence limits are generally in good agreement and

primarily for du B 10-2 the differences are less than 5%.
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4.2.3 Neural network architectures

In the present example, for every case two neural networks

have been used with two inputs, one output and two hidden

layers. Both neural networks take as inputs the continuum

velocity and temperature: the first one calculates the slip

velocity and the second one the temperature jump. Poten-

tially, instead of two separate networks we could have

engaged one with two inputs and two outputs. However,

here the choice of the two separate networks perform better

in terms of accuracy. Furthermore, this offers flexibility

and minimises the risk of generating numerical artefacts

due to inappropriate training of the network. For the

training of the networks 75% of the data produced from the

atomistic solver have been used, while the remaining 25%

have been used for validation purposes.

Tables 3 and 4 show the neural architectures that have

been created in hybrid simulations under different values

for the confidence intervals du. Specifically, Table 3

summarises the neural networks used for estimating slip

velocities and Table 4 those used for estimating tempera-

ture jumps. In the first column of both tables the various

confidence intervals are shown, in the second one the

number of neurons in the first hidden layer, and in the third

one the number of neurons in the second hidden layer.

Although the potential maximum number of neurons at

each hidden layer is 31, it is noted that none of the hidden

layers of the neural networks has more than 12 neurons.

This fact shows the ability of ANN with fairly simple

architectures to model the relationships between the con-

tinuum and molecular outputs. The advantages of the ANN

will be more apparent in multi-parametric cases, where the

molecular outputs depend upon a larger of continuum

inputs.
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Table 4 Optimal network architectures (in the table the number of

neuron at each hidden layer are shown) for temperature jump

estimation

du 1st Layer 2nd Layer

10-4 2 2

2� 10�4 1 12

5� 10�4 2 1

10-3 1 10

2� 10�3 6 2

5� 10�3 4 5

10-2 2 9

2� 10�2 4 1

5� 10�2 2 4

10-1 5 10

Table 3 Optimal network architectures (in the table the number of

neuron at each hidden layer are shown) for slip velocity estimation

du 1st layer 2nd layer

10-4 1 5

2� 10�4 4 11

5� 10�4 4 3

10-3 5 5

2� 10�3 5 3

5� 10�3 3 6

10-2 12 6

2� 10�2 1 3

5� 10�2 12 9

10-1 3 11
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5 Concluding summary

A new multiscale methodology that aims to accommodate

larger temporal and length scales and minimise the impact of

the atomistic solver was presented. In the literature, several

computational frameworks have been proposed for modelling

flows in multiple scales. These frameworks specify the

information that has to be exchanged between continuum and

molecular and facilitate the communication process. How-

ever, their applicability to complex fluid flow scenarios

experiences limitations due to the computational complexity

of the proposed algorithms, primarily due to the computa-

tional cost of the microscale solver, which is still dominant.

Numerical optimisation techniques have been developed

to avoid the repetition of computationally demanding

atomistic simulations for nearly identical continuum inputs.

Linear optimisation effectively avoids performing MD

simulations for nearly identical continuum states resulting

in a significant reduction of the computational cost. By

tuning the interval parameter of the interpolation scheme,

for example du, the number of the performed MD simu-

lations can be regulated to balance between accuracy,

stability and efficiency. Although the linear optimisation

prohibits the propagation of any instabilities towards the

continuum side, it does not take into account the oscillating

nature of the atomistic outputs and provides statistically

averaged data. Concurrently, it cannot be directly extended

to accommodate multiple inputs and outputs. Therefore, a

more generic procedure was developed based on neural

networks. The neural network optimisation compared with

the linear one provides an extra flexibility to the framework

that facilitates the exchange of information between the

continuum and molecular region. The main advantages of

the ANN optimisation can be summarised as follows:

• Generic properties: the ANN optimisation can be

extended to accommodate any number of input and

output parameters.

• Consistency: as illustrated in the previous test cases

there is a small variability in the neural networks

outcomes even in cases where very different confidence

limits were employed.

• Efficiency control: through the ANN optimisation the

number of MD simulations can be controlled based on

the values of the confidence intervals and can be

optimised based on the problem’s accuracy and

efficiency requirements. Furthermore, in terms of

efficiency ANN re-training is crucial and for the cases

examined re-training computational time is less than

1% of the time required for one atomistic simulation.

• Smoothing properties: the neural networks act as a

smoothing operator for reducing the fluctuations in the

atomistic outputs.
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