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Abstract Accurate modeling of gas microflow is crucial

for the microfluidic devices in MEMS. Gas microflows

through these devices are often in the slip and transition

flow regimes, characterized by the Knudsen number of the

order of 10-2*100. An increasing number of researchers

now dedicate great attention to the developments in the

modeling of non-equilibrium boundary conditions in the gas

microflows, concentrating on the slip model. In this review,

we present various slip models obtained from different

theoretical, computational and experimental studies for gas

microflows. Correct descriptions of the Knudsen layer

effect are of critical importance in modeling and designing

of gas microflow systems and in predicting their perfor-

mances. Theoretical descriptions of the gas-surface inter-

action and gas-surface molecular interaction models are

introduced to describe the boundary conditions. Various

methods and techniques for determination of the slip coef-

ficients are reviewed. The review presents the considerable

success in the implementation of various slip boundary

conditions to extend the Navier–Stokes (N–S) equations

into the slip and transition flow regimes. Comparisons of

different values and formulations of the first- and second-

order slip coefficients and models reveal the discrepancies

arising from different definitions in the first-order slip

coefficient and various approaches to determine the second-

order slip coefficient. In addition, no consensus has been

reached on the correct and generalized form of higher-order

slip expression. The influences of specific effects, such as

effective mean free path of the gas molecules and viscosity,

surface roughness, gas composition and tangential

momentum accommodation coefficient, on the hybrid slip

models for gas microflows are analyzed and discussed. It

shows that although the various hybrid slip models are

proposed from different viewpoints, they can contribute to

N–S equations for capturing the high Knudsen number

effects in the slip and transition flow regimes. Future studies

are also discussed for improving the understanding of gas

microflows and enabling us to exactly predict and actively

control gas slip.
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Abbreviations

AB Augmented Burnett

MD Molecular dynamics

BE Boltzmann equation

MEMS Microelectromechanical systems

CL Cercignani–Lampis

MFP Mean free path

HS Hard sphere

N–S Navier–Stokes

LBE Linearized Boltzmann equation

N–S–F Navier–Stokes–Fourier

LBM Lattice Boltzmann method

QGD Quasi-gas dynamic

BGK Bhatnagar Gross Krook

TMAC Tangential momentum accommodation

coefficient

DSMC Direct Simulation Monte Carlo

VHS Variable hard sphere
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IP Information preservation

VSS Variable soft sphere

KL Knudsen layer

W–M Weierstrass–Mandelbrot

List of symbols

aD, CD Constant with positive values

nn Exponent constant

aR1, aR2 Various coefficients

Na Total number of gas atoms

AR, DR, ER Curve-fitting coefficients

NK Index of the fluid lattices

b Channel thickness

p Pressure

bBK Generalized slip coefficient

Pm Average pressure

cm Most probable speed

PO Outlet pressure

�c Thermal speed of the gas

Pr Prandtl number

C0 Molar concentration

q~ Heat flux

C1, C2 First and second order slip coefficients

QN Non-dimensional flow rate

CF Correction factor

Qv Volumetric flow rate

CL Variable parameter

r Traveling distance

Cp, rq Constants

rK Fraction of gas particles

C~y Variable parameter

R1, R2 Inner and outer radius

CZ Variable ns=k(CZ 2 ½0; 1�)
Ra Average roughness

d Mean molecular diameter

Re Reynolds number

dc Collision molecular diameter

RP Specific gas constant

f Roughness height function

S Slip coefficient function

fB Distribution function

Suy, Syy Relative position and velocity parameters

hB Small perturbation;

T Absolute temperature

H Film thickness

Tr Torque

I Velocity defect function

u Velocity

kB Boltzmann constant

~u Velocity ratio ~u ¼ u=apk
KM Variable parameter

un Velocity normal to the wall

Kn Knudsen number

uN1, uN2 Velocity components

KnO Knudsen number outlet

us Slip velocity

ks1–ks4 Constants

u~s Tangential slip velocity

ku Velocity gradient

uw Wall velocity

lc Knudsen layer thickness

uk Tangential velocity component

L Channel length

Ug Gas flow velocity

L0 Characteristic length

Us Non-dimensional slip velocity

Lc Local characteristic length

Uw Non-dimensional wall velocity

Lr Inner cylinder length

v0 Mixture velocity

Ls Slip length

vg Kinematic viscosity

Lx Width of the cell

Vg1, Vg2 Fraction of components

m Molecular mass

Vt Particle information velocity

m1, m2 Molecular mass of species

w Channel width

Ma Mach number

xt Coordinate tangential to the wall

n Coordinate normal to the wall

y Distance normal to the wall

n01, n02 Equilibrium number densities

~y Relative variable ~y ¼ y=k
ng Number density of the gas

Greek symbols

aAC1, aAC2 Ratio coefficients

rv Tangential momentum accommodation

coefficient

aK Adjustable coefficient

xm, xG Constants

aM Fraction parameter

xM Interaction parameter

ap Applied parameter

xr Angle velocity

as Controversial coefficient

#m Variable coefficient

bM Interaction parameter

l Gas viscosity (12)

bT Difference constant

lf First-order approximation

hP, bP Random variables

vM Parameter vM ¼ n02m2=ðn01m1Þ
d Mean molecular spacing

ns Distance

846 Microfluid Nanofluid (2012) 13:845–882

123



d~y Variable parameter

t Collision frequency

q Gas density

sg Relaxation time

k Mean free path

sN Shear stress

k1, k2 MFP of the binary gas mixtures

sw Wall shear stress

ks, kb MFP from molecular and boundary

scatterings

s~ Tangential shear stress

c Ratio of specific heats

U0 Quantity (gas density, pressure or

temperature)

cT Molecular acceleration

U Function of Knudsen number

r Standard deviation

H Probability density

r22, r25, r55 TMAC Coefficients

w Probability distribution function

rL0, rL1, rL2 Variable parameters

P Pressure ratio

rn Energy accommodation coefficient

DP Pressure drop

rp Slip coefficient

DU Velocity drop

rT Thermal accommodation coefficient

Superscripts

1st First-order

M Maxwell model

2nd Second-order

S Sharipov model

L Loyalka model

Subscripts

c DSMC cell

NS Navier–Stokes

eff Effective relations

r Reflected gas molecule

i Incident gas molecules

ref Reference conditions

in, fin Initial and final values

s Slip boundary condition

IP Information preservation

sm Smooth surface

j The order of the polynomial

S Solid wall

l Lower plate

u Upper plate

Loc Local value

1 Introduction

With the rapid development of microelectromechanical

systems (MEMS), microscale rarefied gas flows have

attracted considerable attention and become a new and

important research field (Ho and Tai 1998; Gad-el-Hak

1999; Karniadakis and Beskok 2002). Gas microflows in

microfluidic devices have the potential and broad range of

applications, such as extracting biological samples, cooling

integrated circuits and actively controlling aerodynamic

flows (Barber and Emerson 2006; Tang et al. 2008). How-

ever, the flows at the microscale are quite different from

those at the macroscale (Cao et al. 2006). For understanding

fundamental flow physics, it is essential to predict the per-

formances and provide optimal designs and fabrications for

microfluidic devices in MEMS, including microchannel,

microduct, microtube, microbearing, and micropipe.

Gas microflows are usually in the slip flow and transi-

tion regimes and experience a range of non-equilibrium

phenomena (Pan et al. 1999). In these flows, the mean free

path (MFP) of the gas molecules becomes significant rel-

ative to the characteristic dimension of the device, and the

continuum hypothesis for the Navier–Stokes (N–S) equa-

tions breaks down (Lilley and Sader 2008; Dongari et al.

2009). An important feature in these flows is that velocity

slip appears at the solid boundary. The original Maxwell’s

slip model and its derived forms have been widely pre-

sented and used during the past 130 years. In practice, most

gas flows in microfluidic devices experience a wide range

of Knudsen numbers and this makes it even more difficult

to develop a generalized slip model (Tang et al. 2008;

Dongari et al. 2011a). One important inference from the

slip models is that the applicability of the N–S slip

boundary conditions should be extended into the transition

regime (Dongari et al. 2010; Badur et al. 2011). Sharipov

and Seleznev (1998) presented an excellent critical review

and recommended data on rarefied gas flows. Some

researchers subsequently presented unified slip models to

extend the conventional N–S equations and Maxwell’s slip

model to investigate the gas flows through microfluidic

devices in MEMS (Beskok and Karniadakis 1999; Dongari

et al. 2007; Lockerby and Reese 2008). The slip models

become more complex when the influences of rarefication

and compressibility effect, KL effect, surface condition and

gaseous mixture are considered for gas microflows. A brief

introduction and review of the available slip models can be

found in the literature (Karniadakis and Beskok 2002;

Karniadakis et al. 2005; Barber and Emerson 2006;

Dongari et al. 2007; Colin 2005; Cao et al. 2009).

The objective of this paper is to present a review of

investigations on slip models for gas microflows. In this

review, Sect. 2 describes a brief introduction of the general
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properties of the gas microflows. The KL effect on the gas

microflows and the capturing approaches are presented in

Sect. 3. Section 4 focuses on the theoretical descriptions of

the gas-surface interaction and gas-surface molecular

interaction models. Section 5 summarizes and reviews the

main theoretical, numerical, and experimental slip coeffi-

cients and relative various slip models, including first-

order, second-order, higher-order and hybrid types, which

are widely used to extend the N–S equations in the slip

flow and transition regimes. The effects of effective MFP

and viscosity, gaseous mixture, surface roughness and

TMAC on the slip coefficients and slip models are ana-

lyzed and discussed in detail. Finally, Sect. 6 provides final

remarks and conclusions. Throughout the review, we

emphasized the discrepancies among the various slip

models in order to focus on future research efforts into

providing an understanding of the velocity slip boundary

conditions for gas microflows through the microfluidic

devices in MEMS.

2 General physics of gas microflows

The analysis and modeling of gas microflow depend on

some important characteristic length scales and parameters

(Barber and Emerson 2006; Colin 2005). Gad-el-Hak

(2001, 2006) reported the general flow physics in MEMS

and broadly reviewed available methodologies to model

the transport phenomena in microdevices. Colin (2005) and

Barber and Emerson (2006) discussed and reviewed the

rarefaction and compressibility effects on gas microflows

and provided several characteristic length scales.

At the level of molecules, the relationship between the

mean molecular spacing d and mean molecular diameter d

is an important parameter. For the dilute gases, gases sat-

isfy d/d [ 7 (Bird 1994; Gad-el-Hak 2003; Barber and

Emerson 2006) or d/d � 1(Colin 2005). In these cases,

most of the intermolecular interactions are binary colli-

sions. Conversely, the gas can be regarded as a dense one.

The dilute gas approximations lead to the classical kinetic

theory of gases and the Boltzmann transport equation.

For a gas of hard sphere (HS) molecules in thermody-

namic equilibrium, Bird (1994) gave the definition of the

MFP as:

k ¼ 1
ffiffiffi

2
p

pngd2
ð1Þ

where ng is the number density of the gas and ng = d-3.

2.1 Rarefaction effect

The rarefaction effect in microsystems is attributed to the

MFP of the gas microflow. In practice, the validity of the

thermodynamic equilibrium assumption in the N–S equa-

tions can be related to the Knudsen number (Barber and

Emerson 2006). Gad-el-Hak (2003) also discussed that the

N–S equations remain to be valid when the three funda-

mental assumptions (Newtonian framework, continuum

approximation, and thermodynamic equilibrium) are sat-

isfied. Typically, rarefaction effect can be characterized by

the Knudsen number, which is the key parameter to indi-

cate the degree of rarefaction or state of non-equilibrium of

gas flows and defined as:

Kn ¼ k
L0

� k
U0

dU0

dL0

�

�

�

�

�

�

�

�

ð2Þ

where L0 is the characteristic length of the microflow

system and U0 is a quantity of interest, such as the gas

density, pressure or temperature (Tang et al. 2008). Prac-

tically, a local Knudsen number can be used as a global

measure to avoid the ambiguity of selecting L0 in large or

complex systems (Oran et al. 1998). The ratio of L0/d
satisfies to be larger than 100 in order to obtain a statisti-

cally stable estimation of the macroscopic properties (Bird

1994).

2.2 Compressibility effect

In general for gas microflows in MEMS, the effects of

rarefaction and compressibility are coupled and tend to

conflict with each other (Morini et al. 2004, 2005). The

compressibility is significant when the Mach number

approaches unity. From the classical kinetic theory, the

Knudsen number is related to the Reynolds number Re and

Mach number Ma by:

Kn ¼ k
L0

ffiffiffiffiffi

pc
2

r

Ma

Re
ð3Þ

where c is the ratio of specific heats of the gas. Li et al.

(2000) demonstrated experimentally that the effect of

compressibility can be neglected only for an average Mach

number lower than 0.3, while Colin (2005) recommended

that the compressibility effect should be taken into account

when Ma [ 0.2.

For the rarefaction degree of the gas, it can calculate the

Reynolds number for which the Mach number is less than

0.2. For the Knudsen numbers in the slip flow and early

transition regimes, Fig. 1 illustrates the range of Reynolds

numbers for which the flow can be divided into two zones,

i.e., incompressible and compressible flows. The dividing

line is different for monatomic and diatomic gases. It is

evident that the compressibility effects can be neglected for

high Knudsen numbers only when the Reynolds number is

very low. However, the gas flow at lower Knudsen numbers

can be considered incompressible within a larger range of

Reynolds numbers. Therefore, the coupled effects of
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rarefaction and compressibility on the gas flow in micro-

fluidic devices should be considered simultaneously and

systematically for predicting the microflow characteristics.

2.3 Classification of the flow regime

The classification of rarefied gas flow was originally pro-

posed by Schaaf and Chambre (1961), and the gas flow is

generally divided into four regimes according to the

Knudsen number as follows:

1. For Kn \ 10-2 (the continuum regime), the continuum

and thermodynamic equilibrium assumptions are

appropriate, and the flow can be described by the

N–S equations with conventional no-slip boundary

conditions, although Gad-el-Hak (1999) suggested that

the regime should be changed as Kn \ 10-3 because

of the breakdown in the thermodynamic equilibrium

assumption that was discernible in this range.

