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Abstract The study is concerned with addressing

hydrodynamic dispersion of an electroneutral non-adsorbed

solute being transported by electroosmotic flow through a

slit channel formed by walls with different zeta potentials.

The analysis is conducted in terms of the plate height

which, using the Van Deemter equation, can be expressed

through the cross-sectional mean flow velocity, the solute

molecular diffusion coefficient and a length scale param-

eter having meaning of the minimum achievable plate

height and depending on the velocity distribution within

the channel cross-section. The minimum plate height is

determined by substituting distribution of electroosmotic

velocity into the preliminary derived integral expression

that is valid for any given velocity distribution within a slit

channel cross-section. The electroosmotic velocity distri-

bution within the slit channel cross-section is obtained by

solving one-dimensional version of the Stokes equation

accounting for electric force exerted on the local equilib-

rium electric space charge. The major obtained result is an

analytical expression which represents the minimum plate

height normalized by half of channel width as a function

of two dimensionless parameters, namely, half of channel

width normalized by the Debye length, and the ratio of the

wall zeta potentials. The obtained result reveals a sub-

stantial increase in the minimum plate height compared

with the case of equal wall zeta potentials. Different lim-

iting cases of the obtained relationships are analyzed and

possible applications are discussed.

Keywords Electroosmosis � Hydrodynamic dispersion �
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List of symbols

Ck Molar concentration of the kth ion

D Dispersion coefficient

Dm Molecular diffusion coefficient of solute

E Applied electric field strength

EMin Applied electric field strength providing minimum

plate height in electroosmotic flow

F Faraday constant

H Plate height

HMin Minimum achievable plate height

h Half of the slit channel width

L Channel length

l Larger aspect of the rectangular cross-section

R Gas constant

T Absolute temperature

te Elution time

u Local hydrodynamic velocity

uh i Cross-sectional mean velocity

uh iMin Cross-sectional mean velocity providing

minimum plate height in electroosmotic flow

uh ipMin Cross-sectional mean velocity providing

minimum plate height in pressure driven flow

x Longitudinal coordinate

y Transverse coordinate

zk kth ion valence
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e Dielectric permittivity of solvent

g Viscosity coefficient of solvent

j Debye parameter (inverse Debye length)

s Time of leveling concentration due to the

electroosmotic mixing

sm Time of leveling concentration due to the

molecular diffusion

sl;h Relaxation diffusion times attributed to different

aspects of rectangle

W Equilibrium electric potential

f1;2 Zeta potentials of the walls

fh;l Higher and lower zeta potentials of the walls

1 Introduction

When a portion (band) of a solute is entrained by a

hydrodynamic flow through a channel, one observes

broadening of the band. At sufficiently high flow velocities,

the rate of the band broadening can substantially exceed

that due to molecular diffusion of the solute. This effect is

referred to as hydrodynamic dispersion (HD).

The theory of HD in a flow through a straight channel

was developed in the classical papers (Taylor 1953; Aris

1956). According to these studies, the HD of a non-

adsorbing solute occurs due to the non-uniformity of the

flow velocity within the channel cross-section. In the

presence of longitudinal concentration gradient of solute,

such non-uniformity gives rise to a transverse redistribution

of solute within the channel cross-section. The additional

convective flux, which is associated with the deviation of

solute concentration from the cross-sectional mean value,

turns out to be proportional to both the squared cross-

sectional mean velocity and the solute longitudinal

concentration gradient. Importantly, this flux is always

directed against the concentration gradient. Consequently,

such an additional convective flux has properties of an

apparent diffusion flux. While dealing with a solute portion

(band) transported by a hydrodynamic flow, this apparent

diffusion flux is added to the molecular diffusion flux and

intensifies the broadening of the entrained band. At suffi-

ciently high velocity, such an apparent diffusion flux

exceeds the molecular diffusion flux by orders of magni-

tude and, thus, becomes completely responsible for the

band broadening.

The HD strongly affects both the resolution and the

throughput of devises of analytical and bio-analytical

chemistry. Due to the HD, a solute (analyte) band entrained

by a hydrodynamic flow is broadened thereby decreasing

the resolution of analytical separations. The rate of such a

broadening increases with increasing the flow velocity.

Note that increasing the flow velocity is a major method of

increasing the throughput of analytical separations. Con-

sequently, increase in the device throughput results in a

deterioration of analytical device resolution. Clearly, a

minimization of the HD is one of the most important issues

to be addressed while developing new versions of analyt-

ical techniques.

The above-discussed apparent diffusional flux is pro-

portional to a square of length scale parameter character-

izing the flow non-uniformity within the channel cross-

section. For the pressure-driven (Poiseuille) flow, such a

length scale parameter coincides with that characterizing

the cross-section geometry (Taylor 1953, Aris 1956). For

electroosmosis, the flow uniformity is characterized by the

inverse Debye parameter (the Debye length), j�1, where j
is given as,

j2 ¼ F2
P

k z2
kCk

eRT
ð1Þ

In Eq. (1), e is the dielectric permittivity of the electrolyte

solution, T is the absolute temperature, F and R are the

Faraday and gas constants, Ck and zk are the kth ion con-

centration and valence, respectively.

For 10-3M 1:1 aqueous electrolyte solution, j�1 �
10 nm and decreases with increasing the electrolyte con-

centration. Hence, for channels whose cross-sectional

dimension exceeds 100 nm, while using the electroosmotic

instead of the Poiseuille flow, one can expect a decrease in

the above-discussed apparent diffusion flux by more than

two orders of magnitude. The latter results in a weaker HD

than that produced by the Poiseuille flow and, thus, higher

device resolutions can be observed at the same throughput.

