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Received: 31 July 2012 / Accepted: 21 November 2012 / Published online: 12 December 2012

� Springer-Verlag Berlin Heidelberg 2012

Abstract Capillary-driven self-alignment using droplets

is currently extensively investigated for self-assembly and

microassembly technology. In this technique, surface ten-

sion forces associated to capillary pinning create restoring

forces and torques that tend to bring the moving part into

the alignment. So far, most studies have addressed the

problem of square chip alignment on a dedicated patch of a

wafer, aiming to achieve 3D microelectronics. In this

study, we investigate the shift-restoring forces for more

complex moving parts such as regular—convex and non-

convex—polygons and regular polygons with regular

polygonal cavities. A closed-form approximate expression

is derived for each of these polygonal geometries; this

expression agrees with the numerical results obtained with

the Surface Evolver software. For small shifts, it is found

that the restoring force does not depend on the shift

direction or on the polygonal shape. In order to tackle the

problem of microsystem packaging, an extension of the

theory is done for polygonal shapes pierced with connec-

tion vias (channels), and a closed form of the shift-restoring

force is derived for these geometries and again checked

against the numerical model. In this case, the restoring

force depends on the shift direction. Finally, a non-

dimensional number, the shift number, is proposed that

indicates the isotropic or anisotropic behavior of the chip

according to the shift direction.

Keywords Capillarity � Self-alignment � Polygonal chip �
3-D microelectronics � Shift-restoring force

1 Introduction

Capillary-driven self-alignment using droplets, or capillary

self-assembly (CSA), is currently extensively investigated

for self-assembly and microassembly technology (Martin

et al. 2001; Whitesides and Boncheva 2002; Zheng and

Jacobs 2005; Pelesko 2007; Böhringer 2008; Fukushima

et al. 2009; Mastrangeli et al. 2009; Sariola et al. 2010;

Berthier et al. 2010; Lambert et al. 2010; Chang et al. 2011;

Sariola et al. 2011; Arutinov et al. 2012). In this technique,

surface tension forces associated to capillary pinning create

restoring forces and torques that tend to bring the moving

part into alignment. In the field of 3D microelectronics, the

method aims to be an alternate approach to the ‘‘pick and

place’’ approach. In the capillary technique, the chip is
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deposited on top of a water droplet and is brought into

alignment by the action of capillary forces, due to the

liquid interface tending to minimize its free area (Berthier

and Brakke 2012). After alignment, which is fast, evapo-

ration brings the chip into contact with the pad on the

wafer, and direct bonding is possible if the two surfaces are

sufficiently hydrophilic (Tong and Gösele 1999; Zheng and

Jacobs 2005; Fukushima et al. 2009; Moriceau et al. 2010).

A sketch of the process is shown in Fig. 1.

It is expected that self-alignment methods could be

faster and more precise than the conventional robotic

method. Developments have been fast, and it has been

found that a square chip can be aligned by the action of

restoring forces and torques if certain precautions are taken

(Berthier et al. 2011; Mermoz et al. 2011). A review of the

different concepts for 3D integration has recently been

published by Lee et al. (2011).

Following the early investigations of the Whitesides group

(Whitesides and Boncheva 2002; Boncheva et al. 2003), many

different investigations have started: Knuesel and colleagues

have used the method for the assembly of segmented mono-

crystalline solar cells (Knuesel and Jacobs 2010), Avital and

Zussman have developed CSA methods for fluidic assembly

of optical components (Avital and Zussman 2006), Zhang and

colleagues have investigated the CSA of drosophila embryos

on 2-D arrays of hydrophobic sites on a silicon substrate in

water (Zhang et al. 2005), Stauth and Parviz have developed

the self-assembly of single-crystal silicon circuits on plastic

(Stauth and Parviz 2006), Takei and colleagues have obtained

a microprism by capillary arrangement of two disks on a liquid

droplet (Takei et al. 2011), and Fukushima and colleagues

have studied the use of CSA for microsystem packaging

(Fukushima et al. 2011). These investigations have been

mainly experimental, except for the works of Lienemann et al.