2. For 10-2 \ Kn \ 10-1 (the slip flow regime), the non-

equilibrium effects dominate near the walls. The no-

slip boundary condition fails to provide agreement

between theoretical predictions and experimental

results, although continuum conservation equations

can still be used to describe the bulk flow (Karniadakis

et al. 2005; Dongari et al. 2009). However, the gas

microflow can still be analyzed by solving the N–S

equations with slip velocity and temperature jump

boundary conditions.

3. For 10-1 \ Kn \ 10 (the transition regime), the

rarefaction effects dominate and the continuum and

thermodynamic equilibrium assumptions of the N–S

equations begin to break down. The difficulty in

analyzing the transition regime from a continuum

assumption arises from the fact that the stress-strain

relationship for the gas flow becomes nonlinear near

the KL (Barber and Emerson 2006). The slip models

become more complex, and the alternative methods,

such as direct simulation Monte Carlo (DSMC)

method (Bird 1994) or a solving approach derived

from BE (Lilley and Sader 2008), should be taken into

account.

4. For Kn [ 10 (the free molecular regime), the inter-

molecular collisions are negligible as compared with

the collisions between the gas molecules and wall

surfaces (Beskok and Karniadakis 1999; Karniadakis

and Beskok 2002).

This division of the flow regimes is very important in

order to choose the methods used for the modeling and

prediction of the gas microflows. Figure 2 describes dif-

ferent regimes and governing equations of the gas micro-

flow depending on the Knudsen number. As the Knudsen

number increases, the rarefaction effects become more

obvious and eventually the continuum assumption breaks

down. The exploration of the Knudsen paradox and its full

understanding requires consideration of the entire transport

regimes from a small to a large Knudsen number (Dongari

et al. 2010).

The local Knudsen numbers in the above classification

are somewhat empirical and the boundary conditions

among the various gas flow regimes often depend on the

particular microfluidic devices (Barber and Emerson 2006).

Figure 3 shows a graphical representation of the flow

regimes experienced by a range of gas microfluidic devices

reported by Beskok (2001), Karniadakis and Beskok

(2002), and Karniadakis et al. (2005). It can be found that

most microfluidic devices currently operate in the slip flow

or early transition regimes. The simple flow can be pre-

dicted analytically or semi-analytically. However, the rapid

Fig. 1 Validity of the assumption of incompressibility in terms of the

Reynolds numbers as a function of the Knudsen number for

monatomic and diatomic gases (Colin 2005)

Boltzmann equation
Collisionless 
Boltzmann 
equation

Euler 
equation

Navier-Stokes 
equations

Burnett 
equations

Continuum Slip Transition
Free 

molecular

Local Knudsen number

0.0 0.01 0.1 10.0 Kn

Molecular 
model

Continuum 
model

Fig. 2 Classification of the gas flow regimes and governing equations

over the range of Knudsen numbers
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developments of microfabricated techniques can enable the

microfluidic devices to be constructed at sub-micro scale

and thus make the flow enter the transition regime (Barber

and Emerson 2006).

3 Knudsen layer

The Knudsen layer (KL) is an important rarefaction phe-

nomenon and the region of local non-equilibrium extends a

thickness of a few MFPs from the wall in gas microflows

(Zhang et al. 2006a, b). Although the classical kinetic

theory has been extensively used to characterize the KL,

either by solving the linearized Boltzmann equation (LBE)

(Ohwada et al. 1989; Loyalka et al. 1975) or by DSMC

(Bird 1994), the N–S constitutive equations cannot capture

the nonlinear stress/strain-rate behavior within the KL

(Lockerby et al. 2005a; Hare et al. 2007). Approximately

70 % of the mass flow rate increase results from the

velocity slip at the wall, and 30 % of this increase is

attributed to the non-Newtonian structure of the KL

(Lockerby et al. 2005b). Therefore, it is essential to capture

the KL characteristics for modeling rarefied flows at

microscale and nanoscale systems (Lilley and Sader 2008).

Figure 4 shows a typical velocity slip profile within the

KL near a solid wall (Lockerby et al. 2005a; Watari 2010).

In the quasi-equilibrium state (B–C), the flow can be

governed by N–S equations and the KL is employed with

macro slip boundary conditions (Watari 2010). If the actual

velocity slip us (B–D) is taken into account at the boundary

in the KL, the prediction of the velocity profile both inside

and outside the KL is poor (Lockerby et al. 2005a; Hare

et al. 2007). The molecules collide in the surface more

frequently than they impact with each other within the KL

(Gallis et al. 2006). The main drawback of the macro slip

approach is that some part of the gas microflow is defined

fictitiously.

Correct descriptions of the KL are of critical importance

in modeling and designing of gas microflows and in pre-

dicting their performances (Lockerby et al. 2005a, b).

Although lacking a universal description of the KL, it

shows from Fig. 4 that the velocity profile decreases rap-

idly away from the solid wall and is virtually zero outside

the KL. Hare et al. (2007) described two possible approa-

ches, phenomenological model and physical approach, to

simulate the KL effect.

3.1 Description approaches

3.1.1 Wall-function method

The wall-function approach is a phenomenological one,

which can capture the characteristics of the gas microflows

with the KL (Hare et al. 2007). For diffuse scattering of the

gas molecules, Cercignani (2000) provided the velocity

profile in the KL for Kramer’s problem as:

uðyÞ ¼ ku yþ 1:1466k� kI
y

k

� �h i

ð4Þ

where ku is the velocity gradient in the bulk flow, y is the

distance normal to the wall, and I is a function which

represents the velocity defect in the KL.

Lockerby et al. (2005a) presented a wall-function model

to study the velocity profile within the KL with a curve-

fitting approximation from the kinetic theory data. With the

wall function Iðy=kÞ � 7=20ð1þ y=kÞ�2
, the velocity

profile can be written as:

Fig. 3 Characteristic length scales of typical microfluidic devices

and the corresponding Knudsen number at standard atmospheric

conditions reported by Beskok (2001), Karniadakis and Beskok

(2002) and Karniadakis et al. (2005)

( )Ο λ

wu

su

*
su

y

Fig. 4 Schematic of the Knudsen layer with gas microflow near a

solid wall. Actual velocity profile (continuous line) and velocity

profile (dash lines) predicted by N–S equations with a slip boundary

condition within the KL (Lockerby et al. 2005a; Watari 2010)
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uðyÞ ¼ ku yþ 1:1466k� 7

20
1þ y

k

� ��2
� �

ð5Þ

The wall function shows the velocity gradient equals to

1.7 at the wall. However, this model does not consider the

accommodation coefficient and is limited at a relatively

low Knudsen number up to 0.1 for planar surfaces (Hare

et al. 2007). Zheng et al. (2006) addressed a formulation of

the wall function incorporating the accommodation

coefficient to explain this problem.

3.1.2 Higher-order continuum model

Higher-order continuum model can be regarded as an

appealing strategy to capture the KL effect (Guo et al.

2007a, b). Some models beyond the N–S equations, such as

the Burnett, BGK–Burnett, and super-Burnett models, had

been proposed (Zhong et al. 1993; Jin and Slemrod 2001;

Struchtrup and Torrilhon 2003; Balakrishnan 2004). These

models are usually derived from LBE using the Chapman–

Enskog expansion and truncating at certain orders (Cer-

cignani 1988). Lockerby et al. (2005b) explained as to why

there are so many different higher-order models with three

basic reasons: (1) constitutive relations of higher-order

than the N–S equations have indicated potential in mod-

eling rarefied flows; (2) all these models depend on the

numerical and physical instability; and (3) no single

equation has the ability to predict the important non-

equilibrium effects in the rarefied gas microflows.

The velocity profile predicted by the super-Burnett

equations can be given by (Lockerby et al. 2005b):

uðyÞ ¼ ks1 þ kuyþ ks2 cosðks3yÞ þ ks4 sinðks3yÞ ð6Þ

where ks1*ks4 are constants.

Lockerby et al. (2005b) considered the velocity gradient

from the wall and developed an expression to approximate

the KL as:

uðyÞ ¼ ku yþ k

ffiffiffi

2

p

r

þ 7

10CL

k 1� e�CLy=k
� �

" #

ð7Þ

where CL depends on the hydrodynamic model, and CL ¼
ffiffiffiffiffiffiffiffi

p=2
p

for the BGK–Burnett equation; CL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

5p=54
p

for

the regularized Burnett equation; CL ¼
ffiffiffiffiffiffi

3p
p

for Zhong’s

augmented Burnett equation; and CL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

5p=18
p

for the

R13 equation (Lockerby et al. 2005b). CL = 1 represents

that the velocity profile is very close to the results obtained

from both the LBE and DSMC simulations for Kramer’s

problem (Zheng et al. 2006). However, these extended

continuum models are exposed to some criticisms and the

validity of the Chapman–Enskog expansion in the KL is

questionable (Cercignani 1988). Moreover, these higher-

order models cannot even capture the KL for the simple

Kramer’s problem (Lockerby et al. 2005b). Lilley and

Sader (2008) discussed that the wall function, various

hydrodynamic models, and Fichman and Hetsroni models

(Fichman and Hetsroni 2005) do not capture the asymptotic

form of the velocity profile in the KL near the wall.

3.1.3 Power-law model

The lattice Boltzmann method (LBM) can be used to

resolve the KL; in this method the wall-function approach

can alter the dynamics near the wall by adjusting the

relaxation time or applying the mean-field theory (Zheng

et al. 2006; Guo et al. 2006), and the higher-order con-

tinuum models can be included in the LBM, such as the

Burnett, super-Burnett, Grad 13-moment, or beyond

(Aidun and Clausen 2010). However, the higher-order

continuum model cannot provide a proper treatment of the

boundary conditions at the wall (Gu and Emerson 2007;

Struchtrup and Torrilhon 2008), and is formally valid

outside the KL (Hadjiconstantinou 2006). The power-law

description is obtained from the LBE and DSMC solu-

tions of the BE (Lilley and Sader 2008), and it indicates

that the velocity gradient singularity comes naturally from

the BE.

Lilley and Sader (2007) used the solutions from LBE

and DSMC calculations to examine the KL, and discovered

that the bulk gas velocity can be accurately described by

the remarkably simple power-law behavior as:

uðyÞ � uð0Þ / yap ð8Þ

where ap & 0.8 applies for HS molecules near a diffusely

reflecting wall. The expression establishes the existence of

a velocity gradient singularity at the wall, which cannot be

captured by the higher-order continuum model (Lockerby

et al. 2005b) and wall-function model (Lockerby et al.

2005a).

Lilley and Sader (2008) also presented the entire

velocity profile including the KL as:

~uð~y; rvÞ ¼ ~uð0; rvÞ þ CLðrvÞ~y
apðrvÞ ð~y\1Þ

~nðrvÞ þ ~y ð~y [ 1Þ

�

ð9Þ

where rv is the tangential momentum accommodation

coefficient (TMAC), ~u ¼ u=apk and ~y ¼ y=k. The func-

tional dependencies of ~uð0; rvÞ, CLðrvÞ, apðrvÞ, and ~nðrvÞ
on rv were determined empirically as: ~uð0; rvÞ ¼ 2:01=rv

�1:39þ 0:19rv, CLðrvÞ ¼ 1:58� 0:33rv, apðrvÞ ¼ 0:69þ
0:13rv, and ~nðrvÞ ¼ 2:01=rv � 0:73� 0:16rv, respec-

tively. Lilley and Sader (2008) suggested that the power-

law description is a general physical phenomenon.
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3.2 Knudsen layer thickness

The KL thickness can be approximated by lc and given by

(Gusarov and Smurov 2002):

lc ¼
kBT

pd2p
ð10Þ

where kB is the Boltzmann constant, T is the absolute

temperature, and p is the gas pressure.

The thickness of KL is of the order of a few MFPs and

can be predicted with the kinetic theory and DSMC sim-

ulation quantitatively. A comparison of the KL thickness

obtained with various approaches is listed in Table 1. It can

be seen that the solution obtained from the kinetic theory

distinguishes from the DSMC data and MD simulation.

The thickness calculated by kinetic theory is about 1.4 k
and those obtained by various higher-order continuum

models are in the range from 0.9 k to 4.9 k (Lockerby et al.

2005b), and that simulated by molecular dynamics (MD)

method is 2.5 k (Galvin et al. 2007).

4 Theory description

In this section, we review and discuss theoretical descrip-

tions focusing on the physics of problems of engineering

interest in the velocity slip at the wall.

The concept of the slip boundary condition was first

presented by Navier and shown schematically in Fig. 5. In

Navier’s model, the magnitude of the slip velocity us is

proportional to the magnitude of the flow shear rate at the

wall:

us ¼ Ls

ou

on

	 


S

ð11Þ

where Ls is the slip length. Maxwell first quantified the slip

length of gas flowing over a solid wall. Badur et al. (2011) for

the time analyzed and compared the formulations and

mechanics of the slip boundary conditions based on the con-

cepts of Navier, Stokes, Reynolds, and Maxwell. The history

and formulation of the slip boundary condition is listed in

Table 2, in which the symbols refer to Badur et al. (2011).

4.1 Gas-surface interaction: kinetic theory

In the kinetic theory, the gas-surface interaction forms a

boundary condition between the gas molecules and the

solid wall. It is important to investigate the gas-surface

interaction for understanding the gas microflows. The

microflow near a wall is strongly influenced by the gas-

surface interaction, which can be governed by the typical

models, such as the Maxwell (elastic-diffuse) model or the

Cercignani–Lampis (CL) model (McCormick 2005).

Although various gas-surface interaction models have been

proposed since Maxwell in 1879, the validity of these

models remains under question for rarefied flow conditions.

The slip effect should be considered to make a correction

based on the degree of non-equilibrium near the wall.

4.1.1 Maxwell model

Maxwell (1879) proposed the first and most fundamental

description of the gas-surface interaction with two pro-

cesses, i.e., incidence and reflection. When combining

these two processes, the classical description of the

velocity slip in rarefied gases in vector form is given by

(Lockerby et al. 2004):

u~s ¼ �
ð2� rvÞ

rv
� k

l
� s~� 3

4

ðc� 1Þ
c
� Pr

p
� q~ ð12Þ

where u~s is the tangential slip velocity of the gas, s~ is the

tangential shear stress, l is the gas viscosity, Pr is the

Prandtl number, and q~ is the heat flux. The molecular MFP

k is defined as:

k ¼ l
ffiffiffiffiffiffiffiffi

p
2qp

r

ð13Þ

where q is the gas density.