Such a weaker HD is one of explanations of the existing

trend in developing analytical technique: the use of elec-

trically rather than pressure-driven flows in separation

columns and transportation channels of analytical devices

(Knox and Grant 1987; Legido-Quigley et al. 2003;

Li 2004; Karniadakis et al. 2005; Haeberle and Zengerle

2007). This trend motivates the interest of researchers in

the theoretical analysis of the HD produced by electroos-

motic flow (Martin and Guiochon 1984; Datta and Kota-

marthi 1990; Datta 1990; Griffiths and Nilson 1999, 2000;

Gas and Kenndler 2002; Zholkovskij et al. 2003, 2006;

Ghosal 2006; De Leebeek, and Sinton 2006; Dutta 2007,

2008; Paul and Ng 2012a, b). The afore-referenced studies

confirm the above qualitative conclusion for relatively

weak HD in purely electroosmotic flow though straight

channels with uniform zeta potential.

As shown by many authors, a substantially stronger HD

is produced in the case of electroosmotic flow through a

straight channel with longitudinal non-uniformity of zeta

potential of channel walls (Anderson and Idol 1985; Herr

et al. 2000; Ghosal 2002a, b, 2006; Zholkovskij et al.
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2010). This non-uniformity can occur due to random fac-

tors as well as regular factors originating from specific

technology of channel fabrication In the presence of the

longitudinal non-uniformity of zeta potential, Poiseuille

flow component is generated by applying electric field in

spite of overall zero pressure difference. The Poiseuille

flow component occurs to maintain the continuity of total

hydrodynamic flow since a purely electroosmotic flow

cannot be continuous for a straight channel with the lon-

gitudinal variation of zeta potential. Consequently, such

un-intentional Poiseuille flow substantially increases the

HD.

The above-cited studies have dealt with the walls lon-

gitudinal variation of zeta potential. At the same time, a

transverse variation of zeta potential can occur due to

exactly the same causes as the longitudinal variations. It

would be expected that transverse variations (walls of

different zeta potentials but uniform in the longitudinal

direction) would also make contribution to the flow non-

uniformity and thus to HD.

Andreev et al. (1997), in their pioneering study,

demonstrated that an increased HD takes place in the case

of a slit channel whose walls have different zeta poten-

tials. In this publication, the authors determined the

hydrodynamic field within a straight channel having

rectangular cross-section with given different values of

zeta potentials attributed to each of the walls. For ana-

lyzing HD, the authors considered the limiting case of

rectangle aspect ratio approaching zero by assuming that

this limiting case corresponds to a slit channel. For such a

velocity field, the authors numerically applied the Tay-

lor–Aris scheme of addressing the HD and obtained

curves that clearly showed a drastic increase in the band

broadening when the zeta potentials of the slit channel

walls are different.

Having confined themselves to presenting two numer-

ical examples corresponding to a certain set of parameters

(the channel width, 10 lm, buffer concentration, 10�5M,

etc.), Andreev et al. (1997) did not derive analytical

expressions that would describe the HD for arbitrary

combination of parameters. At the same time, the modern

developments of analytical techniques require informa-

tion about the parameters of analytical separations at

much higher concentrations and smaller channel dimen-

sions. In general, for optimizing separation and transport

processes, it is useful to have analytical expressions

capable of addressing the HD within wide ranges of

parameters (channel width, wall zeta potentials, electro-

lyte concentration, etc.). Obtaining and analyzing such

analytical expressions are the major objectives of the

present paper. Finally, it will be demonstrated how the

derived expressions can be used for practical

considerations.

2 Parameters of band broadening

It is convenient to characterize a given band width by the

band variance, r, which is the root-mean-square deviation

of the molecule coordinate from the coordinate of the

band mass center (Fig. 1). Due to band broadening, the

variance increases with time. The dispersion coefficient,

D, describes the rate of the change of squared variance with

time. It is defined as

D ¼ 1

2

dr2ðtÞ
dt

ð2Þ

Another parameter, which describes changes in the

variance during the band displacement at the unit distance,

is referred to as the plate height, H

H ¼ dr2ðxcÞ
dxc

ð3Þ

where xc is the coordinate of the band center of mass

(Fig. 1). Thus, Eqs. (2) and (3) define the major parameters

employed in the literature for describing the band

broadening.

For a band of a non-adsorbing solute flowing through a

straight channel, the center-of-mass velocity coincides with

the cross-sectional mean velocity uh i

uh i ¼ dxc

dt
: ð4Þ

By combining Eqs. (2)–(4), we obtain

D ¼ 1

2
uh iH: ð5Þ

The above equation yields important relationship

between the plate height and the dispersion coefficient.

The plate height, H, is a function of the cross-sectional

mean velocity, uh i. A rather general form of this function

is given by classical Van Deemter et al. (1956) equation

whose version for a non-adsorbing solute in a laminar

flow through a straight channel can be written in this

form

H ¼ 2Dm

uh i þ
uh i

8Dm

H2
Min ð6Þ

Fig. 1 Solute band moving along axis x with speed uc
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where Dm is the molecular diffusion coefficient and HMin is

a length scale parameter that is determined by using the

velocity distribution within a channel cross-section. The

first term on the right-hand side of Eq. (6) describes the

changes in the squared variance due to the molecular dif-

fusion. This term decreases with increasing the speed of

the band center of mass, uh i. The second term, which

increases with increasing uh i, reflects the contribution of

HD. The length scale parameter HMin is the only parameter

in Eq. (6) that is defined by the flow structure. Simulta-

neously, HMin turns out to be the minimum achievable plate

height for a given structure of the velocity distribution

within a cross-section. The curve of Fig. 2 was plotted

using Eq. (6) to illustrate the non-monotonous behavior of

the plate height as a function of the mean velocity uh i.
Following the Taylor (1953) and Aris (1956) approach