(2004), Zheng and Jacobs (2005) and Berthier et al. (2010,

2011). In the field of parallel liquid CSA, the shapes investi-

gated are nearly uniquely squares and rectangles, except for

some experimental investigations on hexagonal chips (Srini-

vasan et al. 2001), square cavity, and U-shaped microsystems

(Fukushima et al. 2011). Note that self-assembly could be

assisted by electro-capillary methods, such as that described

by Wang et al. (2012). However, in order to facilitate future

industrial processes, we have preferred to follow a purely

passive approach.

In this study, we base our approach on the early work

from Lienemann et al. (2004) and we extend it to develop a

novel theoretical and numerical approach to the shift-

restoring forces for polygonal chips. Our aim is to be able to

estimate the shift- restoring force for different geometrical

shapes of the moving part (and its identical fixed pad)

composed of convex and concave polygons. It is shown that

the analytical approach for the shift-restoring force using

the deformation of flat facets agrees with the numerical

results of the Surface Evolver software. Hence, we can

derive the restoring forces for more realistic shapes such as

polygons with cavities and for the double-U geometry

investigated by Fukushima et al. (2011) shown in Fig. 2.

We make the assumption that the chip stays parallel to

the substrate at all times during the alignment process: in

the shift mode, it is just translated horizontally from its

counterpart. Moreover, in this first analysis we assume that

the liquid film perfectly wets both chip and pad, and stays

pinned on all edges. It is clear that the wetting and pinning

of the liquid film on reentrant angles has to be carefully

investigated. It will be examined later in a further work, as

was done for a square chip (Berthier et al. 2011).

In the particular case of regular polygons—convex or

not—of the same perimeter, it is demonstrated that the

magnitudes of the restoring forces at short range—small

initial shift or at the end of the alignment process—are equal

for all polygonal shapes. Also, the magnitude of the restoring

force at small shift does not depend on the direction of the

shift for these regular polygonal shapes. The theoretical

results are in agreement with numerical results obtained with

the Surface Evolver software (Brakke 1992). Moreover, it is

shown that the approach can be extended to polygonal chips

with polygonal cavities, such as those used by Fukushima

et al. (2011) to seal microsystems. If connection vias or

microchannels pierce the sides of the chip, the isotropic

behavior is lost, and the former analytical expression has to

be corrected by an anisotropic factor. Finally, it is shown that

anisotropic chip geometries have restoring forces different

than regular shapes and the isotropicity is characterized by a

non-dimensional number which we call the shift number.

(a) (b) (c) (d)

Fig. 1 Sketch of capillary self-alignment: a the moving part is deposited on the liquid; b capillary alignment; c evaporation; d contact and direct

bonding
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2 Theory

Consider a chip in shape of a polygon and a shift x in the

horizontal direction as sketched in Fig. 3. Edge number

k has length sk and angle from horizontal hk.

Now consider the deformation of one edge of length s

and angle q, as shown in Fig. 4. The initial interface—

assuming it is flat—has an area of

A1 ¼ sh ð1Þ

where h is the height of the liquid layer. The surface energy

is then

E1 ¼ c A1 ¼ c s h ð2Þ

where c is the surface tension. The shifted interface—still

assuming it is flat—has an area of

A2 ¼ s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2 þ x2 sin2 h
p

ð3Þ

where x is the shift. The corresponding surface energy is

(a)

(b) (c)

Fig. 2 a, b Cross-sectional SEM views of chips with cavities and channels (Source Fukushima et al. 2011; Reprinted with permission, � 2011,

Micromachines); c liquid spreading on the chip top calculated with the numerical program Surface Evolver

Fig. 3 Sketch of a polygon with shift direction Fig. 4 Sketch of a shifted interface
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E2 ¼ c A2 ¼ c s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2 þ x2 sin2 h
p