However, the Maxwell’s gas-surface interaction model

describes the momentum and energy transport together and

considered just one parameter rv, which is widely used to

calculate tangential momentum transport and varies from

zero (specular reflection) to unity (diffuse scattering) (Wu

and Bogy 2001; Lockerby et al. 2004; Lockerby and Reese

2008). However, the Maxwell model is only applicable for

the gas flows where the rarefaction and roughness effects

are not evident (Cao et al. 2009). For rarefied flows

involving a significant amount of intermolecular collisions,

it is necessary to obtain the re-emitted molecular property

distributions. Maxwell presented a one-dimensional

expression for the shear stress as:

Table 1 Knudsen layer thickness predicted by the kinetic theory,

various higher-order continuum models, MD and DSMC data from

(Lockerby et al. 2005b)

References Solution method Thickness

Cercignani (1990) LBE 1.4k

Zhong et al. (1993) Augmented Burnett 0.9k

Jin and Slemrod (2001) Regularized Burnett 4.9k

Struchtrup and Torrilhon (2003) R13 equation 2.8k

Balakrishnan (2004) BGK–Burnett 2.1k

Hadjiconstantinou (2006) LBE 1.5k

Galvin et al. (2007) MD simulation 2.5k

Lockerby and Reese (2008) R13 equation 2.0k
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us � uw ¼ rpk
ous

on

	 


S

þ 3

4

l
qT

oT

on

	 


S

ð14Þ

where n is the coordinate normal to the wall, us is the slip

velocity, uw is the wall velocity, and rp ¼ asð2� rvÞ=rv is

the slip coefficient, in which as is a controversial coeffi-

cient and will be discussed in Sect. 5. Maxwell (1879) first

estimated the coefficient and assumed that the incident

molecules have the same distributions as those in the midst

of the gas, and obtained as ¼
ffiffiffi

p
p

=2. This slip boundary

condition can provide useful prediction for certain gas

microflows (Hare et al. 2007).

When the thermal creep effects due to the axial tem-

perature gradient are neglected, the first-order slip bound-

ary condition can be written as:

us � uw ¼ rpk
ous

on

	 


S

ð15Þ

In the case of wall with curvature, the slip boundary

condition at the wall in two dimensions becomes

(Lockerby et al. 2004):

us � uw ¼ rpk
ous

on
þ oun

oxt

	 


S

ð16Þ

where un is the gas velocity normal to the wall and xt is the

coordinate tangential to the wall. The additional derivative

q un/q xt should also be considered for microfluidic devices

with significant roughness inducing two components of the

velocity close to the wall (Colin 2012). However, the first

term at the right hand side is the order of OðKnÞ, while the

second term is the order of OðKn2Þ, which were often

modified as ou=oxt or neglected, or improved by adding a

correction term in theoretical analyses (Khadem et al.

2009; Hossainpour and Khadem 2010; Colin 2012).

To et al. (2010) derived a slip model for gas microflows

induced by external body forces based on Maxwell’s col-

lision theory between gas molecules and the wall. The slip

boundary condition yields:

us � uw ¼ rpk bT

cT

�c
þ oun

on

	 


S

ð17Þ

where cT is the molecular acceleration, �c is the thermal

speed of the gas, bT denotes a constant, which denotes the

difference between the idealized condition used to derive

the slip model and the realistic one and is expected to be

close to unity.

Second-order boundary conditions have been proposed

in the literature (Karniadakis et al. 2005; Barber and

Emerson 2006; Dongari et al. 2007; Weng and Chen 2008)

and the general form can be expressed as:

us � uw ¼ C1k
ous

on

	 


S

þC2k
2 o2us

on2

	 


S

ð18Þ

where C1 and C2 are the first- and second-order slip coef-

ficients, respectively.

From the tangential momentum flux analyses, Beskok

and Karniadakis (1996) and Beskok and Karniadakis

(1999) derived a high-order slip boundary condition for an

isothermal surface in the following form:

us ¼
1

2
uk þ ð1� rvÞuk þ rvuw½ � ð19Þ

where uk is the tangential component of gas velocity one

MFP away from the surface. The boundary condition

predicts accurate wall slip velocity when Kn \ 0.5,

although resulting in poor mass flow rate prediction

(Karniadakis et al. 2005). Using a Taylor series expansion

of uk about us (Beskok and Karniadakis 1999), yields:

us � uw ¼ rp k
ous

on

	 


S

þ k2

2

o2us

on2

	 


S

þ k3

3!

o3us

on3

	 


S

þ � � �
� �

ð20Þ

sL suSolid

Gas

(a) No-slip (b) Partial slip

Fig. 5 Schematic diagram of slip at a gas–solid interface

Table 2 The history and

formulation of the slip boundary

condition (Badur et al. 2011)

Author Formulation

Navier (1823) vv ¼ 2ldn

Stokes (1845) ð�x� p� ctrPsÞnþ vðv� vwallÞ þ 2ldn� 2ldnþ 3jdn ¼ 0

Reynolds (1879) vðv� vwall � cv�xgrads �x� cvhgradsh� cvNgradsNÞ þ ðp� �xÞn� 2ldnþ 2bdð2Þn ¼ 0

Maxwell (1879) v� Gðdv
dx
� 3ld

2
h

2qhdxdy
Þ � 3ldh

4qhdy
¼ 0

Badur et al.

(2011)
ðv� vwall � cvhgradshþ

p

v
n� 2lsdnþ 2

3
lsIdnþ b1

2v
ðgradgþ gradTgÞnþ b2

v
ðdivgÞn ¼ 0
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Attempts to implement the above slip boundary

condition using numerical simulation methods are rather

difficult. Second-order and higher derivatives of velocity

cannot be computed and simulated accurately near the wall

(Gad-el-Hak 1999).

Zhang et al. (2010a, b) considered the effect of relative

position of the slip surface in the KL on the slip boundary

condition and developed a new slip model in the form:

us� uw ¼
1�ð1�CZÞrv

rv
k

ous

on

	 


S

þk2

2
ð1�CZÞ

o2us

on2

	 


S

� �

ð21Þ

Compared with the classical second-order slip boundary

condition proposed by Beskok and Karniadakis (1999), the

coefficient CZ ¼ ns=k (CZ 2 ½0;1�), in which ns is the

distance between the wall and the slip surface, is proposed

in the corrected second-order boundary condition. The

corrected second-order slip boundary condition was used to

solve the N–S equations for confined fluids at the

microscale and nanoscale (Zhang et al. 2012a, b).

4.1.2 Cercignani–Lampis (CL) model

To provide a more physical description of the gas-surface

interaction, the CL model was presented to satisfy the

fundamental scattering kernel principles and distinguish

the momentum and energy accommodation coefficients

(Albertoni et al.1963; Cercignani and Lampis 1971; Loy-

alka et al. 1975; Ohwada et al. 1989; Garcia and Siewert

2010).

Klinc and Kuscer (1972) presented the variation result

for the slip coefficient rp for the CL gas-surface model as:

rp;K ¼
lf

l

	 
2 ffiffiffi

p
p

2

2� r25

r22

1þ 2r22ð2� r55Þ
pð2� r25Þ

� r25

2

� �

ð22Þ

where r22 = r25 = rv and r55 is the coefficient depending

on the energy accommodation coefficient rn, lf is defined

to be the first-order approximation to the viscosity l as

computed by Chapman and Cowling (1970), and lf/l = 1

for Maxwellian molecules and lf/l = 0.984219 for rigid-

sphere gas interactions (McCormick 2005). This expres-

sion agrees identically with the analytic equation for the

velocity slip coefficient derived from a different variational

approach by Cercignani and Lampis (1989).

McCormick (2005) deduced the relationship between

r55 and rn, and gave the CL gas-surface interaction model

and rigid-sphere gas interaction including rv and rnas:

rp;M ¼ 0:9687

ffiffiffi

p
p

2

2�rv

rv
1þ 0:1366rv

KMð1�rvÞð1�rnÞ
2�rv

� �

ð23Þ

where . The combination of rv = 0 and rn = 0 corre-

sponds to the specular reflection and the combination of

rv = 1 and rn = 1 refers to the diffuse scattering.

In addition, Lord (1991, 1995) presented a transforma-

tion of the CL model with the DSMC method and extended

it widely to rarefied gas microflows. The Maxwell model

and the Cercignani, Lampis and Lord (CLL) model are the

most common gas-surface interaction models used with the

DSMC method.

4.2 Gas-surface molecular interaction: surface

adsorption theory

A physical approach can be developed to describe the slip

effect by considering the interfacial interaction between the

gas molecules and surface (Langmuir 1933; Myong et al.

2005). In this approach, the gas molecules are assumed to

interact with the surface of the solid via a long range force,

and consequently the gas molecules can be adsorbed onto

the surface (Langmuir 1933). The Langmuir slip model

based on the surface chemistry theory can be explained by

surface adsorption isotherm.

Using the Langmuir adsorption isotherm, the Langmuir

slip model had been developed by Eu et al. (1987) and

Myong (2001, 2004a, 2005), for the gas-surface molecular

interaction and the velocity slip can be expressed as:

us ¼ aMuw þ ð1� aMÞuloc ð24Þ

where the subscript loc denotes the local value adjacent to

the wall. aM is the fraction of the surface covered by

adsorbed atoms at thermal equilibrium and aM ¼ bMp=ð1þ
bMpÞ and aM ¼

ffiffiffiffiffiffiffiffiffi

bMp
p

=ð1þ
ffiffiffiffiffiffiffiffiffi

bMp
p

Þ for monatomic and

diatomic gas molecules, respectively (Myong 2004b). The

parameter bMis a function of the interfacial interaction

parameters KM and the wall temperature T and can be

expressed as bM = KM/kBT. bM plays a crucial role on the

reaction constant for gas-surface molecule interaction

(Choi and Lee 2008) and it has the simplest expression as:

bM ¼
1

4xMKn
ð25Þ

where xM is a function of the interaction parameters and

shows very similar to the slip coefficient rp in Maxwell

model (Myong 2004a). Myong et al. (2005) pointed out that

the slip coefficient xM in the Langmuir model is a physical

parameter of heat adsorption while the accommodation

coefficient rv in the Maxwell model is a free parameter from

the concept of diffusive reflection. Comparisons of the slip

flows between the Maxwell model and Langmuir model

using the LBM were reported by Kim et al. (2007) and Chen

and Tian (2010). Zhang (2011) reviewed that the slip

models were specified in the boundary treatments as the
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input to match empirical or analytical descriptions. The

boundary slip observed from LBM simulations is more

phenomenal than physical as those from other methods,

such as numerical results from the BE and DSMC method

(Guo and Zheng 2008; Zhang 2011).

5 Slip coefficient and model

The no-slip boundary condition is assumed to apply at the

solid–fluid interface under normal conditions. However, it

is well known that at higher Knudsen number this condi-

tion is violated and the gas slips at the wall (Dongari et al.

2007). Maxwell (1879) first proposed a first-order slip

model to calculate the slip velocity at the wall for atomi-

cally smooth walls. Later many other heuristic extended

slip models have been proposed even for atomically rough

walls and are comprehensively summarized by Karniadakis

et al. (2005). Slip models have been proposed to improve

the predictions of continuum methods for the non-equi-

librium regions near solid boundaries. The idea is to relax

the traditional no-slip boundary condition to allow the

rarefied gas to slip at the wall (Mcnenly et al. 2005).

Brenner (2011) offered a simple macroscopic approach to

the question of the slip boundary condition to be imposed

upon the tangential component of the slip velocity at a

solid boundary.

The slip coefficient provides simple conditions for gas

dynamic problems (McCormick 2005). However, experi-

mental studies revealed that large discrepancies between

the experimental results of the slip coefficients and the

theoretical values proposed in the literature (Maurer et al.

2003; Barber and Emerson 2006; Ewart et al. 2007a;

Agrawal and Prabhu 2008a, b). Lacking of well-founded

and rigorously derived value of the slip coefficient makes it

difficult to investigate the real capabilities of the N–S

equations and to extend slip flow predictions into the

transition regime (Cercignani and Lorenzani 2010).

Robust slip-flow models are always preferred as alter-

natives since the difficulty in solving the N–S equation is

negligible compared with the cost of these alternative

methods (Hadjiconstantinou 2006). The detailed methods

and techniques to obtain the slip coefficients can be found

in the literature. The various values of the slip coefficients

and the determination methods are reviewed and discussed

in this section.

5.1 Determination methods and techniques

5.1.1 Kinetic-model based method

Various kinetic models have been reported to calculate the

slip coefficient at the gas–solid interaction. Loyalka et al.

(1975) considered the KL effect and calculated the slip

coefficient using the Bhatnagar–Gross–Krook (BGK)

kinetic model and a Maxwell diffuse-specular scattering

kernel. A simple modified expression of the slip coefficient

S with the accommodation coefficients rv was proposed by:

SðrvÞ ¼
2� rv

rv
Sð1Þ � 0:1211ð1� rvÞð Þ ð26Þ

where S(1) is the slip coefficient for rv = 1 and equals to

1.016, i.e., the value obtained theoretically by Albertoni

et al. (1963). Porodnov et al. (1974) provided the experi-

mental data of the slip coefficient and the corresponding

values of rv for some gases and showed that the slip

coefficient is higher than unity for light gases, such as

helium and neon.

Gabis et al. (1996) presented a spinning rotor gauge

model to describe the torque that an unbounded gas of rigid

sphere molecules inducing on a macroscopic sphere and

introduced an estimation of the slip coefficient by:

SðrvÞ ¼
5p
16

2� rv

rv
1þ rvð4xG � pÞ

2p

	 


ð27Þ

where xG is a constant and xG = 0.94146.

Siewert and Sharipov (2002) and Sharipov (2003) used

the Sharipov’s kinetic model to determine the slip coeffi-

cient with the CL boundary condition, and obtained that the

slip coefficient weakly depends on the energy accommo-

dation coefficient rn (rn = 1) and can be expressed as:

SðrvÞ ¼
1

rv
ð2� rvÞSð1Þ � 2ð1� rvÞSð2Þ½ � ð28Þ

The experimental data from Porodnov et al. (1974) can

also be used to verify the perfect accommodation coefficients.