to the description of dispersion coefficient, D, taking into

account Eqs. (5) and (6), and realizing that, in a sufficiently

long slit channel (Fig. 3), the local velocity depends on a

single transverse Cartesian coordinate, y, the minimum

plate height is represented in this form

H2
Min ¼

8

h

Zh

�h

du yð Þx yð Þdy ð7Þ

where the function x yð Þ is a quantity proportional to the a

normalized transverse fluctuation of the solute

concentration, which is the solution of equation

d2x
dy2
¼ �du yð Þ ð8Þ

subject to the boundary conditions

dx
dy
�hð Þ ¼ 0 ð9Þ

Zh

�h

x yð Þdy ¼ 0 ð10Þ

Condition (9) imposes zero normal flux at the wall

whose surface has coordinate y ¼ �h (Fig. 3). As for the

similar condition at opposite wall (at y ¼ h), it is auto-

matically satisfied when (9) is satisfied. Such a situation

occurs because the function du yð Þ in Eqs. (8) and (9) is the

normalized fluctuation of the velocity

du yð Þ ¼ 2h
uðyÞ

R h

�h
uðyÞdy

� 1: ð11Þ

Accordingly,
R h

�h
du yð Þdy � 0. Boundary condition (10)

reflects the same property of the transverse concentration

fluctuation.

The boundary value problem given by Eqs. (8–10) can

be reduced to quadratures for velocity distribution of the

general type, uðyÞ. Substituting the expression obtained in

such a manner into Eq. (7) and conducting straightforward

transformations based on integration by parts one obtains

H2
Min ¼

8

h

Zh

�h

Zy

�h

duðy0Þdy0

2

4

3

5

2

dy: ð12Þ

Thus, by combining Eqs. (11) and (12), one can predict

the minimum plate height, HMin, for any given velocity

distribution within a slit channel, uðyÞ. An equation

equivalent to (12) was employed by Andreev et al.

(1997) in the numerical scheme they used for obtaining

the plate height. Next, for electroosmotic flow through a

slit channel with different wall zeta potentials, we will

determine the function uðyÞ which is necessary to obtain

HMin using Eqs. (11) and (12)

3 Velocity distribution

For addressing the electroosmotic flow in a slit channel

(Fig. 3), we will use the 1-D version of the Stokes equation

containing electrical force originating from the electric

field E~ acting on the space charge of equilibrium electric

double layer. At zero applied pressure difference, one

should omit the pressure gradient term. Accordingly, the

Stokes equation takes its widely used form (see, for

example, Masliyah and Bhattacharjee 2006)

10in
 / 

H
M

H

0.01 0.1 1 10 100
1

< u > HMin / 4Dm

Fig. 2 Dependency of the normalized plate height on the normalized

mean velocity

Fig. 3 Slit channel with different zeta potentials of the walls
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g
d2u

dy2
� Ee

d2W
dy2
¼ 0: ð13Þ

The first term of Eq. (13) describes the local shear

stresses. Accordingly, g is the liquid viscosity. The second

term yields the electric force where the equilibrium electric

double-layer space charge whose density is �ed2W=dy2ð Þ
[WðyÞ is the electric potential distribution between the

parallel planes in absence of the applied electric field].

Using Fig. 3, one can set boundary conditions of zero

velocity at the channel walls, as

uðhÞ ¼ 0; uð�hÞ ¼ 0 ð14Þ

Integrating Eq. (13) twice and taking into account boundary

conditions (14), one obtains the velocity distribution in the

following form

u yð Þ ¼ eE
g

W yð Þ � f1 þ f2

2
þ y

2h
f2 � f1ð Þ

� �

ð15Þ

where f1 and f2 are the equilibrium electric potentials of to

the wall surfaces.:

W hð Þ ¼ f1; W �hð Þ ¼ f2: ð16Þ

The electric potential, W yð Þ, and the wall potentials,

f1 and f2, are defined with reference to an electroneutral

electrolyte solution being in thermodynamic equilibrium

with the electric double layer formed near the cannel walls.

Simultaneously, the ion concentrations, Ck, represented in

Eq. (1) are attributed to this equilibrium electroneutral

solution. In the case of non-overlapping double layers,

jh [ 1, this electroneutral solution is presented within the

channel.

At jh\1, when the whole space within the channel is

occupied by the equilibrium electric space charge of the

double layer, such an equilibrium solution is considered to

be in large reservoirs presented in the macro–nano-fluidic

system containing the channel under consideration. For

example, while dealing with a porous membrane placed

between two identical solutions, the potentials WðyÞ, f1 and

f2, are defined with reference to any of these solutions, and

Ck is the common kth ion concentration in these solutions.

In some situations, the above-mentioned equilibrium

electroneutral solution is not present in the system at all. In

such cases, one can always found a hypothetical electro-

neutral solution which would be in thermodynamic equi-

librium with the solution inside the channel. Such a

hypothetical solution is characterized by a unique set of the

ion concentrations, Ck. Accordingly, the potentials WðyÞ,
f1 and f2, have physical meanings of electric potential

difference which would establish between the wall and the

hypothetical equilibrium solution while bringing them in

contact, i.e., the reference point for electric potential is

placed in the hypothetical solution. Some authors use

another reference point for potential by placing the refer-

ence point in the center of channel (see, for example,

Qu and Li 2000)

Thus, using Eq. (15), one can obtain velocity distribu-

tion when the equilibrium potential distribution, WðyÞ, is

known. This distribution is obtained from the Poisson–

Boltzmann equation subject to boundary condition (16). In

the present study, similarly to Andreev et al. (1997), we

will consider a linearized version of the above-mentioned

equation that is valid for relatively low zeta potentials:

d2W
dy2
¼ j2W: ð17Þ

In Eq. (17), the Debye parameter, j, is given by Eq. (1)

where the ion concentrations relate to the above-discussed

equilibrium electroneutral solution.

Solution of the boundary value problem given by Eqs.