: ð4Þ
Note that an interface parallel to the direction of the shift

(h = 0) keeps the same surface area, and an interface

perpendicular to the shift has the energy E2 ¼ c A2 ¼
c s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2 þ x2
p

which was found in our previous work in the

case of a square chip and a shift perpendicular to an edge

(Berthier et al. 2010). The restoring force corresponding to

this single interface is

F ¼ � oE2

ox
¼ �c s x sin2 h

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2 þ x2 sin2 h
p : ð5Þ

Approximating the surface energy of the whole

interfacial area by the sum of the surface energy of all

faces—i.e., not considering the inward curvature of the

interface at the junction of two faces or any curvature in the

middle of a face—the total surface energy after the shift is

E2 ¼
X

i¼1;n

Ei ¼ c A2 ¼ c
X

i¼1;n

si

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2 þ x2 sin2 hi

q

: ð6Þ

The restoring force is then

F ¼
X

i¼1;n

Fi ¼ �c x
X

i¼1;n

si sin2 hi
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2 þ x2 sin2 hi

p : ð7Þ

An interesting observation is that, when x is very small

in comparison with h, relation (7) collapses to

F ¼ �c
x

h

X

i¼1;n

si sin2 hi: ð8Þ

Relation (8) shows that when x is small, the restoring

force is a linear function of x. On the other hand, if the shift

x is large compared to the vertical dimension of the fluid

layer h, then (7) collapses to

F ¼ �signðxÞc
X

i¼1;n

sij sin hij: ð9Þ

In this last case, the restoring force is constant. If we

apply relation (8) and (9) to the case of the square, we

retrieve the relations given in previous work (Berthier et al.

2010). A geometrical interpretation of (9) is given in

‘‘Appendix 1’’.

Consider now polygons, convex or not, with equal

edges. Then, for all i we have si = s, and relation (8)

becomes

F ¼ �c s
x

h

X

i¼1;n

sin2 hi ð10Þ

Relation (10) can be simplified by introducing the

polygon perimeter p and using the fact that the average of

sin2 hi over equally spaced angles is p=2s then:

F ¼ �c
x

h

p

2
¼ �c

x

e
ð11Þ

where e is the aspect ratio 2h=p. An important remark is

that the restoring force F at small range does not depend on

the shift direction or on the shape of the polygon.

On the other hand, (9) becomes an asymptotic value for

the shift-restoring force for large shifts:

F ¼ �signðxÞcs
X

i¼1;n

j sin hij ð12Þ

Note that the magnitude of the restoring force F in this

latter expression depends on the polygonal shape and on

the direction of the shift, but not on the magnitude of the

shift. For a convex polygon, relation (12) is just the surface

tension times twice the transverse width of the polygon,

which is to be expected, since a large shift just stretches

two horizontal surfaces, top and bottom, each of the width

of the polygon.