Equation (28) provides more reliable relation of the slip

coefficient with the momentum accommodation coefficient,

which can be measured by the mass flow rate easily in the free

molecular range (Siewert and Sharipov 2002).

To compare the dependence of slip coefficient on the

different gas-surface interactions, McCormick (2005)

deduced the approximate analytical expressions of the slip

coefficient with three boundary conditions. For the Max-

well gas-surface model and CL gas-surface interaction

model, the slip coefficients can be written as:

SM ¼ 0:9687

ffiffiffi

p
p

2

2� rv

rv
1þ 0:1366rvð Þ ð29aÞ

and

SCL ¼ 0:9687

ffiffiffi

p
p

2

2� rv

rv
1þ 0:1366rvð Þ 1þ KMð1� rvÞ2

2� rv

 !" #

ð29bÞ

where KM = 1 refers to the rigid-sphere gas interaction.

When rv = 1, the slip coefficient SM = SRS = 0.97576
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and SCL = 0.97577 for the Maxwell model, rigid-sphere

model and CL model, respectively, while SS = 0.98733

obtained by Siewert (2003).

Sharipov (2011) compared the results corresponding to

the CL scattering law with the data obtained by applying

the BE and presented the following expression:

SS ¼
1:772

rv
� 0:754 ð30Þ

For a single gas under the assumption of diffuse

scattering, Sharipov and Seleznev (1998) and Sharipov

(2011) summarized that the values of the slip coefficient

based on all kinds of models vary in the range of

0:968� rp� 1:03. Sharipov and Seleznev (1998), Siewert

and Sharipov (2002), and Sharipov (2011) also presented

and reviewed the data on the slip coefficient based on

diffuse-specular scattering kernel for the Maxwell boundary

condition. Table 3 presents the numerical results based on

various models, including the BGK model (Loyalka et al.

1975; Sharipov 2011), the LBE (Wakabayashi et al. 1996;

Siewert 2003), the S-model (Siewert and Sharipov 2002)

and the MC-model (McCormick 2005). It can be seen that

the values of the slip coefficient obtained from the LBE

(Wakabayashi et al. 1996; Siewert 2003) are slightly

smaller than unity. The BGK models (Loyalka et al.

1975; Sharipov 2011) provide the value slightly larger

than unity. Therefore, the analytical solutions (26) and

(29a, 29b) provide values close to those numerical results

and can be successfully used in practical predictions and

calculations.

5.1.2 Polynomial expansion approach

In slip flow and near transition regimes, the experimental

mass flow rate data can be fitted with first- and second-

power polynomial forms of the Knudsen number using a

nonlinear least-squares method (Maurer et al. 2003), that

yields:

S ¼ 1þ Aexp
j Knþ Bexp

j Kn2 ð31Þ

where Aexp
j and Bexp

j are the coefficients obtained by the

nonlinear least-squares Marquard–Levenberg algorithm, in

which j denotes the order of the polynomial (Ewart et al.

2007b).

Aubert and Colin (2001) considered a pressure-driven

flow in the rectangular microducts and calculated the sec-

ond-order model for slip flow between parallel plates using

the boundary conditions from Deissler (1964), the poly-

nomial expression is given by:

S ¼ 1þ aAC1

KnO

Pþ 1
þ aAC2

Kn2
O

P2 � 1
InðPÞ ð32Þ

where aAC1 and aAC2 are the coefficients depending on the

ratio of the cross-section of the microchannel and

momentum accommodation coefficient.

Roohi and Darbandi (2009) presented an IP (information

preservation)-based slip coefficient model as:

S ¼ 1þ aR1

KnO

Pþ 1
þ Kn2

O

1�P2
51InðPÞ þ 34:07InðaR1Þð Þ

ð33Þ

where aR1 and aR2 are defined as aR1 ¼ 11:72þ
42:253

1þð0:21þ0:47=KnOÞð0:21þ0:47P=KnOÞ and aR2 ¼ 1þ0:89KnOþ4:7Kn2
O

P2þ0:89KnOPþ4:7Kn2
O

.

For the general form of the second-order boundary

condition, the coefficient is deduced using the IP scheme as:

S ¼ 1þ 12C1

KnO

Pþ 1
þ 12C2

Kn2
O

P2 � 1
InðPÞ ð34Þ

where KnO is the Knudsen number outlet, P is the ratio of

the inlet and outlet pressures, and C1 = (2 - rv)/rv and

C2 = 9/8 (Aubert and Colin 2001). Arkilic et al. (1997)

Table 3 Comparison of the slip coefficient for the Maxwell boundary condition

SðrvÞ

rv BGK

(Loyalka et al. 1975)

LBE (Wakabayashi

et al. 1996)

S-model (Siewert and

Sharipov 2002)

LBE

(Siewert 2003)

MC-model

(McCormick 2005)

BGK

(Sharipov 2011)

0.1 17.1031 17.0058 17.1129 17.0478 16.5341 17.0683

0.2 8.2249 8.1524 8.2334 8.1725 7.9375 8.1939

0.3 5.2551 5.1928 5.2625 5.2056 5.0641 5.2278

0.4 3.7626 3.7069 3.7690 3.7161 3.6216 3.7386

0.5 2.8612 2.8107 2.8667 2.8176 2.7514 2.8403

0.6 2.2554 2.2093 2.2601 2.2148 2.1673 2.2373

0.7 1.8187 1.7766 1.8226 1.7810 1.7468 1.8032

0.8 1.4877 1.4494 1.4909 1.4529 1.4285 1.4746

0.9 1.2272 1.1925 1.2299 1.1954 1.1783 1.2163

1.0 1.0162 0.9849 1.0184 0.9873 0.9758 1.0073
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proposed an experimental investigation on the gaseous slip

flow in long microchannels for accurately measuring the

mass flow and obtained the first-order slip coefficient

S ¼ 1þ 12C1
KnO

Pþ1
.

5.1.3 DSMC method

From the definition of slip flow, the slip coefficient should

be affected not only by the macro-parameters (temperature

and speed of solid wall), but also the micro-parameters (the

mass, diameter and number density of gas molecules) (Pan

et al. 1999). During the past decades, a series of test cases

were performed using the DSMC method to study the slip

coefficient.

Pan et al. (1999) synthesized Bird’s conclusion (Bird

1994) and discussion from Beskok and Karniadakis (1994)

and expressed a general slip coefficient in the form:

S ¼ S UW; kBT ;m; d; n; Lcð Þ ð35Þ

where Lc is the local characteristic length, and kBT is the

average kinetic energy parameter. The slip coefficient is

easy to determine from the numerical calculations using the

DSMC method (Bird 1994) by:

Sl ¼ Lc

Ul
g

Uu
g � Ul

g

; Su ¼ Lc

Uw � Uu
g

Uu
g � Ul

g

ð36Þ

where Sl and Ul
g are the slip coefficient and the gas flow

velocity at the lower plate, respectively; and Su and Uu
g are

the slip coefficient and the gas flow velocity at the upper

plate, respectively.

Pan et al. (1999) finally obtained the functional rela-

tionship between the slip coefficient and the MFP

S ¼ CPk ð37Þ

where the coefficient CP is determined to CP = 1.1254

using the least squares approach, and concluded that the

slip coefficient is only a function of the MFP excluding any

experiential parameter.

Mcnenly et al. (2005) selected the N–S solution from the

family that best fits the DSMC data by performing a linear

least-squares fit of the DSMC velocity profile with:

Gc ¼
Suy

� �

c

Syy

� �

c

ð38Þ

where Suy and Syy are the relative position and velocity

parameters in the DSMC cell. The slip coefficient can be

determined to best capture the non-equilibrium flow as:

S ¼ DU � Gc

2 ð2� rVÞ=rVð ÞGcKn
ð39Þ

where DU is the velocity drop between the lower and upper

wall velocities. Ng and Liu (2002) devoted to develop an

improved slip model, called the stress-density ratio model,

applicable especially to transition regime by the DSMC

method for the ultra-thin film gas lubrication. The shear

stress on the wall is produced by the definition in DSMC

as:

sN ¼ �ngðmuN1uN2Þ wallj ð40Þ

where uN1 and uN2 are the components of molecular

velocity. The slip coefficient can be obtained from DSMC

results as:

S ¼ usq
sN

ð41Þ

5.1.4 Linearized Boltzmann method

There are considerable successes in extending the N–S

equations with high-order slip boundary condition into the

transition regime. In order to provide analytical expressions

for the first- and second-order velocity slip coefficients,

Cercignani and Lorenzani (2010) and Lorenzani (2011)

considered the LBE for HS molecules and used the CL

scattering kernel to describe the gas-wall interaction. The

BE can be linearized about a Maxwellian fM0 by:

fB ¼ fM0ð1þ hBÞ ð42Þ

where fB is the distribution function for the molecular

velocity and hB is the small perturbation on the basic

equilibrium state. The LBE had been solved by considering

the BGK model of the collisional Boltzmann operator

(Cercignani and Lorenzani 2010; Lorenzani 2011).

The slip factor in terms of deviations from asymptotic

near-continuum solutions of the BE can be given by:

S ¼ 1þ 2
ffiffiffi

p
p rL0rL1ð Þ
� �

Knþ 4

p
rL0rL2ð Þ

� �

Kn2 ð43Þ

where rL0 ¼ 4
ffiffiffi

p
p
ð Þ�1 96

p JL1 þ 48
ffiffiffi

p
p �

, rL1 ¼ 4
ffiffiffi

p
p

atð
ALÞ�1 DL � 16

9
patCL

 �

, rL2 ¼ 4
ffiffiffi

p
p

atALð Þ�1 eL þ 16
9

patC
2
L



� 16
9

patB
2
L � CLDL�, in which the relative parameter was

reported by Lorenzani (2011). The first-order and second-

order coefficients can be written as C1 ¼ rL0rL1=ð3
ffiffiffi

p
p
Þ and

C2 ¼ rL0rL2=ð3pÞ according to the solution of the N–S

equations obtained by S ¼ 1þ 6C1Knþ 12C2Kn2. To check

the reliability of the analysis approach, Lorenzani (2011)

compared the first-order slip coefficient with the highly

accurate numerical results from Siewert (2003), and found that

the BGK first-order slip coefficients are similar to those

determined by the solution of the BE for HS molecules. The

second-order slip coefficients were found to be significantly

dependent on the interaction models, such as the Maxwell

kernel and the CL model. In the case of a fully diffusive

boundary rv = 1, Cercignani and Lorenzani (2010) predicted

the model performs well even further into the transition
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regime, while Hadjiconstantinou’s second-order slip model

(Hadjiconstantinou 2003) and Lockerby’s Maxwell–Burnett

slip model (Lockerby et al. 2004) only capture the flow

accurately up to Kn \ 0.4 and Kn B 1.60, respectively.

5.1.5 Lattice Boltzmann method (LBM)

Modeling of microscale and nanoscale flows has been an

active application area for the research of LBM (Zheng

et al. 2006; Li and Kwok 2003). Cornubert et al. (1991)

presented the first analysis of the slip velocity using the

LBM, in which the slip velocity was demonstrated ana-

lytically and numerically for the bounce-back and specular

reflection boundary conditions. This method has proved to

be effective when dealing with microflow of moderate

Knudsen number and has some success at predicting the

KL (Aidun and Clausen 2010). When the gas microflows

beyond the slip flow regime, a higher-order LBM needs to

provide a quantitative prediction as well as to reproduce the

presence of the KL (Shan et al. 2006; Ansumali et al.

2007). Recently, Zhang (2011) reviewed and discussed the

models and applications of the LBM for microfluidics.

Kim et al. (2008) presented an analytic solution of the

D2Q9 LBE for Poiseuille flow. To obtain a correct value of

the slip coefficient, the effective diffuse scattering condi-

tion was introduced by combining the diffuse scattering

boundary condition and the bounce-back scheme. The slip

coefficient in the general form of the second-order

boundary condition can be given by:

S ¼ 1þ
ffiffiffi

6

p

r

1� rK

1þ rK

Knþ 4

p
� f ðrqÞ � Kn2 ð44Þ

where rK is the fraction of gas particles reflected with the

bounce-back rule and it influences only the first-order slip

coefficient when f ðrqÞ ¼ 1. Sbragaglia and Succi (2005)

suggested that the construction of the body force in the

LBM should be modified to adjust the second-order slip

coefficient. When the energy flux term is taken into

account, f ðrqÞ satisfies f ðrqÞ ¼ 1=rq, in which rq is set to

0.9 for matching the mass flow rate of the LBE to the

second-order of Knudsen number. A general lack of

agreement exists in the definition of Kn and k in the LBMs,

which should be considered to allow comparison with

existing experimental and analytical results (Guo et al.

2006; Aidun and Clausen 2010).

For the modified LBE with the effective diffuse scat-

tering boundary condition (Kim et al. 2008), the normal-

ized slip velocity with discrete lattice effects can be written

as:

S ¼ 1þ
ffiffiffi

6

p

r

1� rK

1þ rK

Knþ 4

p
1

rq

Kn2 � 1

NK

ð45Þ

where NK is the index of the fluid lattices. The problem of

discrete effects in the kinetic boundary condition was also

addressed by Guo et al. (2007a, b). Watari (2009) con-

ducted the velocity slip simulations in the slip flow regime

using a multispeed finite-difference lattice Boltzmann

method (FDLBM).

5.1.6 Experimental measurement

Kuhlthau (1949) presented the experimental setup con-

sisting of a rotating inner cylinder with radius R1 and sta-

tionary outer cylinder with radius R2 with a low pressure

gas in the gap. Agrawal and Prabhu (2008a) examined the

experimental data of Kuhlthau (1949) and deduced the slip

coefficient in the form:

S ¼ dTr

dxr

1

R2
2 � R2

1

	 


þ 4plLrCF

� �

dTr

dxr

ð2kÞ 1

R3
1 þ R3

2

	 
� ��1

ð46Þ

where Tr is the torque, xr is the angle velocity, Lr is the

length of the inner cylinder, and CF is the correction factor

and CF = 1.91. Agrawal and Prabhu (2008a) suggested

from the analysis on Kuhlthau’s data that S = 0.13 for

Kn \ 0.1 and S = 1.70 for 0.1 \ Kn \ 8.3.