(16) and (17) is

WðyÞ ¼ f1 þ f2

2 coshðjhÞ coshðjyÞ þ f1 � f2

2 sinhðjhÞ sinhðjyÞ ð18Þ

Consequently, combining Eqs. (17) and (18), one obtains

uðyÞ ¼ eE
2g

f1 þ f2ð Þ coshðjyÞ
coshðjhÞ � 1

� �

þ eE
2g

f1 � f2ð Þ y

h
� sinh hðjyÞ

sinhðjhÞ

� �

ð19Þ

Thus, Eq. (19) describes distribution of the electroosmotic

velocity within the plane parallel channel with different

potentials of the walls.The first term on the right hand

side of Eq. (19) coincides with the expression obtained

by Burgreen and Nakache (1964) for the electroos-

motic velocity distribution inside a slit channel whose

walls would bear a common equilibrium potential

f ¼ f1 þ f2ð Þ=2. The second term is proportional to the

difference of the wall potentials, f1 � f2ð Þ, and is an

odd function of the transverse coordinate y (Fig. 3).

Accordingly, the second term does not contribute into the

cross-sectional mean velocity, uh i which defines the speed

of the band mass center. Consequently, using Eq. (20) leads

to the following expression for uh i

uh i ¼ 1

2h

Zh

�h

uðyÞdy ¼� eEðf1 þ f2Þ
2g

1� tanhðkhÞ
jh

� �

ð20Þ

Thus, as it could be expected, the cross-sectional mean

velocity uh i given by Eq. (20) is defined by the contribution

of the first term on the right-hand side of (19) and, hence,

coincides with that following at low zeta potential from the

Burgreen and Nakache (1964) solution obtained for a

common wall potential f provided that f ¼ f1 þ f2ð Þ=2.
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Let us now consider the limiting transition jh!1
(Smoluchowski regime) for the velocity distribution given

by Eq. (19). Such a transition yields the following

asymptotic expression

u ¼ � eE
2g

f1 þ f2ð Þ þ eE
2g

f1 � f2ð Þ y

h
ð21Þ

Thus, in the Smoluchowski regime, the velocity distribu-

tion is represented as a superposition of the plug-like and

Couette flows.

It should be noted that, in contrast with the velocity

distribution given by Eq. (19), the asymptotic expression of

Eq. (21) is valid for arbitrary, not necessarily low, values of

f1 and f2 \provided that jh!1. The latter becomes clear

from Eq. (15) which was deduced without preliminary

assumptions about low values of wall zeta potentials. In

Eq. (15), at jh!1, W yð Þ ¼ 0 everywhere except for the

vanishingly thin electric double-layer regions adjacent to

the channel walls. Accordingly, outside these vanishingly

thin region, Eq. (15) reduces to Eq. (21) for arbitrary values

of f1 and f2.

Now, we consider the asymptotic form of the velocity

distribution given by Eq. (19) at jh! 0. Applying the

condition jh! 0, one obtains

u ¼ � eE f1 þ f2ð Þ khð Þ2

4g

� 1� y

h

� �2
� �

1� 1

3

f1 � f2

f1 þ f2

y

h
þ O khð Þ2

h i� �

ð22Þ

Remarkably, in contrast to the results obtained by Burgreen

and Nakache (1964) for equal zeta potentials, the leading

term in the series expansion of the velocity by powers of jh

given by Eq. (22) does not have the spatial structure similar

to that of pressure driven flow.

The curves plotted in Figs. 4a, b and c show the

velocity profiles within the slit channel cross-section. In

the figures, we observe non-monotonous distribution

which is asymmetric when f1 6¼ f2. When f1 ¼ �f2, the

velocity distribution becomes anti-symmetric and con-

tains minimum and maximum. At jh ¼ 0:1, the asymp-

totic formula (22) gives nearly perfect match between the

exact and asymptotic solutions. For jh ¼ 1, Eq. (22) gives

a good approximation for the anti-symmetric case,

f1 ¼ �f2, only, and noticeably overpredicts the result for

two other displayed cases. At jh ¼ 10, there are three

distinct zones. Two of them (zones of the equilibrium

space charge having thickness of order of j�1) are adja-

cent to the walls. In the third, middle, zone, one observes

a nearly linear velocity profile which is perfectly

approximated by the asymptotic formula of Eq. (21). In

the next section, we will show that, at f1 6¼ f2, the non-

uniformity of the local velocity within the third zone

results in the substantial HD even for the case of jh� 1.

4 Plate height

Now using (12), we obtain an expression for the minimum

plate height, HMin. To this end, we will preliminary determine

the normalized fluctuation du yð Þ which is represented under

the integral in Eq. (12) and given by Eq. (11). Consequently,

by combining Eqs.(11), (19) and (20), one obtains

a

b

c

Fig. 4 Velocity distribution within cross-section for f1 ¼ �2RT=F

a jh ¼ 0:1; b jh ¼ 1; c jh ¼ 10
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du yð Þ ¼ � jh cosh kyð Þ � sinh khð Þ
jh cosh khð Þ � sinh khð Þ þ