3 Regular polygons (convex)

We investigate first the case of regular convex polygons. In

‘‘Appendix 2’’, it is shown that relation (12) for large shifts

can be expressed by

F ¼ � cs

2 sin p
n

X

i¼1;n

cos 2ðiþ 1Þ p
n

� �

� cos 2i
p
n

� �h i

sin a
�

�

�

þ sin 2ðiþ 1Þ p
n

� �

� sin 2i
p
n

� �h i

cos a
�

�

�
ð13Þ

where a is the shift angle. A non-dimensional expression

for the force can be defined by

f ¼ F

cp
: ð14Þ

And the asymptotic value of f—that we denote here the

‘‘shift number’’ Sf—is

Sf ¼ F

cp

�

�

�

�

�

�

�

�

¼ 1

2n sin p
n

X

i¼1;n

cos 2ðiþ 1Þ p
n

� �

� cos 2i
p
n

� �h i

sin a
�

�

�

þ sin 2ðiþ 1Þ p
n

� �

sin 2i
p
n

� �h i

cos a
�

�

�
ð15Þ

The shift number Sf depends only on the number of edges

n, i.e., the polygonal shape, and the shift direction a. It is a

measure of the isotropic behavior of the chip. If Sf is

invariant with a, the shift-restoring forces are isotropic. The

shift numbers for 5 different regular polygons (equilateral

triangle, square, pentagon, hexagon, and octagon) are

shown in Fig. 5. The shift numbers are comprised

between 0.5 and 0.7 in all cases. The square has the least

isotropic behavior, with a maximum variation of the shift-

restoring force of 30 % with the shift direction; the other
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polygons show a variation of the shift-restoring force less

than 15 %.

In conclusion, the theory predicts that the free energy

and restoring forces are not very far apart for any shift

angle or any regular polygonal shape. For small shifts it is

predicted that they are equal, and similar for large shifts,

because the shift number is similar for all shapes and all

orientations.

4 Star polygons (regular and not convex)

Consider now the case of star polygons, a class of polygons

defined in the reference Weisstein (2012) and let us

examine the case of three polygons: pentagram, hexagram

(star of David), and octagram. For small shifts (x/h \ 1/2)

relation (11) is valid. The case of large shift necessitates

calculation of (12) for star polygons. For each type of

polygon, two circles can be drawn, passing through the

outer vertices and inner vertices. An external re and an

internal radius ri can then be defined as functions of the

length of the edge s, and, using the same arguments

developed in the ‘‘Appendix 2’’, the restoring force for

large shifts can be expressed by

F ¼� c
2 sin p

n

X

i¼1;n

re cos 2i
p
n

� �

� ri cos ð2i� 1Þ p
n

� �h i

sin a
�

�

�

� re sin 2i
p
n

� �

� ri sin ð2i� 1Þ p
n

� �h i

cos a
�

�

�
ð16Þ

where the radii re and ri are linear functions of s. The shift

number showing the isotropic behavior of the chip is

shown in Fig. 6. It varies between 0.55 and 0.65 according

to the shift direction.

5 Regular polygons with regular polygonal cavities

More complex surfaces have also been under scrutiny for

capillary self-alignment. Sariola et al. (2011) have inves-

tigated the behavior of a capillary gripper with a cavity in

its center, and Fukushima et al. (2011) are studying the

alignment of microsystems cover for packaging. In a

general approach, Böhringer et al. (2001) have shown that

couples of composite substrates with hydrophilic and

hydrophobic parts will reduce their energy when self-

alignment is achieved, but even if alignment reduces the

system energy, it cannot always be achieved when an

energy saddle must be overcome.

In this section, we investigate the shift-restoring force

for regular polygons—convex or not—with regular

polygonal cavities. With the prerequisite of the same free

perimeter p, relation (8) for small shift yields

Fig. 5 Shift number as a

function of the shift direction

for five regular polygons

Fig. 6 Shift number for three different star polygons
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F ¼ �c
x

h

X

i�ext

si sin2 hi þ
X

i�int

si sin2 hi

 !

ð17Þ

where ext refers to the external polygon and int to the

internal polygon. This relation is similar to (11). Again, the

restoring force at small shift does not depend on the shift

direction or on the particular polygonal geometry. On the

other hand, relation (9) for large shift yields

F ¼ �c
X

i�external

sij sin hij þ
X

i�internal

sij sin hij
 !

ð18Þ

Consider the case of a regular polygon with side s and

no cavity compared to one with a cavity homothetic to the

external polygonal shape, with external side sext and

internal side sint. Assume that both geometries have the

same total perimeter p. Then sext ? sint = s = p/n.

Because the internal and external edges are aligned, the

two terms of (18) with summation are equal. Finally, we

obtain

F ¼ �cðsext þ sintÞ
X

i

j sin hij ¼ �cs
X

i

j sin hij ð19Þ

The theory predicts that the full regular polygon and the

polygon with homothetic cavity have the same restoring

force, for the same total perimeter.