Maurer et al. (2003) performed gas flow experiments in

a shallow microchannel and presented new sets of accurate

measurements for a well-resolved range of Knudsen

number. The slip factor was defined as:

S ¼ 12QvlPOL

DPPmwb3
ð47Þ

where Qv is the volumetric flow rate, PO is the outlet

pressure, DP is the pressure drop, Pm is the average pres-

sure, w, b, and L are the width, thickness and length of the

channel, respectively.

A development of slip factor was proposed in the form

S � 1þ 6C1Knþ 12C2Kn2 ð48Þ

Agrawal and Prabhu (2008b) summarized the

experimental measurements of the values of slip

coefficients as reported by Sreekanth (1969), Ewart et al.

(2007a, b), Maurer et al. (2003), and Yamaguchi et al.

(2011), as listed in Table 4. The principle of measurement

applied by Ewart et al. (2007b) is similar to that of Maurer

et al. (2003). Since the experimental measurements had

been proposed to certain geometric microdevice or

material, the differences among them are unavoidable.

For instance, Ewart et al. (2007a) performed experimental

measurements in silica microtube with diameter of

25.2 lm, which is different from Yamaguchi et al. (2011)

with diameter of 320 lm.
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5.2 First-order slip model

Velocity field in the slip flow regime can be determined

from the N–S equations subject to the velocity slip

boundary condition. Neglecting the thermal creep effects,

the first-order slip velocity boundary condition is given by

(Maxwell 1879):

Us � Uw ¼ C1Kn
oU

on

	 


S

ð49Þ

where the value of slip coefficient, originally derived by

Maxwell, is C1 = 1.

Bird (1994) used the DSMC method to simulate the

Couette flow using the VHS molecular model and con-

cluded that the slip velocity is very close to koU=on. The

conclusion has a very strong attraction for researchers who

prefer to use the N–S equations with velocity slip boundary

conditions to investigate the slip flow characteristics (Pan

et al. 1999). More accurate values for the slip coefficient

have been determined using BE, DSMC, MD simulations,

and experimental measurements (Maurer et al. 2003;

Bahukudumbi et al. 2003; Bahukudumbi and Beskok 2003;

Agrawal and Prabhu 2008a). Table 5 provides the values

and modified formulations for the slip coefficient in the

literature. The above research represents only a fraction of

the proposed models, yet almost all of them can be con-

sidered an extension of Maxwell’s original model.

Lockerby et al. (2005a) pointed out that the kinetic

theory and molecular simulations indicate Maxwell’s first-

order slip coefficient C1 = 1 is sometimes not quite

accurate and overestimates the amount of microscopic

actual slip velocity (Li et al. 2011). By using an approxi-

mate method in the kinetic theory, Loyalka (1971),

Loyalka et al. (1975), Bahukudumbi et al. (2003) and

Lilley and Sader (2008) had presented the modifications of

Maxwell’s argument. Then, the second-order or higher-

order slip coefficient is believed to play an important role

in simulating rarefied gas microflows at larger Knudsen

numbers. Solutions of the BE for the slip coefficients were

originally obtained for the significantly simpler BGK

model. Early work by Cercignani (1988) and recent results

for the HS gas show that the first-order coefficients are

fairly insensitive to the gas models (e.g., HS, BGK)

(Hadjiconstantinou 2006).

Figure 6 shows the comparison of experimental data of

Maurer et al. (2003) with those derived from other slip

models in the literature. It can be seen that Ewart’s model

(Ewart et al. 2007b) and Maurer’s model (Maurer et al.

2003) agree well with the scattered experimental data

(Maurer et al. 2003) in the entire range of investigated

Knudsen numbers. Porodnov’s model (Porodnov et al.

1974), Colin’s model (Colin et al. 2004) and Pan’s model

(Pan et al. 1999) underestimate the slip coefficients due to

their lacking of the second-order term compared to the

experimental data (Maurer et al. 2003). Colin’s model

(Colin et al. 2004) with the smallest first-order coefficient

(C1 = 1.02) performs the worst prediction. Aubert and

Colin’s model (Aubert and Colin 2001) underestimates the

slip coefficient at smaller Knudsen number and performs

well when Kn [ 0.8. The theoretical analyses proposed by

Fichman and Hetsroni (2005) agree very well with the

experiments in the range of low Knudsen numbers

(Kn \ 0.2). The reason might be, for higher Knudsen

numbers, the interaction of molecules with the opposite

wall should be taken into account as well. Figure 6 also

illustrates that the experimental and analytical slip coeffi-

cients increase much faster than the prediction obtained by

the first-order slip theory (Porodnov et al. 1974; Pan et al.

Table 4 Experimental measurements of the values of slip coefficients

References Gas C1 C2 Knudsen range

Sreekanth (1969) Nitrogen 1.0 0 0.007–0.03

1.1466 0 0.03–0.13

1.1466 0.14 0.13–0.237

Porodnov et al. (1974) Helium 1.099 ± 0.02 0 0.03–0.3

Colin et al. (2004) Helium 1.02 0 0.03–0.25

Ewart et al. (2007a) Nitrogen 1.066 ± 0.088 0.231 ± 0.057 0.003–0.291

Helium 1.052 ± 0.02 0.148 ± 0.014 0.009–0.309

Argon 1.147 ± 0.042 0.294 ± 0.029 0.003–0.302

Maurer et al. (2003) Nitrogen 1.3 ± 0.05 0.26 ± 0.1 0.002–0.59

Helium 1.2 ± 0.05 0.23 ± 0.1 0.06–0.8

Ewart et al. (2007b) Helium 1.26 ± 0.022 0.17 ± 0.02 0.03–0.3

Yamaguchi et al. (2011) Argon 1.3 ± 0.09 0.063 ± 0.018 0.05–0.3

Nitrogen 1.35 ± 0.06 0.031 ± 0.005

Oxygen 1.35 ± 0.06 0.028 ± 0.004
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1999; Colin et al. 2004) in the transition regime, which

indicates that the contribution of second-order slip should

be taken into account.

5.3 Second-order slip model

Various slip models have been proposed to calculate the

slip velocity at higher Knudsen number in the literature. A

simple extension of Maxwell’s model with the second-

order term can be written as:

Us � Uw ¼
2� rv

rv
Kn

oU

on

	 


s

þKn2

2

o2U

on2

	 


s

� �

ð50Þ

For isothermal flows, the slip velocity of all the second-

order slip models can be expressed in a general form when

rv = 1, yields

Us � Uw ¼ C1Kn
oU

on

	 


s

�C2Kn2 o2U

on2

	 


s

ð51Þ

Inclusive reviews of the slip boundary condition choices

were also provided by Colin (2005), Barber and Emerson

(2006), Dongari et al. (2007), Tang et al. (2007a, b), Weng

and Chen (2008), Cao et al. (2009), Chen and Bogy (2010).

They often validated their second-order slip models by

demonstrating the capability of predicting an accurate flow

rate (Li et al. 2011).

So far, there is no general agreement on the values of the

slip coefficients. Slip coefficient in the slip models usually

is investigated in two different means taking rv into

account. One way is to fix the value of rv. For the case of

rv = 1, Table 6 presents a comparison of the values of the

second-order slip coefficients that have been proposed in

the literature. In Hadjiconstantinou’s model (Hadjicon-

stantinou 2003), C2 = 0.61 is used for local velocity dis-

tribution and C2 = 0.31 for mean velocity and friction

factor. For the case of the lubrication microbearings, the

slip model and coefficient are chosen differently according

to their configurations, gas film characteristic length and

surface effect (Ng and Liu 2002; Zhang et al. 2009, 2010a,

b, 2011; Chen and Bogy 2010).

In Table 6, Lockerby et al. (2004) proposed that the

value of the second-order slip coefficient should be in the

range of 0.145–0.19, which depends on the Prandtl number

of the gas flow but irrespective of the values of the

accommodation coefficient. The estimation approach pro-

posed by Lorenzani (2011) and Cercignani and Lorenzani

(2010) to obtain the second-order slip coefficients seems

Table 5 Some values and modified formulations for the first-order slip coefficients

References Value/formulation Approach Limited range

Maxwell (1879) 1 MD theory Kn� 0:1

Ohwada et al. (1989) 1.114 LBE Kn� 0:1

Marques et al. (2000) 1.111 Theoretical analysis Kn� 0:25

Albertoni et al. (1963) 1.1466 BGK kinetic model Kn\0:1

Siewert (2003) 1.1487 LBE and C–L boundary condition Kn\0:1

Wakabayashi et al. (1996) 1.1114 LBE Kn\0:1

Loyalka (1971) 0.7252 BGK kinetic model Kn\0:1
2�rv

rv
ð1� 0:1871rvÞ BGK kinetic model Kn\0:1

Loyalka et al. (1975) 1.0299 BGK kinetic model Kn\0:1
2�rv

rv
ð1þ 0:1621rvÞ BGK kinetic model Kn\0:1

Lockerby et al. (2005a)
ffiffiffiffiffiffiffiffi

p=2
p

Wall-function approach Kn\0:1

Lilley and Sader (2008) 1
2Kn

1
cL
� 1

� �

DSMC calculations (cL is a normalized midplane

velocity gradient)

Kn\0:1

Fichman and Hetsroni (2005) 1þ 6Knþ 18Kn2 � 4Kn3 Consideration of the gas viscosity in the KL Kn\0:3

Bahukudumbi et al. (2003) 1:2977þ 0:71851 tan�1

ð�1:17488Kn0:58642Þ
Least square fit to the linearized Boltzmann

solutions (Sone et al. 1990)

Kn� 12

Karniadakis et al. (2005) 2�rv

rv

Kn
1�bBKKn

N–S and DSMC method EntireKn range

Agrawal and Prabhu (2008a) 1.13 Analysis on Kuhlthau’s data (Kuhlthau 1949) Kn\0:1

1.70 0:1\Kn\8:3

Pan et al. (1999) 1.1254 DSMC simulations Kn\0:1

Maurer et al. (2003) 1þ 6 2�rv

rv
Kn Theoretical analysis and experimental measurement Kn	 0:3
 0:1

1þ 6 2�rv

rv
Knþ 12C2Kn2 Kn\0:8
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inconsistent with most of the available theoretical models,

but the estimated values are very close to those obtained by

experimental measurements (Maurer et al. 2003; Ewart

et al. 2007b). The results gave a better match to direct

solutions of the BEs than the reduced equations without

considering KL effect (Struchtrup and Torrilhon 2008).

Moreover, Li et al. (2011) found that the flow rate obtained

with C2 = 0.8 best fit the solution of the LBE. Kim et al.

(2008) concluded their analysis of the slip coefficients

based on the second-order equilibrium and forcing terms

for the D2Q9 LBE are higher than those for the LBE,

which results from the discretization in the velocity space.

Figure 7 compares the non-dimensional flow rate QN ¼
ffiffiffi

p
p

1þ 6C1Knþ 126C2Kn2ð Þ= 12Knð Þ (Hadjiconstantinou

and Simek 2002) as a function of the Knudsen number Kn

for various slip models. The predictions from all the slip

models have small discrepancies when Kn \ 0.1. The

higher the first-order coefficient is, the larger the flow rate

prediction occurs. Kim’s model (Kim et al. 2008) performs

the largest prediction with C1 ¼
ffiffiffiffiffiffiffiffi

6=p
p

, while Wu and

Bogy’s model (Wu and Bogy 2003) presents the smallest

one with C1 = 2/3. However, the predictions have signif-

icant discrepancies and the second-order coefficient dom-

inates the flow rate when Kn [ 0.1. The slip models with

positive second-order coefficients (C2 [ 0) overestimates

the flow rate while the slip models with C2 \ 0 underes-

timates the rate flow compared to the Maxwell’s model.

The prediction of Shen’s model (Shen et al. 2007), which

has the largest second-order coefficient C2 = 2, performs

the largest deviation to higher side while Karniadakis and

Beskok’s model (Beskok and Karniadakis 1999) gives the

largest deviation to the lower side with C2 = -0.5. It

indicated that the first-order slip coefficient dominates the

slip flow rate for lower Knudsen numbers while the second-

order slip coefficient plays a more important role for higher

Knudsen numbers.

The other way is to treat the expression as a function of

rv. Table 7 summarizes the comparison of the expressions

of the second-order slip coefficients reported in the avail-

able literature. It is difficult to obtain the expression of slip

coefficients, and most of them are derived from the simu-

lation results of using N–S, quasi-gas dynamic (QGD) and

BEs. The first-order slip coefficients relate to rv, while the

second-order slip coefficients are quite different.

Figure 8 illustrates the variation of inverse slip coefficient

with Knudsen number at the outlet of microchannel con-

sidering P ¼ 1:8 and rv = 0.93. It is observed that Li’s

model (Li et al. 2011) shows the closest agreement with the

experimental data (Colin et al. 2004). Aubert and Colin’s

model (Aubert and Colin 2001) departs from the given data

when Kn [ 0.25. Karniadakis and Beskok’s model (Karni-

adakis and Beskok 2002) and Beskok and Karniadakis’

model (Beskok and Karniadakis 1999) do not match the

experimental data due to their second-order coefficients

C2 \ 0 in the expressions. It can be clearly seen that the first-

order slip model (Arkilic et al. 1997) cannot give an accurate

prediction when Kn \ 0.2. IP-based model (Roohi and

Darbandi 2009) and Wu’s model (Wu 2008) yield well

agreement in the range of the Knudsen number Kn [ 0.2, but

depart from the experimental data for the rest of the Knudsen

number range. These more complicated boundary conditions

produce more accurate velocity profiles than the usual first-

order slip models for slightly larger Knudsen numbers.