f1 � f2

f1 þ f2

sinh jyð Þ
sinh jhð Þ �

y
h

1� tanh khð Þ
jh

ð23Þ

Substituting the obtained function du yð Þ into Eq. (12), after

some transformations, we arrive at the following

expression for

HMin

h

� 	2

¼ f jhð Þ þ 1� f2=f1

1þ f2=f1

� 	2

g jhð Þ ð24Þ

where the dimensionless functions f jhð Þ and g jhð Þ are

represented, as

f jhð Þ¼8

3

2 6þ khð Þ2
h i

tanh2 khð Þ�9jhtanh jhð Þ�3 kh
cosh khð Þ

h i2

khð Þ2 jh�tanh khð Þ½ �2

ð25Þ

The squared normalized minimum plate height,

HMin=hð Þ2, is represented by Eq. (24) as a sum of two

terms. The first term gives the result obtained earlier by

Griffiths and Nilson (1999) who addressed the band

broadening in electroosmotic flow through a slit channel

with equal wall zeta potentials. According to the results of

this reference, the function f jhð Þ approaches the limits

defined by the following relationships

lim
jh!0

f jhð Þ ¼ 32

105

lim
jh!1

jhð Þ2f jhð Þ
h i

¼ 16

3

ð27Þ

The second term on the right hand side of Eq. (24) yields

the contribution into the minimum plate height due to the

difference of zeta potentials. Analysis of the liming cases

jh! 0 and jh!1 yields

lim
jh!0

g jhð Þ ¼ 32

315

lim
jh!1

g jhð Þ ¼ 32

15

ð28Þ

Consequently, the asymptotic expressions for the minimum

plane height become

HMin

h

� 	2

¼ 32

105
1þ 1

3

1� f2=f1

1þ f2=f1

� 	2
" #

for jh	 1

HMin

h

� 	2

¼ 16

3

1

jhð Þ2
þ 2

5

1� f2=f1

1þ f2=f1

� 	2
" #

for jh� 1

ð29Þ

The families of curves given in Figs. 5 a and b display the

behavior of the normalized plate height, HMin=h, as a

function of the parameter jh and the ratio of the wall zeta

potentials (f2=f1). At jh	 1, all the curves of Fig. 5a

approach the horizontal asymptote defined by Eq. (28). The

curve plotted in Fig. 5a for f2=f1 ¼ 1 corresponds to the

Griffiths and Nilson 1999 term [the first one on the right

hand-side of Eq. (24)] which describes HMin for channels

having equal zeta potentials of the walls. When jh\1 and

f2=f1 [ 0, the contribution of the Griffiths and Nilson

(1999) term always exceeds that arising due to the differ-

ence in the zeta potentials [the second term on the right-

hand side of Eq. (24)]. When the deviation of the ratio

f2=f1 from unity is sufficiently large, both the contributions

have the same order of value and make the minimum plate

height to be of the order of h which, under condition

jh\1, does not exceed the Debye length, j�1. Remark-

ably, when f2=f1 is near -1, the term associated with the

difference between the wall zeta potentials can increase

without bound.

For the case of equal zeta potentials, f2=f1 ¼ 1, the nor-

malized minimum plate height, HMin=h, demonstrates the

behavior corresponding to the Griffiths and Nilson (1999)

prediction: it decreases with increasing jh, and, at jh� 1,

approaches the value being the square root of the aforemen-

tioned asymptotic expression,
ffiffiffiffiffiffiffiffiffiffi
16=3

p
= jh

� �
, Fig. 5a. The

latter asymptotic result means that HMin !
ffiffiffiffiffiffiffiffiffiffi
16=3

p

j�1 � 2:3j�1, i.e., at f2=f1 ¼ 1 and jh� 1, the minimum

plate height is of the order of Debye length which is much

smaller than the channel thickness, 2 h. Another behavior

with increasing jh is observed for f2=f1 6¼ 1 when the mini-

mum plate height remains of the order of h, or even substan-

tially exceeds h that is observed when f2=f1\0.

g jhð Þ ¼ 8

15

2 2 jhð Þ4þ15 jhð Þ2�30
h i

� 5jh 4 jhð Þ2�3
h i

coth jhð Þ þ 45 kh
sinh khð Þ

h i2

jhð Þ2 jh� tanh jhð Þ½ �2
: ð26Þ
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The most substantial difference between the predictions

based on the models of equal and different wall zeta

potentials is observed at jh� 1. It is seen in Fig. 5b that,

at jh ¼ 1000, even 10 % deviation of the ratio f2=f1 from

unity results in an increase in HMin by more than one order

of magnitude. Larger deviations of f2=f1 from unity lead to

values of HMin that exceed the minimum plate height

attributed to the case of equal zeta potentials by several

orders of magnitude. A special situation occurs when

f2=f1 ! �1. In this case, HMin !1. Accordingly, the

minimum plate height acquires especially large values

when the ratio of zeta potentials is close to -1. In partic-

ular, when f2=f1 ! �1:1 and jh = 1,000, the minimum

plate height exceed the channel width, 2 h, by more than

one order of magnitude (Fig. 5b).

The above-discussed behavior at f2=f1 ! �1 can easily

be explained by taking into account that, under such a

condition, the cross-sectional mean velocity approaches

zero. Hence, the speed of the band center of mass

approaches zero as well. Consequently, a finite increase in

the band variance is observed at zero band displacement.

Using the plate height definition given by Eq. (3) we arrive

at the conclusion that both H and HMin should infinitely

increase when a finite band broadening takes place at zero

band speed. The-above discussed system with anti-sym-

metric wall potentials can be employed for micro-mixing

of substances. Potentialities of such an application will be

discussed in the next section.

When jh� 1 and the ratio f2=f1 deviates from unity

sufficiently strong, the first term in brackets on the right-

hand side of the second equation in (29) can be omitted for

being small. Importantly, the approximate expression

obtained in such a manner is valid for arbitrary, not nec-

essarily small, values of the wall zeta potentials. The latter

follows from the fact that such an expression can be

derived in an alternative manner by combining Eq. (21),

which is valid for arbitrary zeta potentials at jh� 1, with

Eqs. (11) and (12).

While inspecting Fig. 5a, one can conclude that, at

jh
 0:5, the first asymptotic expression of Eq. (29) yields

error less than 10 %. As well, the error less than 10 % is

yielded while using the second expression of Eq. (29) at

jh� 20

5 Discussion on the result applications

In the present section, we give a brief survey of possible

applications using the results obtained in the previous

sections.