6 Numerical approach

The theoretical approach is an approximation since the

interfaces have been considered flat. In order to take into

account the real shape of the interfaces, we have used the

numerical software Surface Evolver (Brakke 1992) to

calculate the surface energy for different polygons (Fig. 7).

First are regular polygons, i.e., convex polygons with

n = 1, 2, … edges of same length. We limit ourselves to

the equilateral triangle, square, pentagon, hexagon, and

octagon. Second, we add the star polygons pentagram,

hexagram, and octagram. Finally, we consider regular

polygons with a regular polygonal cavity: a square with a

square cavity, and a triangle with a triangular cavity. All

these shapes can be considered ‘‘isotropic’’ as we will see

in the following developments. In order to compare with an

‘‘anisotropic’’ shape, we also consider a rectangle of aspect

ratio 2 or 1/2 (depending on its position in the coordinates

system). Guided by (11), we use the same perimeter

p = 4 cm in all cases.

The numerical protocol is the following: given an initial

shift, the interface numerically adjusts to the real physical

shape for that fixed shift. The corresponding surface energy

is stored in a dedicated file. Then, the chip is freed to move

incrementally. At each shift increment, the chip is fixed,

the interface adjusts and the surface energy again is stored.

The relation between the free energy and the shift is then

plotted.

In this approach, we consider a uniform perimeter

p = 4 9 10-2 m, this corresponds to a square of

1 cm 9 1 cm. We set the liquid volume to V = A h, where

A is the surface of the solid wetted by the liquid and h the

vertical distance between the two solids. In our case

h * 400 lm (there is a very small deviation due to the

curvature of the interface). It is straightforward to show

that the surface area of a regular polygon is given by the

relation

Fig. 7 The different polygons

considered in the study:

a regular, convex polygons;

b star polygons, c regular
polygons with regular polygonal

cavity, and d rectangle of aspect

ratio 2
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A ¼ 1

4
ns2 cot

p
n

ð20Þ

where n the number of edges, and s the length of an edge.

Figure 8 shows different restoring processes for the

different geometrical shapes considered.

7 Results

In this section, a comparison between the theoretical and

numerical approaches is presented first. Then, the influence

of the shift direction and chip shape on the free energy and

on the restoring force is investigated. It is recalled that the

restoring force is given by

F ¼ � oE

ox
ð21Þ

where E denotes the free energy and x the shift.

7.1 Comparison between theoretical and numerical

results

A comparison between theoretical and numerical results

for a 0� shift is shown in Fig. 9, for four different polyg-

onal shapes (triangle, square, pentagon, and square with

cavity). The agreement between theory and numerical

model is good—which signifies that the hypothesis of flat

surfaces is not too far from the reality—except maybe for

the case of the square with a square cavity. In this case, the

theory predicts the same restoring force as for the square.

The discrepancy comes from the number of additional

corners of the square with cavity. The real free surface

becomes smaller for each additional corner, as is shown in

Fig. 10.

The agreement also depends on the height h of the liquid

layer. A large value of h would certainly increase the

influence of the curvature of the interfaces. In the present

case, the aspect ratio e = 2 h/p of the thickness of the

liquid layer and half the free perimeter is only 0.02. In the

industrial process, a still smaller ratio is expected.

The preceding observation is still more acute in the case

of star polygons: the presence of sharp angles and reentrant

angles decreases the liquid interfacial area, and reduces the

restoring force.

Fig. 8 Capillary self-alignment for star polygons and polygons with cavities, obtained with Surface Evolver

Fig. 9 Comparison between theory (continuous lines) and numerical

model (dotted lines) for four different polygonal shapes with same

perimeter: equilateral triangle, square, pentagon, and square with

cavity. The references E0 for energy and F0 for the force are

respectively E0 = c h p and F0 = c p

Microfluid Nanofluid (2013) 14:845–858 851
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Note that the shift between the energy curves in Figs. 9

and 11 has little influence on the restoring force for small

shifts. It is due to the fact that the restoring force is the

derivate of the energy and must be zero for x/h = 0.