5.4 High-order slip model

Most of the first-order and second-order slip models can be

simplified from the high-order slip ones. Bahukudumbi

et al. (2003) derived an empirical shear model using a

modified slip boundary condition for steady and quasi-

steady oscillatory Couette flows

Us � Uw ¼
2� rv

rv

1:2977þ 0:71851 tan�1ð�1:17488Kn0:58642Þ
� � oU

on

	 


s

� �

ð52Þ

Hwang et al. (1995) determined the slip coefficients

from the LBE with considering the molecules reflecting at

the boundaries diffusively, and presented the high-order

slip boundary conditions for uniform microchannels as:

Us � Uw ¼ 0:01807Kn
oU

on

	 


s

�0:6768
p
4

Kn2
� �0:58734 o2U

on2

	 


s

ð53Þ

Try to investigate the gaseous flow in microtubes at

arbitrary Knudsen numbers, Weng et al. (1999) presented a

Fig. 6 Comparison of experimental data for the slip coefficient S for

helium (Maurer et al. 2003) with theoretical expressions in the

literature

Microfluid Nanofluid (2012) 13:845–882 861

123



new model to describe the gas flow behavior in microtubes

avoiding time-consuming calculations and compared with

the results obtained by Loyalka (1969). The high-order slip

flow boundary condition can be written as:

Us � Uw ¼ 0:49

ffiffiffi

p
p

2
Kn

	 
0:003
oU

on

	 


s

� 0:64
p
4

Kn2
� �0:5335 o2U

on2

	 


s

ð54Þ

Ng and Liu (2005) investigated and analyzed the

performance of conventional slip models among various

regimes of Knudsen number, and developed a new multi-

coefficient velocity slip model, by using Taguchi quality

control techniques, given by:

Us�Uw¼1:15Kn
oU

on

	 


s

�0:25Kn�0:65Kn2 o2U

on2

	 


s

ð55Þ

Beskok and Karniadakis (1996) and Beskok and

Karniadakis (1999) also provided the non-dimensional

boundary condition from Eq. (20) in the form

Us � Uw ¼
2� rv

rv
Kn

oU

on

	 


s

þKn2

2

o2U

on2

	 


s

þ � � �
� �

ð56Þ

Table 6 Values of the second-order slip coefficients

References C1 C2 Remark

Schamberg (1947) 1 5p=12 Second-order model

Karniadakis and Beskok (2002) 1 -0.5 Second-order model

Cercignani (1990) 1.1466 0.9756 or 0.647 Linearized Boltzmann–BGK model

Chapman and Cowling (1970) 1 0.5 Linearized Boltzmann model

Hadjiconstantinou (2003) 1.11 0.61 (0.31) HS model

Deissler (1964) 1 9/8 Second-order model

Cercignani (1975) 0.8297 0.5108 Boltzmann–BGK model

Hsia and Domoto (1983) 1 0.5 Second-order model

Mitsuya (1993) 1 2/9 1.5-order model

Lockerby et al. (2004) 1 0.145–0.19 Maxwell–Burnett model

Wu and Bogy (2001) 1 1 Pressure gradient model

Wu and Bogy (2003) 2/3 0.25 New second-order model

Sun et al. (2002) 0.62228 0.3872 VHS model

0.63875 0.408 VSS model

Shen et al. (2007) 1 2 BGK model

Yudistiawan et al. (2008) 1 2/3 D2Q9 LB model

Loyalka and Hickey (1989a, b) 1.1019 0.0449 BGK-based kinetic model

Lockerby and Reese (2008) 0.798 -0.278 BGK-based kinetic model

Kim et al. (2008)
ffiffiffiffiffiffiffiffi

6=p
p

4=p D2Q9 LB model

Kim and Pitsch (2008) 1.073 0.514 D2Q16 LB model

Cercignani and Lorenzani (2010); Lorenzani (2011) 1.1209 0.2347 HS model

1.1366 0.69261 BGK-based model

Struchtrup and Torrilhon (2008) 1 0.531 R13-based model

1.0462 0.5485 R13-based model with KL effect

Li et al. (2011) 1 0.8 LB model

Gibeli (2012) 1.1144 0.4952 HS model with KL effect

Fig. 7 Comparison of the non-dimensional flow rate QN as a function

of the Knudsen number Kn for various slip models
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where ðo=onÞrepresents the gradients normal to the wall

surface.

Based on the asymptotic analysis, Beskok and Karni-

adakis (1999) and Karniadakis and Beskok (2002) devel-

oped a physics-based empirical flow model and proposed

the following general velocity slip boundary condition for

the compressible flow:

Us � Uw ¼
2� rv

rv

Kn

1� bBKKn

oU

on

	 


s

� �

ð57Þ

where bBK is a generalized slip coefficient, which is an

empirical parameter to be determined either experimentally

or from LBE or DSMC data. Moreover, its physical

meaning is the velocity flux into the surface divided by the

velocity of flow field on the surface. Beskok and Karni-

adakis (1999) determined the value bBK and provided some

results for transition and free-molecular regimes.

Xue and Fan (2000) put a step forward and presented a

high-order slip expression with replacing Kn by tanhðKnÞ
as:

Us � Uw ¼
2� rv

rv
tanhðKnÞ oU

on

	 


s

ð58Þ

This statement involves only the first derivation of the

velocity, which leads to results close to those calculated by

DSMC method even in relatively high Knudsen number.

Table 7 Expressions of the second-order slip coefficients

References C1 C2 Equation and parameter

Beskok and Karniadakis (1999) 2�rv

rv
-0.5 N–S equation

Aubert and Colin (2001) 2�rv

rv
9/8 N–S equation

Karniadakis and Beskok (2002) 2�rv

rv
� 2�rv

rv
N–S equation

Jie et al. (2000) 2�rv

rv
� 2�rv

rv

Re
Kn

N–S equation, Re is the Reynolds number

Roohi and Darbandi (2009) 2�rv

rv
� 2�rv

rv
Extending N–S equation

Graur et al. 2006 1:012
ffiffi

2
p

kk
2=k2

k QGD equation, kk ¼ 2ð7� 2xGÞð5� 2xGÞ=ð15
ffiffiffiffiffiffi

2p
p
Þ

(Bird 1994) and kk ¼
ffiffiffiffiffiffiffiffi

p=2
p

in (Cercignani 1990)

Cercignani (1988) 2�rv

rv
ð1þ 0:1621rvÞ 2

p
1
2
þ c2

C

� �

BE, cC is parameter

Lockerby et al. (2004) 2�rv

rv

9
4p

Prðc�1Þ
c

BE

Wu (2008)

2
3

3� rvf 3
W

rv

� 3

2

3ð1� f 2
WÞ

Kn

2

6

6

4

3

7

7

5

1
4

f 4
W þ 2

Kn2 ð1� f 2
WÞ

 �

Kinetic-based theory, fW ¼ min½1=Kn; 1�

Fig. 8 Variation of the inverse

slip coefficient expressions with

Knudsen number for different

analytical slip models and the

experimental data (Colin et al.

2004) with P ¼ 1:8 and

rv ¼ 0:93
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5.5 Hybrid slip model

5.5.1 Effective mean free path (MFP)

(1) Various definitions The MFP k of gas molecules is an

average distance traveled by a molecule before colliding

with another one in the equilibrium state and also can be

defined as:

k ¼ �c

t
ð59Þ

where t is the collision frequency.

Peng et al. (2004) incorporated Bird’s definition (Bird

1994) and the approximation result from Chapmann and

Enskog (Chapman and Cowling 1970) by taking the spe-

cific gas constant RP ¼ kB=m and obtained the following

formulation:

k ¼ l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pRPT
p

2p
ð60Þ

Using the Chapman and Enskog method, the MFP k can

be rewritten regarding of the viscosity as:

k ¼ 16

p

ffiffiffiffiffiffiffiffiffiffiffi

p
2RPT

r

vg ð61Þ

where vg is the kinematic viscosity.

When collisions due to the intermolecular interaction

are not well defined, Cercignani (1988) proposed to use the

viscosity-based MFP

k ¼
ffiffiffiffiffiffiffiffiffiffiffi

p
2RPT

r

vg ð62Þ

The viscosity-based MFP is very close to the exact result

for HS molecules (Kim et al. 2008). The MFP for the BGK

molecules can be defined as:

k ¼
ffiffiffiffiffiffiffiffiffiffiffi

pRPT

2

r

sg ð63Þ

where sg is the relaxation time in the Boltzmann–BGK

equation.

In the description of experimental results, the viscosity-

based MFP is widely used to define the Knudsen number.

However, considering the nature of MFP, the definition of

MFP can be different for various studies, except for HS

molecules (Shan et al. 2006).

(2) Molecular model Although the HS model is widely

used for its simplicity, the rate of effective cross-section

decreases directly related to the change of the coefficient of

viscosity with temperature. Bird (1994) proposed the

modified MFP for the variable hard sphere (VHS)

model as:

kðVHSÞ ¼
1
ffiffiffiffiffiffiffiffiffiffi

2ngp
p

8Cð4:5� xmÞlrefðkBTref=pÞxm�0:5

15ðmg=pÞ1=2ðkBTrefÞxm

� Tref

T

	 
xm�0:5

ð64Þ

where lref and Tref are the reference conditions, xm is a

constant which determined by the type of the gas and can

be obtained from experimental data.

To describe the actual transport properties, Koura and

Matsumoto (1992) introduced the variable soft sphere

(VSS) model as:

kðVHSÞ ¼
1
ffiffiffiffiffiffiffiffiffiffi

2ngp
p

16Cð4:5� xmÞlrefðkBTref=pÞxm�0:5

5ð#m þ 1Þð#m þ 2Þðmg=pÞ1=2ðkBTrefÞxm

� Tref

T

	 
xm�0:5

ð65Þ

where #m is also a value which can be determined by the

same method for xm. For air, in the VSS model #m ¼ 1:5775

and xm ¼ 0:7, while in the VHS model #m ¼ 1:0 and

xm ¼ 0:7. When #m ¼ 1:0 and xm ¼ 0:5, the expression of

the VSS model reduces to the HS model (Sun et al. 2002).

Bird (1994) and Koura and Matsumoto (1992) compared

the VHS model and VSS model with the HS model and

derived the expressions for the effective MFP as:

kVHS ¼
Cð4:5� xmÞ

6pxm�0:5
ð66Þ

and

kVSS ¼
#mCð4:5� xmÞ

ð#m þ 1Þð#m þ 2Þpxm�0:5
ð67Þ

Sun et al. (2002) presented new analytical slip models

incorporating the VHS and VSS molecular effects and

obtained the slip coefficients for the VHS model with

C1 = 0.62228 and C2 = 0.3872 and VSS model with

C1 = 0.63875 and C2 = 0.408, respectively.

(3) Wall-function approach For an isothermal, incom-

pressible flow, Zheng et al. (2006) incorporated the wall-

function approach into a D2Q9 LBE model and presented

the effective MFP expression as:

keffðZÞ ¼
k

1þ 0:7e�CLy=k
ð68Þ

This approach can be applied to more complex

geometries by assuming that the influence of overlapping

KLs is additive. Outside the KL, the effective MPF

approaches the MFP in the bulk flow, while, at the wall

(y = 0), the effective mean free path is 1.7 times smaller

than in the bulk flow (Zheng et al. 2006).

(4) Matthiessen rule The Matthiessen rule had been

widely used to consider the boundary scattering effects on
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electron and phonon transport (Ascroft and Mermin 1976).

To explain the boundary scattering, the MFP can be eval-

uated using this rule as:

1

keffðMÞ
¼ 1

ks

þ 1

kb

ð69Þ

where ks is the MFP from molecular scattering and can be

simply calculated as ks ¼ k=
ffiffiffi

3
p

, and kb is the MFP due to

boundary scattering.

Shen et al. (2007) took the film thickness H/2 for kb to

account for the fact that there are two overlapping KLs and

calculated the effective MFP using the Matthiessen rule

(Ascroft and Mermin 1976) as:

keffðSÞ ¼
1

k=
ffiffiffi

3
p þ 1

H=2
ð70Þ

The effective MFP should be modified with different

geometries. Chen and Bogy (2010) remarked that Shen’s

slip model (Shen et al. 2007) is also a second-order type

without considering the effective MFP and the rule is

seldom used for rarefied gas dynamics. The application of

the Matthiessen rule to rarefied gases is not supported by

the BE (Chen and Bogy 2010).

(5) Probability distribution function approach The

influence of a solid wall on the MFP of the gas molecules

can be analyzed by considering the probability of the free

path of a gas molecule. The idea of using transport

parameters that are influenced by an effective MFP was

presented by Stops (1970). Many researchers (Stops 1970;

Peng et al. 2004; Guo et al. 2007a, b, 2008; Arlemark et al.

2010; Dongari et al. 2011b) had paid more attention on

deducing the effective MFP for various gas flows in

MEMS/NEMS.

Figure 9 shows the distribution of the molecule free path

in terms of the molecule traveling a distance r. Stops

(1970) presented the free path of a molecule following a

probability distribution function

wðrÞ ¼ 1

k
exp � r

k

� �

ð71Þ

Using this probability distribution function, Guo et al.

(2007a, b) and Guo et al. (2008) derived a geometry-

dependent effective MFP for the two parallel plates, i.e.,

keffðGÞ ¼ kUðKnÞ

¼ k

�

1þ 1

2
ða� 1Þe�a þ ðb� 1Þe�b
 �

�a2EiðaÞ � b2EiðbÞ
�

ð72Þ

where a ¼ y=k, b ¼ ðH � yÞ=k, EiðxÞ denotes the expo-

nential integral function defined by EiðxÞ ¼
R1

1
t�1e�xtdt,

in which H is the distance between the two parallel plates,

and U is a monotonous function of Kn and satisfying

lim
Kn!0

UðKnÞ ¼ 1. Guo et al. (2006) mentioned that the

function UðKnÞ derived by Stops is very complicated and is

difficult for practical applications. The reason may be that

it contains an exponential integral function EiðxÞ, which

needs a numerical integration and leads to considerable

computations (Li et al. 2011). Moreover, heuristic

expressions of effective viscosity should be proposed to

enable the computation efficient and the implementation

ease.

Guo et al. (2006) presented the expression of the

effective MFP with an approximation to replace Stops’

expression as follows:

keffðGZÞ ¼ kUðKnÞ ¼ 2

p
arc tan

ffiffiffi

2
p

Kn�3=4
� �

� �

k ð73Þ

Integrating the density function wðrÞ, Arlemark et al.