5.1 Minimization of the band broadening

While optimizing separation processes, it is often important

to choose a working regime which provides a minimum

broadening of a band transported by a liquid flow. Such a

minimum broadening is achieved at the flow regime cor-

responding to the minimum plate height (Fig. 2). For a

non-adsorbing solute considered in the present study, such

an optimal regime can be chosen using Eq. (6) and/or the

plot in Fig. 2 Accordingly, the cross-sectional mean flow

velocity, uh iMin, which provides the minimum value of the

plate height, is

uh iMin¼
4Dm

HMin

: ð30Þ

By combining Eqs. (20), (24) and (30), we obtain

expression for the electric field strength, EMin, which

provides the minimum plate height for a solute band

entrained by electroosmotic flow through a slit channel

with different wall zeta potentials.
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0.5

 0
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 1.5
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Fig. 5 Normalized minimum plate height, HMin=h, as function of

a jh for different ratios of the wall zeta potentials, f2=f1; b f2=f1, for

different jh
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EMin ¼
E�

~f1þ ~f2

� �
jh� tanh khð Þ½ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f jhð Þ þ 1�f2=f1

1þf2=f1

� �2

g jhð Þ
r

ð31Þ

where

E� ¼
8DmgjF

RTe
ðaÞ

~f1;2 ¼
f1;2F

RT
ðbÞ

ð32Þ

The parameter E� given by Eq. (32a) has the dimension of

electric field strength. Assuming that Dm ¼ 10�10m2=s;

g = 10-3 kg/m 9 s; j�1 ¼ 10 nm; e ¼ 7� 10�10F=m,

RT=F ¼ 30mV we arrive at the following estimation

E� � 38 kV/cm. Hereafter, we refer to EMin as optimum

field strength.

The curves plotted in Fig. 6 describe the behavior of the

normalized optimum field strength, EMin=E�, as a function

of jh for different sets of the wall zeta potentials, f1 and f2.

When jh! 0, EMin=E� diverges being proportional to

jhð Þ�3
that defines its high value, of order of 103, at

jh ¼ 0:1. When jh!1, Eq. (31) is transformed into the

following asymptotic expression

EMin ¼
ffiffiffi
3
p

E�

4 ~f1 þ ~f2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2
5

jhð Þ2 1�f2=f1

1þf2=f1

� �2
r : ð33Þ

Remarkably at f1 ¼ f2 ¼ f, the normalized optimum

field strength, EMin=E�, approaches a constant value
ffiffiffi
3
p

E�=8~f. The dotted curve in Fig. 6 indicates this

asymptote. However, when f1 6¼ f2 the limiting expression

(33) can be rewritten in the form

EMin ¼
1

4

ffiffiffiffiffi
15

2

r
E�

jh ~f1 � ~f2

�
�

�
�

1þ O
1

jhð Þ2

" #( )

: ð34Þ

Thus, at jh� 1 and f1 6¼ f2, the electric field strength

providing the minimum plate height depends on the

difference between the wall zeta potentials. The latter

explains why the solid and dash–dot curves in Fig. 6 merge

with each other at jh� 1.

5.2 Determining zeta potentials of the walls

Now, we discuss an interesting possibility of determining

zeta potentials of both the walls forming a slit channel.

Earlier, Bianchi et al. (2001) and Yan et al. (2006) sug-

gested methods of determining wall zeta potentials of

rectangular channels based on studying the hydrodynamic

field within the crosssection. Below, we will show that, in

the case of slit channel, the couple of zeta potentials can be

obtained while studying the cross-sectional mean electro-

osmotic velocity and the dynamics of band broadening.

Clearly, the couple of zeta potentials can be obtained as

a solution of the equation set formed by Eqs. (20) and (24)

that express the mean velocity and the minimum plate

height, respectively, through the zeta potentials and other

system parameters. Consequently, the obtained zeta

potentials will be functions of mean cross-sectional

velocity and plate height. The latter quantity can be

obtained by applying Eqs. (3) and (6) to experimentally

measured changes in the variance of tracer band.

Let us discuss in more details the simplest version of the

above-proposed idea. We consider the case of jh [ 200

that corresponds to h [ 2 lm for ionic strengths 10�3M.

For such a micro-fluidic format of the channel, according

to the estimations given below Eq. (32) and the data given

in Fig. 6, the magnitude of electric field, EMin, which

provides the minimum plate height value, HMin, is lower

than 1 kV/cm. While conducting electroosmosis through

the channel and observing band broadening for a given

tracer transported at a given distance, one can determine

both the electric field strength providing the minimum

broadening, EMin, and the cross-sectional mean electroos-

motic velocity corresponding to this field, uh iMin.

Now, we determine the wall zeta potentials by solving

Eq. set (20) and (34) specified for the limiting case

jh!1. Using relationships (30) and (32), the obtained

results is represented in the form

fh ¼ �
g

EMine
uh iMinþ

ffiffiffiffiffi
15

2

r
Dm

h

 !

fl ¼ �
g

EMine
uh iMin�

ffiffiffiffiffi
15

2

r
Dm

h

 ! ð35Þ
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Fig. 6 Normalized electric field strength providing minimum band

broadening as a function of jh for different sets of the wall zeta

potentials
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where we slightly changed the notation by denoting as fh

and fl, instead of f1 a f2, the higher and the lower zeta

potentials, respectively. Thus, measuring both the cross-

sectional mean velocity, uh iMin, and the driving electric

field strength, EMin, that result in the minimum broadening

of a tracer band entrained by electroosmotic flow, one can

determine the wall potentials fh and fl with the help of Eqs.

(35). The estimated error for using asymptotic relationships

(35) at jh [ 100 is less than 1 %.