In conclusion, the theory slightly overestimates the

magnitude of the restoring force; but as the thickness of the

liquid layer will be smaller in the real process, the differ-

ence between theory and numerical model is expected to be

less than that shown in Fig. 11.

7.2 Influence of shift direction: isotropicity

and anisotropicity

We analyze now the restoring force as a function of the

shift direction. In Sect. 2 it has been found that for regular

polygonal shapes, theory predict an independence of the

shift-restoring force for small shifts (x/h \ 1/2), and a

moderate dependence for large shifts (x/h [ 1). In this

section, we use the Evolver to check these theoretical

results.

Consider a square chip, and different directions of shift:

a = 0, 30, 45, 60, 90, 135, and 180�. A plot of the different

restoring forces based on the general relation (7) is shown

in Fig. 12. It is observed that when x/h is smaller than

approximately 1/2, the restoring forces are all equal, as

expected from the theory. The same results can be obtained

for all the regular polygonal shapes. We deduce that when

x/h is less than 1/2, the shift direction has no influence on

the close range restoring forces for ‘‘isotropic’’ chips.

On the other hand, this is not the case with a ‘‘non-

isotropic’’ polygonal shape, such as the rectangle. In

Fig. 13, the shift number has been plotted as a function of

the shift direction. Isotropic behavior is characterized by a

shift number Sf of 0.62 corresponding to the octagon

(regular polygon with many edges). An approximate iso-

tropic situation occurs for shift numbers comprised

between 0.55 and 0.7. The square can be considered as the

limit. The shift number for a rectangle of aspect ratio 2

varies between 0.3 and 0.75, which indicates an anisotropic

behavior.

Note that, from ‘‘Appendix 1’’, the anisotropy is char-

acterized by the ratio between the maximum and minimum

cross lengths of the polygonal chip. In the case of a square,

Lmax=Lmin ¼
ffiffiffi

2
p

. More generally, it can be shown for

regular polygons, that Lmax=Lmin ¼ 1=cos p=nð Þ.

7.3 Influence of polygonal shape

Let us now consider the different polygonal shapes of

Fig. 7. Free surface energies are plotted in Fig. 14 as a

function of a shift in the direction of the x-axis. From the

figure, we deduce that all ‘‘isotropic’’ shapes—regular

polygons, with a regular polygonal cavity, and star poly-

gons—have a similar free surface energy, while the surface

energy of the ‘‘anisotropic’’ rectangle notably differs from

the other ‘‘isotropic’’ shapes.

Using (7), the same conclusion can be drawn for the

shift-restoring force, as shown in Fig. 15.

Fig. 10 View of the liquid

interface in sharp or reentrant

corners (Evolver)

Fig. 11 Comparison between theory and numerical approach for star

polygons (of same perimeter). Continuous lines correspond to the

theory and dotted lines to Evolver calculations
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7.4 Restoring force for small shifts

A perfect alignment is obtained when the force at small

shift is sufficiently large; this can be characterized by

determining the value of the derivative of the restoring

force D ¼ dF=dx x¼0j at the origin. The value of D has

been obtained numerically from the Evolver values of

Fig. 15. In Fig. 16, we have plotted the value of D for

different polygonal geometries (with same free perimeter

p) for very small shifts. For all regular polygonal geom-

etries, the value of D converges toward the theoretical

value D = c p/2 h = c/e. On the other hand, the value of

D for anisotropic geometries (here a rectangle) differs

considerably from the theoretical results. This observation

can be checked by referring to ‘‘Appendix 1’’: the

restoring forces for x and y-direction shifts should be

respectively proportional to the larger and smaller rect-

angle lengths.