(2010) applied a probability function UðrÞ ¼
R

wðrÞdr and

developed a three-dimensional probability function-based

effective MFP keffðAÞ as:

keffðAÞ ¼ k

(

1� 1

82

"

e�a þ e�b þ 4
X

7

i¼1

e
� a

cos½ð2i�1Þp=28�

þ4
X

7

i¼1

e�
b

cos½ð2i�1Þp=28� þ 2
X

6

i¼1

e�
a

cosðpi=14Þ

þ2
X

6

i¼1

e
� b

cosðpi=14Þ

#)

ð74Þ

Comparison of both effective MFP models (Stops 1970;

Arlemark et al. 2010) with MD simulation data (Dongari

et al. 2011a) shows that both models are useful only up to

Knudsen numbers of about 0.2 (Dongari et al. 2011b).

Moreover, the Stops’ probability distribution is only valid

under equilibrium conditions (Dongari et al. 2011a, b).

To extend the N–S–Fourier (N–S–F) equations used for

the gas flows at microscales and nanoscales in the transi-

tion regime, Dongari et al. (2011b) proposed a power-law-

based effective MFP model. For non-equilibrium gas, a

power-law form of the distribution function with diverging

higher-order moments was hypothesized and expressed as:

wðrÞ ¼ CD aD þ rð Þ�nn ð75Þ

y

O

r H
r+

r−

θ +

θ −

θ

Fig. 9 A molecule confined between two planar walls with spacing H
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where aD and CD are constants with positive values, which

are determined through the zero and first moments, and

exponent nn can be obtained by making one of the higher-

order moments divergent.

The effective MFP based on the power-law distribution

function can be given by (Dongari et al. 2011b):

The power-law-based effective MFP (Dongari et al.

2011b) was validated against MD simulation data (Dongari

et al. 2011a) up to Kn = 1, and also compared with the

theoretical models from Stops (1970) and Arlemark et al.

(2010).

To study the unidirectional flow of the rarefied gas near

the boundary region, Peng et al. (2004) presented a nano-

scale effect function keffðPÞ=k to describe the gas behavior

between two parallel plates based on the kinetic theory.

The probability density of the direction distribution of

molecule velocity is:

HðhP; bPÞ ¼ sin hP=4p ð77Þ

where hP, bP are random variables uniformly distributed in

the whole space, and the integration of HðhP; bPÞ in the

whole integration space is clearly equal to 1. The effective

MFP considering the nanoscale boundary effects can be

expressed as (Peng et al. 2004):

keffðPÞ ¼
k 1� k

4h

� �

; ðh� kÞ
k 3h

4k� h
2k In h

k

� �� �

; ðh� kÞ

�

ð78Þ

Chen and Bogy (2010) argued that the modified MFP is

not necessary for Fukui and Kaneko’s (FK) model (Fukui

and Kaneko 1988) in which the MFP is characterized by

the BGK gas molecules in the equilibrium state.

5.5.2 Effective viscosity

Gas viscosity is an important property to account for the

momentum exchange between gas molecules. The effective

viscosity is a mathematical construct with no connection to

real gas properties, and its value will change with flow

geometry (Lilley and Sader 2008).

MFP and viscosity are two interactive parameters and

many research works pay more attention on their combina-

tions for gas microflows with different boundary conditions.

Their relationship can be expressed as (Dongari et al. 2010)

keff ¼
leff

l
k ð79Þ

To distinguish the differences between some heuristic

effective MFP and viscosity models for gas microflows

from different viewpoints, the effective viscosity models

are reviewed in this section.

(1) Various definitions For HS molecules, the coefficient

of viscosity l can be obtained by using the Chapman and

Enskog method (Chapman and Cowling 1970) as:

l ¼ 5

16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pmkBT
p

pd2
g

ð80Þ

The bulk viscosity of dilute gases for the HS model can

also be derived from the Chapman–Enskog theory and

given by:

l ¼ 5p
32

�cqk ð81Þ

Where �c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8kBT=pmg

p

and q ¼ p=ðRpTÞ.
A simple kinetic theory based result proposed by Max-

well for the bulk viscosity is (Pollard and Present 1948):

l ¼ 1

3
�cqk ð82Þ

Alexander et al. (1998) used the Green–Kubo theory to

evaluate the transport coefficients in DSMC and derived

from the dilute gas Enskog values for the viscosity as:

l ¼ 5

16d2
c

ffiffiffiffiffiffiffiffiffiffiffiffi

mkBT

p

r

1þ 16

45p
L2

x

k2

	 


ð83Þ

where dc is the collision diameter, Lx is the width of the

cell.

Hadjiconstantinou (2000) considered the convergence

with respect to a finite time step when the cell size is

negligible and examined the effects of the discretization

keffðAÞ ¼ k 1� 1

96

1þ y

a

� �1�n

þ 1þ H � y

a

	 
1�n

þ4
X

8

i¼1

1þ y

a cos½ð2i� 1Þp=32�

	 
1�n

þ4
X

8

i¼1

1þ H � y

a cos½ð2i� 1Þp=32�

	 
1�n

þ 2
X

7

i¼1

1þ y

a cosðpi=16Þ

	 
1�n

þ2
X

7

i¼1

1þ H � y

a cosðpi=16Þ
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error in DSMC calculations of the viscosity using the

Green–Kubo theory. The resulting expression of the vis-

cosity becomes:

l ¼ 5

16

ffiffiffiffiffiffiffiffiffiffiffiffi

mkBT

p

r

1þ 16

75p
ðcmDtÞ2

k2

" #

ð84Þ

where cm is the most probable speed of the gas molecules.

(2) KL-based model Considering the effect of KL, Lilley

and Sader (2008) investigated gas flow for small Knudsen

numbers and suggested a power-law dependence of vis-

cosity on the dimensionless distance from the solid surface

as:

leffðLSÞ ¼ l
~y1�d~y

C~yd~y
ð85Þ

where C~y and d~y can be obtained from the LBE and the

empirical determinations of the functional dependencies of

C~y and d~y on the thermal accommodation coefficient rT are

C~yðrTÞ ¼ 1:58� 0:33rT and d~yðrTÞ ¼ 0:69þ 0:13rT

(Lilley and Sader 2008). The DSMC calculations showed

that the KL for VSS molecules is very similar to that for

the HS ones and the power-law description is weakly

dependent on the molecular model (Lilley and Sader 2007).

To evaluate the isothermal microflows, Lockerby et al.

(2005a) proposed a wall-function type of viscosity in the

KL derived from a curve fit to the KL velocity profile

originally derived by Cercignani (1990) as:

leffðLÞ � l 1þ 0:7 1þ ~yð Þ�3
h i�1

ð86Þ

When a part of the molecules is reflected diffusively and

another one is reflected specularly, Fichman and Hetsroni

(2005) presented the effective viscosity as:

leffðFHÞ ¼
l rv

2
þ ð1� rvÞ~y

 �

ð~y\1Þ
l ð~y [ 1Þ

�

ð87Þ

Reese et al. (2007) reviewed the Fichman and Hetsroni

model (Fichman and Hetsroni 2005) that it cannot capture

the asymptotic form of the velocity profile in the KL near

the surface and provided the expression for the effective

viscosity required to reproduce the KL structure within an

N–S–F model as:

leffðRÞ ¼ l 1� ARðDRaR þ ERÞð1þ ~yÞAR�1
h i�1

ð88Þ

where AR, DR and ER are the curve-fitting coefficients. If ~y

becomes large outside the KL, the effective viscosity tends

to be of the actual viscosity and the scaling effect does not

work on it. Reese et al. (2007) obtained the coefficients for

two different gas molecular models, AR = - 2.719 (HS)

and AR = - 2.025 (BGK), with aR = 1 from the data in the

literature (Loyalka and Hickey 1989a, b; Wakabayashi

et al. 1996). They also found that the coefficient AR is

almost independent of the surface accommodation aR, and

DR = -0.293 and ER = 0.531 for HS model, and DR =

-0.328 and ER = 0.612 for the BGK model, respectively

(Reese et al. 2007). Moreover, the effective viscosity does

not generate artificial stresses in the KL.

(3) Karniadakis-style model Some heuristic effective

viscosity models had been proposed in previous studies for

gas microflows from different viewpoints (Beskok and

Karniadakis 1999; Sun and Chan 2004; Roohi and Dar-

bandi 2009; Michalis et al. 2010), which can also be

expressed in the form:

leff ¼ lWðKnÞ ð89Þ

where WðKnÞ has different form. The researchers (Zheng

et al. 2006; Guo et al. 2006) found that the viscosity cor-

rections can improve the numerical accuracy to some

extent, but still cannot give satisfactory results for the gas

flows at a higher Knudsen number (Li et al. 2011).

Karniadakis et al. (2005) considered the rarefaction

effects and proposed a hybrid formula for the viscosity

coefficient as follows:

leffðKÞ ¼ l
1

1þ aKKn

	 


ð90Þ

where aK is a coefficient and should be adjusted with a

complicated inverse hyperbolic-tangent function. Beskok

and Karniadakis (1999) first suggested an expression for

the viscosity in the transition regime and conducted

numerical computations of flow in cylinders and channels

using the N–S formulation complemented with a slip

boundary condition at aK ¼ 2:2. Sun and Chan (2004)

reported that they found good agreement of their model

with DSMC and with the LBE results at aK ¼ 2.

Michalis et al. (2010) investigated the rarefaction effect

on gas viscosity via DSMC modeling of rarefied channel

flows and also found such an expression with a Bosanquet-

type approximation:

1

leffðMÞ
¼ 1

l
þ 1

l1
ð91Þ

They confirmed this expression through a direct

calculation of the gas viscosity from its shear-stress-

based definition and the rarefaction factor was found to be

aK � 2 in the transition flow regime. The result is same as

that presented by Sun and Chan (2004).

It can be seen from Stops’ expression that the local

effective MFP is a function of the distance from the wall.

However, the Bosanquet-type effective viscosity is inde-

pendent of the distance due to its value averaging over the

cross section. The overall rarefaction effect on the gas

viscosity should be taken into account with the Bosanquet-

type effective viscosity (Guo et al. 2006; Li et al. 2011).

Michalis et al. (2010) also confirmed that a Bosanquet-type
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expression of effective viscosity describes satisfactorily the

dependence of gas viscosity on the Knudsen number in the

transition regime.

(4) Shear stress model Bahukudumbi et al. (2003)

derived an empirical shear model, which is uniformly valid

in the entire Knudsen regime for steady and quasi-steady

oscillatory Couette flows with an effective viscosity, which

is given by:

leff ¼ l
1

2
þ C1Kn

	 


� f ðKnÞ ð92Þ

where f ðKnÞ can be regarded as a generalized formulation

as a function of the Knudsen number from shear-stress

models (Cercignani 1969; Sone et al. 1990; Veijola and

Turowski 2001; Bahukudumbi et al. 2003). Table 8 gives

several expresses of the generalized formulation of f ðKnÞ.
Considering the IP wall shear stress, Roohi and Dar-

bandi (2009) derived an expression for the viscosity coef-

ficient as a function of Knudsen number in the form:

leffðRDÞ ¼
sw;IPðxÞ
oVt=on

ð93Þ

where Vt is the particle information velocity, sw,IP is the

wall shear stress and sw;IP ¼ sðNSÞ
w þ sðBÞw þ sðABÞ

w þ � � �, in

which the superscripts NS, B, and AB denote the N–S, the

Burnett, and the augmented Burnett equations, respectively.

The NS-based and IP-based viscosity coefficient

expressions are expressed as (Roohi and Darbandi 2009):

leffðRDÞ

h i

NS
¼ l

rv þ 6Kn� 6Kn2

rv þ 6Knþ 13:5Kn2
ð94Þ

leffðRDÞ

h i

IP
¼ l

rv þ 0:89Knþ 4:70Kn2

rv þ 0:75Knþ 19:98Kn2
ð95Þ

where the subscript NS and IP refer to the fact that there

have been derived from the NS-based mass flow rate

relation and the IP simulation data, respectively.Moreover,

Bahukudumbi et al. (2003) pointed that it is not possible to

construct a shear stress model from N–S-level constitutive

equations that are uniformly valid in the entire Knudsen

number regime (Park et al. 2004). Therefore, in a rarefied

gas flow system confined by solid walls, the path of gas

molecule colliding with the walls will be shorter than the

MFP defined in unbounded systems (Tang et al. 2008; Guo

et al. 2006, 2008; Li et al. 2011). As mentioned in the

above two sections, some modifications or corrections on

the MFP and the viscosity have been developed to reflect

the effect of gas molecule/wall interactions.

Figure 10 shows comparison of the normalized viscosity

coefficients predicted by various methods, such as the HS

DSMC results (Bahukudumbi et al. 2003), linearized

Boltzmann solution of Sone et al. (1990), and IP simula-

tions by Roohi and Darbandi (2009). It can be found that

the normalized viscosity coefficient decreases as the

Knudsen number increases. Differences among the varia-

tional solution (Cercignani 1969), empirical model (Veijola

and Turowski 2001), the DSMC results (Bahukudumbi

et al. 2003) and linearized Boltzmann solution (Sone et al.

1990) are almost invisible and the maximum deviation is

less than 1 %. The NS-based viscosity coefficient is close

to the IP-based model at a lower Knudsen number. NS-

based and IP-based models are similar to the DSMC pre-

dictions for Kn\0:1, and gradually underestimate the

viscosity at higher Knudsen number ranges. The Karni-

adakis model (Karniadakis et al. 2005) with aK ¼ 2:2

agrees with the Sun and Chan model and is close to the IP-

based model when Kn [ 0:2. The viscosity coefficient is

not the sole parameter in determining the mass flow and

should be combined with the slip boundary condition

(Roohi and Darbandi 2009). Although the various heuristic

effective viscosity models are proposed from different

viewpoints, they can contribute to N–S equations for cap-

turing the high Knudsen number effects in the transition

regime (Guo et al. 2006).

5.5.3 Gaseous mixture

Though in practice one meets mixtures more often than a

single gas, there are very few investigations on the slip

coefficient for gaseous mixtures (Sharipov and Kalempa

2003). The slip boundary condition for a gaseous mixture is

more complicated due to the slip coefficient for a gaseous

mixture differing from that for a single gas. The concen-

tration gradient near a solid surface causes a slip of the

mixture along the surface. Some slip coefficients were

provided for a mixture obtained by the moment method

applied to BE (Ivchenko et al. 1997; Sharipov and Kal-

empa 2003; Garcia and Siewert 2007). Naris et al. (2004)

provided an efficient methodology to solve internal flows

of binary gaseous mixtures through microchannels over the

whole range of the Knudsen number. Pitakarnnop et al.