Clearly, to use Eq. (35), in addition to the conventional

data employed for the interpretation of zeta potential

measurements (solution viscosity, g, and dielectric per-

mittivity, e) one should know the tracer molecular diffusion

coefficient, Dm. However, when Dm is not known, one can

use the idea of Taylor (1954) who suggested a method of

measuring molecular diffusion coefficient by studying the

band broadening. Accordingly, one can obtain Dm by

considering the band broadening in pressure driven flow

through the same channel. For example, one can determine

the mean cross-sectional velocity for pressure-driven flow

which provides minimum band broadening, uh ipMin. The

minimum plate height for the pressure-driven flow is given

as H
p
Min=h ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2=105

p
(Aris 1956). Combining the latter

expression with relationship (30) one obtains

Dm

h
¼

ffiffiffiffiffiffiffiffi
2

105

r

uh ipMin ð36Þ

Finally, combining Eqs. (35) and (36) we arrive at the

following expressions

fh ¼ �
g

EMine
uh iMinþ

uh ipMinffiffiffi
7
p

� 	

fl ¼ �
g

EMine
uh iMin�

uh ipMinffiffiffi
7
p

� 	 ð37Þ

Hence, the experiment of obtaining the zeta potential of the

walls amounts to the following scheme. One should mea-

sure both the electroosmotic velocity uh iMin and the

respective driving electric field EMin that correspond to the

minimum band broadening during transport of a tracer

band over a given distance. In addition, one should deter-

mine the velocity of pressure driven flow, uh ipMin, which

results in the minimum broadening of the same solute band

while traveling over a given distance. The measured

quantities, uh iMin, EMin and uh ipMin, should be substituted

into Eq. (37) that yield the values of wall zeta potentials.

Clearly, the above described method does not allow one

to conclude which potential, fh or fl, is attributed to a given

wall. In many cases, such a conclusion can be made using

some other data. If such preliminary known data are absent,

one can replace one of the two walls by the third wall and

conduct the above-discussed measurements with the new

channel. Consequently, one of the zeta potentials obtained

for such a new channel will coincide with the potentials

determined in the previous experiment.

It should be stressed that the use of Eqs. (35) and (37) is

correct provided that the wall potentials do differ. Using

Eq. (33), it can be demonstrated that the small term on the

right-hand side of Eq. (34) has the following structure:

O 1= jhð Þ2
h i

¼ 5 f1 þ f2ð Þ2=4 f1 � f2ð Þ2 jhð Þ2. Considering

small differences fh � flð Þ=fh 	 1 and setting condition

O 1= jhð Þ2
h i

	1, we arrive at the following strong

inequality:

fh � fl

fh

�
ffiffiffi
5
p

jh
ð38Þ

Inequality (38) yields a criterion of applicability of Eqs.

(35) and (37). While dealing with systems for which

jh [ 100, the restriction given by criterion (38) is not

dramatic and enables one to measure the potentials which

differ by less than 10 %.

5.3 Longitudinal electroosmotic homogenization

of solute in micro-channel

The HD is a parasite effect in the case of substance sepa-

ration. At the same time, in some cases it is necessary to

spread out a given portion of solute within the whole

volume of channel, uniformly. A purely molecular diffu-

sion mechanism takes a long time. For example, consider a

channel having the length L ¼ 10 cm. The time, sm, which

is necessary to level the concentration of a solute previ-

ously injected as a small portion can be estimated as

sm ’ L2=Dm: ð39Þ

Assuming that Dm ’ 10�10m2=s, the estimation yields

sm ’ 108s that is about 3 years.

Let us now consider homogenization of a solute by

electroosmotic flow through a slit channel where the band

center of mass does not move and is intensively broadened.

As it follows from Eq. (20), this situation occurs for

opposite zeta potentials of the walls, f1 ¼ f and f2 ¼ �f.

To evaluate the homogenization time, s, we will replace in

Eq. (39) the molecular diffusion coefficient, Dm, by the

dispersion coefficient, D. Accordingly, the evaluations

amounts to scaling the right-hand side of Eq. (20) by the

ratio Dm=D which is obtained by combining Eqs. (5)

and (6)

Dm

D
¼ 1

1þ uh iHMin

4Dm

� �2
ð40Þ

where the combination of parameters in the denominator is

obtained by combining Eqs. (20) and (24). Assuming that
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f1 ¼ f and f2 ¼ �f and considering limiting case of

jh� 1, one obtains

HMin uh i
4Dm

� 	2

¼ 2

15
hf

e
gDm

E

� 	2

: ð41Þ

Let us now assume that f ¼ 50 mV; e ¼ 7� 10�10F/m,

h = 10 lm, g = 10-3 kg/m 9 s, E ¼ 10 kV/cm. By using

these values of the parameters we arrive at

Dm=D ’ 6� 10�7. Thus, the estimated time of

homogenization becomes, s ¼ smDm=D ’ 60 s. Thus,

instead of the 3 years, which are required for the

homogenization of solute due to its molecular diffusion,

we obtained the time around 1 min for the case of

electroosmotic mixing.

Remarkably, in the study of Paul and Ng (2012a), the

authors analyzed the possibility of electroosmotic mixing

in AC electric field where the space charge, which is acted

by this AC field, is created by applying oscillatory electric

potentials to the walls of a slit channel. Having analyzed

the expression for the dispersion coefficient derived for

such a configuration, Paul and Ng (2012a) arrived at a

conclusion that the dispersion coefficient reaches a maxi-

mum value when the phase shift between the oscillatory

potentials applied to the slit channel walls is equal to p.

The latter situation is somewhat similar to the above-con-

sidered case of opposite zeta potential of the walls although

the present analysis deals with zeta potentials constant in

time and with DC externally applied field.

6 Physical plausibility of results

The possibility of practical use of the results obtained in the

present paper depends on whether the channel formed by

two unbounded parallel planes is a good model for

addressing the channel having rectangular crosssection

with high aspect ratio. It should be stressed that many

authors (Doshi et al.1978; Chatwin and Sullivan 1982;

Desmet and Baron 2002; Zholkovskij et al. 2003; Dutta

2007, 2008; Paul and Ng 2012b), who studied HD in

pressure and/or electrically driven flows through rectan-

gular channels, report about a result which looks somewhat

paradoxical: when the rectangle aspect ratio infinitely

increases, the parameters describing HD for rectangular

channel are not transformed into those describing HD in

the channel formed by unbounded parallel planes.