Note that, from Fig. 15, the restoring force of regular

polygons is larger than that of star polygons. This is due to

the fact that, for a same perimeter, convex polygons have a

larger circumcircle than concave polygons. Since the

maximum restoring force is proportional to the maximum

cross-length (Lmax), which is in turn twice the radius of the

circumcircle for regular polygons, the restoring force is

larger for convex shapes.

Fig. 12 Restoring forces as a

function of the shift magnitude

and direction (from Evolver)

Fig. 13 Shift number as a

function of the shift direction.

The green curves correspond to

the equilateral triangle,

pentagon, hexagon, and

octagon. Their behavior is

nearly isotropic. The magenta

curve corresponds to the square
shape, at the limit of isotropic

behavior, and the rectangle

(red line) is fully anisotropic
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8 Applications to microsystem packaging

In the preceding sections, we have shown the agreement

between the analytical model based on flat interfaces and

the numerical results from Evolver. Hence, we should be

able to predict the shift-restoring force for more compli-

cated shapes corresponding to more realistic cases.

In this section, we investigate the shift-restoring force

in the geometry of a square microsystem where vias

(channels) are opened on two opposite sides, similar to

that proposed by Fukushima et al. (2011). As a matter of

fact, for simplicity of handling the liquid spreading with

Evolver, we have considered the same shapes for the chip

and pad, whereas Fukushima considered side channels

only in the fixed pad. Closed square shapes (with square

cavities) have been investigated above, and we focus here

on the anisotropy induced by the vias (Fig. 17). In this

particular case, the width of the channels piercing the

square is set to 1/10 of the external edge, and the cavity

dimension is half that of the external dimension. In

contrast with the preceding sections, we consider the

same external dimensions of the square polygons in both

cases, regardless of the difference between the free

perimeters.

Figure 18 shows the restoring force as a function of the

shift for the square chip (with square cavity) and for the

Fig. 14 Free energy versus

shift for the different polygonal
shapes obtained with the

Surface Evolver

Fig. 15 Restoring force versus

shift for different polygonal

shapes with same free

perimeter: The restoring forces

are similar except for the

anisotropic rectangle. Values

obtained with the Evolver
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cavity-chip along two perpendicular directions of the shift:

first, the direction of the channels—x-direction—and sec-

ond the direction perpendicular to the channels—y-direc-

tion. The anisotropy induced by the channels clearly

appears in the figure.

In the same figure, we have also plotted two ‘‘modified’’

curves: the first one corresponds to the value of the force in

the x-direction decreased by the missing interfacial area

corresponding to the channel openings. If sext denotes the

external square edge, sint the internal square edge and w the

width of the channels, we have

Fmicrosystem

Fsquare

¼ 2ðsext þ sintÞ � 4w

2ðsext þ sintÞ
¼ 1� 2

w

ðsext þ sintÞ
ð22Þ

Conversely, in the case of a y-shift, the value of the

restoring force is increased by

Fmicrosystem

Fsquare

¼ 2sext þ 2sint þ 2ðsext � sintÞ
2sext þ 2sint

¼ 2sext

sext þ sint

ð23Þ

Using the values w = sext/10 and sext = 2 sint, we find

the correction coefficients 13/15 and 4/3, which reproduce

well the restoring force for a full (no channels) square with

cavity. Hence, the restoring force at small shift can be

approximated by

f ¼ F

cp
¼ � x

2h
1� 2

w

sext þ sint

� �

ð24Þ

for a shift along the channel axis, and

f ¼ F

cp
¼ � x

2h

2sext

sext þ sint

� �

ð25Þ

for a shift perpendicular to the channel axis. Relations (24)

Fig. 16 Value of dF/dx at small

shifts: all the regular polygons

converge to the analytical value,

while the anisotropic

rectangular shape differs

notably from this value (from

Evolver)

Fig. 17 Alignment of a square
microsystem cover after a

x-shift (a), and a y-shift (b)
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and (25) constitute the two limits for the restoring force at

small shift for the pierced geometry considered here. The

shift number is comprised between the values

x

2h
1� 2

w

sext þ sint

� �

Sfsquare\Sf \
x

2h

2sext

sext þ sint

� �

Sfsquare

ð26Þ

9 Conclusions and perspectives

In this study, an approximate closed form of the shift-

restoring force has been derived from the assumption of flat

interfaces for many different regular polygonal shapes. It

has been shown that this analytical expression agrees well

with the more detailed value produced by a numerical

approach with the numerical software Surface Evolver. An

interesting observation is that, for small shifts, the restoring

force does not depend on the shift direction or on the

polygonal shape. The restoring force is simply proportional

to the surface tension, to the free perimeter and to the

magnitude of the shift.

A non-dimensional number, the shift number, has been

defined that characterizes the non-dimensional shift-

restoring force, and the isotropicity of the system (for large

shifts), i.e., the independence of the restoring force to the

shift direction.

An extended expression of the shift-restoring force at

close range has been derived for chips with cavity pierced

by connection vias (microchannels), similar to that used for

packaging microsystems. This extended relation has again

been verified by a numerical approach.

So far, only the effect of the shift has been investigated.

Twist, tilt, and roll restoring torques are still to be

investigated, in order to have a complete assessment of the

capillary effect on different polygonal chips.

Appendix 1: restoring forces for large shifts

for any polygon

The force at large shift given by Eq. (9)

F ¼ �signðxÞc
X

i¼1;n

sij sin hij ð27Þ

has a geometrical significance. In Fig. 19 the projections of

the edges si on the direction perpendicular to the shift show

that
X

i¼1;n

sij sin hij ¼ 2L? ð28Þ

The restoring force at large shift is then

F ¼ �signðxÞc2L? ð29Þ

The magnitude of the restoring force is then comprised

between the minimum and maximum cross lengths Lmin

and Lmax times the surface tension c (Fig. 19).

Appendix 2: restoring forces for large shifts

for regular polygons

For a regular polygon with n edges of length s and free

perimeter p, the following relation holds:

p ¼ n s: ð30Þ

Using trigonometrical calculation, we find the value of

the circumscribed circle to be

Fig. 18 Shift-restoring force:

comparison between a square

(with cavity) and a square (with

cavity) pierced by two channels.

The two channels induce

anisotropy of the restoring

forces. Calculation performed

with Surface Evolver. The two

additional curves are obtained

from the square (with cavity)

curve multiply by the corrective

factors given by (22) and (23)
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r ¼ s

2 sin p
n

: ð31Þ

Incidentally, the surface area of the solid wetted by the

liquid can be expressed as a function of the perimeter p and

the number of edges n:

A ¼ 1

4
ns2 cot

p
n
¼ 1

4
p2 1

n
cot

p
n
: ð32Þ

The coordinates of the polygon vertices are

Si ¼ r cos 2i
p
n

� �

; sin 2i
p
n

� �h i

ð33Þ

where i is the vertex index. The oriented vector edges are

then

s~i ¼ r cos 2ðiþ 1Þ p
n

� �

� cos 2i
p
n

� �

;
h

sin 2ðiþ 1Þ p
n

� �

� sin 2i
p
n

� �i ð34Þ

Let us assume that the shift direction is the unit vector

defined by its polar angle a,

k~¼ ½cos a; sin a�: ð35Þ

The cross-product between s~i and k~ produces the value

of sin hi

sin hi ¼
s~i

js~ij
� k~¼ s~i

si
� k~: ð36Þ

We finally find the expression

sin hi ¼
1

2 sin p
n

cos 2ðiþ 1Þ p
n

� �

� cos 2i
p
n

� �h i

sin a
n

þ sin 2ðiþ 1Þ p
n

� �

� sin 2i
p
n

� �h i

cos a
o

ð37Þ
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