To understand the origin of such asymptotic behavior,

recall that the Taylor (1953) and Aris (1956) result was

obtained within the frameworks of approximation consid-

ering quasi-stationary concentration distribution of solute

within the channel crosssection. Consequently, this analy-

sis is valid for addressing the band broadening during the

elution times, te, that are much longer than the relaxation

times responsible for establishing the quasi-stationary

concentration field within the crosssection. In the case of

rectangular crosssection with high aspect ratio, there are

two substantially different diffusion relaxation times, sh ¼
h2=Dm and sl ¼ l2=Dm, where l is the longer aspect of

rectangle. When l=h� 1 and, thus, sh=sl 	 1, one can

find a range of elution times, te, which satisfy the inequality

sh 	 te 	 sl. For the elution times satisfying the latter

inequality, the expressions obtained for slit channel are

valid. However, when sl 	 te, its impossible to address

dispersion by representing rectangle as two unbounded

parallel planes. In this case, it is necessary to deal with

addressing rectangular geometry of crosssection. The

above qualitative conclusions are confirmed by the quan-

titative consideration recently reported by Paul and Ng

(2012b).

The inequality sh 	 te 	 sl defines another inequal-

ity which should be satisfied by the band speed,

uc ¼ uh i ¼ L=te

LDm=l2 	 uh i 	 LDm=h2 ð42Þ

Assuming that D ¼ 10�10m2=s, L ¼ 5 cm, l ¼ 1 mm,

we obtain that hui � 5 lm/s. Thus, for the present channel

geometry, the first of inequalities (42) is satisfied at

reasonable electroosmotic velocities. To demonstrate that,

we apply Eq. (20) to the following example: jh� 1;

f1 þ f1ð Þ=2 ¼ 50 mV; g = 10-3; e ¼ 7� 10�10F/m.

Consequently, the use of the band speeds satisfying

inequality hui � 5 lm/s requires the electric field whose

strengths satisfies the inequality E [ [ 1:4 V/cm. Note

that the fields stronger by orders than 1:4 V/cm are widely

employed microfluidics. While considering hui = 500 lm/

s, h = 10 lm, and the above given values of all other of

parameter, one can see that the second inequality in (42) is

satisfied, as well.

Now, we will demonstrate that the above example is

characterized by a substantial contribution of HD, which

originates from the difference between the wall zeta

potentials, into the band broadening. While inspecting

Fig. 2, one can conclude that HD manifests itself when

uh iHMin=4Dm� 1. Otherwise, the band broadening is

defined by longitudinal molecular diffusion. Let us con-

sider the case of f2=f1 ¼ 2 and jh� 1 for which

HMin=h ¼ 0:5 (Figs. 5a, b). For this case, using values of

parameters given in the previous paragraphs yields

uh iHMin=4Dm � 5 [ 1.

In summary, the estimations given in the present section

demonstrate that, within broad ranges of parameters, HD in

rectangular channels with high aspect ratio can success-

fully be addressed by using model of unbounded parallel

walls.
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7 Conclusions

The analysis conducted in the present paper enabled us to

derive analytical expressions for the minimum achievable

plate height, HMin, which characterizes the broadening of

an electrically neutral non-adsorbing solute band entrained

by electroosmotic flow through a slit channel with different

zeta potentials of the walls. The obtained analytical result

is given by Eqs. (24)–(26) that represent the minimum

plate height normalized by the half of channel width,

HMin=h, as a function of two dimensionless parameters,

namely, the half of channel width normalized by the Debye

length, jh, and the ratio of the wall zeta potentials, f1=f2.

Using the general result of Eqs. (24)–(26), we obtained

simple asymptotic expressions (28) and (29) describing the

minimum plate height for the limiting cases jh	 1 and

jh� 1, respectively.

When f1=f2 ! 1, the obtained result given by Eqs.

(24)–(26) reduces to the expression derived earlier by

Griffiths and Nilson 1999. When f1=f2 6¼ 1, the obtained

result substantially deviates from the predictions given by

the model of equal zeta potentials. This deviation becomes

especially important for jh� 1 when the minimum plate

height can be of the order of channel width, h, whereas the

analysis conducted for the case of f1=f2 ! 1 yields value

of the order of the Debye length, j�1 	 h.

The predicted minimum plate height, HMin, is a length-

scale parameter represented in the Eq. (6) being a particular

version of the Van Deemter equation. By substituting in

Eq. (6) the known values of HMin and the cross-sectional

mean velocity uh i given by Eq. (20), one can predict the

normalized plate height, H=h, for given values of applied

field, E, wall zeta potentials f1 and f2, parameter jh, and

molecular diffusion coefficient, Dm. The plate height, H,

determined in such a manner turns out to be dependent on

the applied field strength with a minimum. Expression for

the field strength, EMin, corresponding to such a minimum

band broadening, is given by Eqs. (31) and (32). We also

obtained simple asymptotic expressions describing EMin for

the limiting case of jh� 1, Eqs. (33) and (34).

The conducted analysis enabled us to propose an

experimental method of simultaneous determination of

different zeta potentials of slit channel walls. The method

amounts to measuring both the electric field strength, EMin,

and the cross-sectional mean velocity, uh iMin, that corre-

spond to minimum broadening of the tracer band. When

the molecular diffusion coefficient of the tracer, Dm, is

known, one obtains the zeta potentials from relationships (35).

Otherwise, one should additionally measure the cross-sec-

tional mean velocity which results in the minimum band

broadening in the pressure-driven flow, uh ipMin. In the latter

case, the zeta potentials are obtained from relationships (38).

It was shown that channels with opposite zeta potentials

of the walls can serve as effective tools for electro-osmotic

micro-mixing of solute.
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