(2010) also verified that the implementation of the linear-

ized BGK and McCormack models for solving rarefied

flows through microchannels is valid for the gaseous

mixture.

The definition of the slip coefficient for a mixture is very

similar to that for a single gas. Equation (15) can be

rewritten as (Sharipov and Kalempa 2003)

us � uw ¼ rp

lv0

p

ous

on

	 


S

ð96Þ

where v0 is the characteristic molecular velocity of the

mixture and v0 ¼ ð2kBT=mÞ1=2
, in which the mean

molecular mass of the mixture is defined as:

m ¼ C0m1 þ ð1� C0Þm2 ð97Þ
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where m1 and m2 are the molecular mass of species and the

molar concentration C0 ¼ n01=ðn01 þ n02Þ, in which n01

and n02 are the equilibrium number densities of the species.

Comparisons of the slip coefficients rp of the mixtures

(He–Xe and He–Ar) as a function of molar concentration

C0 for various models are listed in Table 9. Figure 11 also

shows the comparisons of the slip coefficients rp of the

binary mixtures as a function of the molar concentration C0

for various models. It can be seen that the four different

methods, including McCormack model (Siewert and Val-

ougeorgis 2004; Garcia and Siewert 2007), Lennard–Jones

model (Sharipov and Kalempa 2003), rigid spheres model

(Ivchenko et al. 1997) and the moment method applied to

the LBE (Garcia and Siewert 2007), are in a good agree-

ment with each other. The slip coefficient is very weakly

sensitive to the intermolecular interaction potential. At the

limits corresponding to a single gas (C0 = 0 and C0 = 1),

the slip coefficient rp = 1.018 for McCormack model

(Garcia and Siewert 2007) is exactly the same as that

obtained from the Lennard–Jones potential model (Shari-

pov and Kalempa 2003), and the moment model (Siewert

and Valougeorgis 2004) under the assumption of diffuse

reflection. The largest deviation of the slip coefficient for a

mixture from that for a single gas occurs at C0 = 0.75

approximately. The results indicate that the value of the

slip coefficient for a mixture is larger than that for a single

gas, which can be applied to optimize the design of the slip

boundary conditions in microflows.

For the adsorption of a gas mixture within the formu-

lation (24), the fraction of the surface at thermal equilib-

rium may be expressed as (Myong 2004a):

aM ¼ Vg1

ffiffiffiffiffiffiffiffiffiffi

bM1p
p

1þ
ffiffiffiffiffiffiffiffiffiffi

bM1p
p þ Vg2

ffiffiffiffiffiffiffiffiffiffi

bM2p
p

1þ
ffiffiffiffiffiffiffiffiffiffi

bM2p
p ð98Þ

where Vg1 and Vg2 denote the fraction of components in

volume and Vg1 þ Vg2 ¼ 1.

For the rarefied flow of binary gas mixture in the vicinity

of an isothermal surface, Zahmatkesh et al. (2011) pre-

sented a second-order slip model for the whole mixtures

using the generalized form derived by Karniadakis et al.

(2005) as:

us � uw ¼ rp

k1 þ vMk2

1þ vM

ous

on

	 


S

þ k2
1 þ vMk2

2

2ð1þ vMÞ
o2us

on2

	 


S

� �

ð99Þ

where vM ¼ n02m2=ðn01m1Þ, k1 and k2 are the MFPs of the

binary gas mixtures, respectively.

5.5.4 Effect of surface roughness

Due to limitations in current micromachining technologies,

the microfabricated microfluidic devices typically exhibit

some degree of roughness (Duan and Muzychka 2008).

The average roughness of the silicon surface created by the

DRIE process is 6.43 nm, and the root mean square

roughness of the sidewall is reported to be about 30 nm

(Chabloz et al. 2000). Maurer et al. (2003) measured a

shallow microchannel and estimated the roughness to be

20 nm with the channel deep 1.14 lm. Tang et al. (2007a,

b) found that the increase of the pressure drop for the

stainless steel tube with relative roughness 3.2 % with

respect to smooth one is about 28 %. Surface roughness

plays an increasingly important role in gas flow in micro-

fluidic devices, but it is difficult to quantify its effects

theoretically and numerically. In practice, the surface

roughness can be characterized by atomic force microscope

(AFM), scanning tunneling microscope (STM), and scan-

ning electron microscope (SEM) (Fukui and Kaneko 1993).

Table 8 Several expressions of the generalized formulation f ðKnÞ

References Formulation Determination approach

Veijola and Turowski (2001) 2
1þ2Knþ0:2Kn0:788e�Kn=10

Curve fitting to linearized Boltzmann solutions

Cercignani (1969) 1:3056Knþ2p
1:3056Kn2þ7:5939Knþp

Using different molecular interaction models

Sone et al. (1990) 1:270042p
2ð1þ2:222KnÞ Using perturbation expansions

Bahukudumbi et al. (2003) 0:52969Knþ1:20597
0:52969Kn2þ1:627666Knþ0:602985

Least-square fitting to the linearized Boltzmann solution of Sone et al. (1990)

Fig. 10 Comparison of the various viscosity coefficient models
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Therefore, understanding the effect of surface roughness on

gas flow is highly desirable for microfluidic devices.

From the definition of the Knudsen number Kn ¼ k=L0,

it can be found that the characteristic length L0 should be

modified to take the surface roughness effect into account

and can be expressed as a general form:

L0 ¼ L0;sm þ f ðRa; rÞ ð100Þ

where L0;sm denotes the characteristic length of smooth

surface, f ðRa; rÞ is the roughness height, in which Ra and r
are the average roughness and standard deviation, respec-

tively, and both of them are the major concerning param-

eters. The ratio of the roughness to the MFP is a good

criterion to determine the slip boundary condition in the

N–S equations (Cao et al. 2009). Two main approaches had

been proposed to treat the roughness effect, including

averaging method and homogenization method (Buscaglia

and Jai 2004; Almqvist et al. 2007).

Surface topographies are critical in momentum transport

of the gas microflows in microfluidic devices. The effect of

the surface roughness is apparent not only at the slip length

and velocities but also at the overall flow characteristics

(Einzel et al. 1990; Asproulis and Drikakis 2010). The idea

is to replace the constitutive boundary condition at the

rough surface by a homogenized or effective one at the

smooth surface (Dalibrard and Varet 2011). In this way,

the rough micromachined surfaces can be described as

periodic and random types, as listed in Table 10.

Various models have been proposed to account for the

effects of roughness on gas microflows. Many reported

computational and experimental investigations (Li et al.

2002; Chen and Cheng 2003; Kleinstreuer and Koo 2004;

Lilly et al. 2007; Zhang and Meng 2009) have drawn a

conclusion that surface roughness has a significant influ-

ence on the gas flow in microfluidic devices, such as

microchannel, microtube, micropipe, microbearing, and

microduct. To simply model the roughness effect on gas

Table 9 Slip coefficients rp of the mixtures (He–Xe and He–Ar) as a function of molar concentration C0 for various models

C0 rp

He–Xe He–Ar

Rigid spheres

(Ivchenko et al. 1997)

McCormack model

(Garcia and Siewert 2007)

Lennard–Jones (Sharipov

and Kalempa 2003)

LBE (Garcia and

Siewert 2007)

McCormack model (Siewert

and Valougeorgis 2004)

0.0 1.007 1.018 1.018 1.003 1.018

0.01 1.011 – 1.022 – –

0.1 1.045 1.057 1.059 1.043 1.044

0.2 – 1.099 – – 1.070

0.25 1.110 – 1.127 1.087 –

0.3 – 1.145 – 1.135 1.097

0.4 – 1.197 – 1.187 1.124

0.5 1.240 1.253 1.259 1.245 1.150

0.6 – 1.313 – 1.306 1.174

0.7 – 1.375 – 1.368 1.190

0.75 1.389 – 1.401 – –

0.8 – 1.424 – 1.417 1.190

0.9 1.400 1.413 1.412 1.404 1.154

0.99 1.104 – 1.119 – –

1.0 1.007 1.018 1.018 1.003 1.018

Fig. 11 Slip coefficient rp of the mixtures (He–Xe and He–Ar) as a

function of molar concentration C0 for four different methods,

including McCormack model (Siewert and Valougeorgis 2004;

Garcia and Siewert 2007), Lennard–Jones model (Sharipov and

Kalempa 2003), rigid spheres model (Ivchenko et al. 1997), and the

moment method applied to the LBE (Garcia and Siewert 2007)
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microflows, some researchers represented the surface

roughness as periodic distributions, including sinusoidal,

rectangular, triangular, elliptical and trapezoidal surface

roughness, for two-dimensional simulation (Sun and Faghri

2003; Wang et al. 2005; Ji et al. 2006; Cao et al. 2006;

Duan and Muzychka 2008; Zhang and Meng 2009; Xiong

and Chung 2010). Sun and Faghri (2003) modeled the

roughness by an array of rectangular modules using DSMC

method. Zhang and Meng (2009) analyzed the flow char-

acteristics of the microbearing considering the coupled

rarefaction and roughness effects with a new second-order

slip model (Wu 2008). The roughness was described by the

simple sinusoidal waves. For three-dimensional simula-

tions, rectangular prism elements or conical elements were

used to express the roughness effect on the gas microflow

depending on the roughness element geometry (Hu et al.

2003; Rawool et al. 2006; Baviere et al. 2006; Lilly et al.

2007; Kunert and Harting 2007). Hu et al. (2003) devel-

oped a three-dimensional finite volume based numerical

model to simulate the flow in microchannels with rectan-

gular prism rough elements on the surface. Kunert and

Harting (2007) used a three-dimensional LB model to

simulate the flow in rough microchannels with periodic

surfaces, including cosines, squares, and triangles.

However, the rough surface topography is a non-

stationary random process (Chen et al. 2009; Xiong and

Chung 2010). Some researchers carried out more efforts to

model the random roughness even if there are many diffi-

culties. Croce and Agaro (2004) explicitly modeled the

surface roughness through a set of random generated peaks

along an ideal smooth surface in the microchannels. Li

et al. (2002) investigated the effects of surface roughness

on the slip flow in long microtubes. The rough surface was

represented as a porous film based on the Brinkman-

extended Darcy model. However, Blanchard and Ligrani

(2007) mentioned that slip is independent of the surface

roughness magnitude and mostly due to rarefaction. Bah-

rami et al. (2006) developed a model to predict the flow in

rough microtubes with a Gaussian isotropic distribution.

Xiong and Chung (2010) combined a bi-cubic Coons patch

with Gaussian distributed roughness heights and presented

a three-dimensional random surface roughness model to

investigate the laminar flow in microtubes. Cao et al.

(2006) investigated the effect of surface roughness on slip

flow in microchannels using non-equilibrium MD simula-

tion method. The surface roughness can be modeled by

triangular, rectangular, sinusoidal, and randomly triangular

waves. The roughness effect is indicated to be significant

for gas microflows at the small Knudsen number. The

power-law behavior obtained from AFM images for

MEMS surfaces was similar to fractal Weierstrass–Man-

delbrot (W–M) surface results (Bora et al. 2005). Chen

et al. (2009) used W–M function to characterize the

multiscale self-affine roughness in a rectangular micro-

channel. Several probabilistic models, such as the mixed

model (Fukui and Kaneko 1993), the model with flow

factor (Chen et al. 2004) and the striated rough surface

(White 2010) had also been proposed to describe the

roughness effects.

In addition, some studies have attempted to extend the

slip models to flows over the curved or rough surfaces

(Myong et al. 2005). Table 11 presented a simple overview

of the roughness model and slip model for several typical

microfluidic devices reported in the literature. Although

some researchers have paid more attention to the roughness

effect on gas flows in different microfluidic devices, the

slip boundary condition has been described with a simple

form (Cao et al. 2006; Duan and Muzychka 2008; Khadem

et al. 2009) or even without consideration (Lilly et al. 2007;

Xiong and Chung 2010; Ozalp 2011). Very few experi-

mental investigations have concentrated on the effect of

surface roughness on boundary slip. Neto et al. (2005)

summarized some challenges, including difficult to pro-

duce suitable surfaces of controlled roughness, additional

undesired changes at the interface, uncertainly associated

with roughness and lack of appropriate theoretical

description of the realistic surface roughness, in predicting

the roughness effect. Therefore, it is necessary to get a

better understanding of the coupled effects of surface

roughness and velocity slip on gas microflows. The suitable

and efficient models must be developed and applied to

estimate the roughness and velocity slip effects in the

practical engineering design of microfluidic devices in

MEMS.

5.6 Tangential momentum accommodation coefficient

(TMAC)

As one of the most important parameters for determining

the degree of the slip in all of the slip models, the TMAC

can be used to characterize the tangential momentum

transport between the gas and wall (Cao et al. 2009) and

should be predicted in slip and transition flow regimes for

microflows and nanoflows (Agrawal and Prabhu 2008b;

Veltzke and Thoming 2012). Most of the analytical,

numerical, and experimental investigations concerning

rarefaction effects on gas microflows relate to the TMAC.

The TMAC rv is defined as the fraction of gas mole-

cules reflected diffusively from a solid surface in rarefied

gas microflows (Pitakarnnop et al. 2010), and can be

expressed as:

rv ¼
si � sr

si

ð101Þ

where si and sr are the average incident and reflected gas

molecules, respectively. Since the incident and reflected
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molecules cannot be confirmed generally, the TMAC is

usually estimated from experimental measurements and

simulations, nor predicted from theoretical solutions

(Agrawal and Prabhu 2008b; Cao et al. 2009). Although

many investigations have demonstrated that the TMAC is

sensitive to gas–solid interface conditions, the significant

effects of the gas species, surface materials, surface tem-

perature, and other surface conditions on the TMAC are not

well understood.

The slip velocity coefficient rp is a function of the

TMAC and can be expressed for the Maxwell scattering

model as:

rp ¼ as

2� rv

rv
ð102Þ

Empirically, the TMAC is often taken to be unity for

most of the practical engineering conditions. However,

some studies have demonstrated that the TMAC is

sensitive to gas and surface conditions (Ho and Tai

1998). The TMAC plays an important role in

determining the slip velocity at the solid boundary. As in

Maxwell scattering model, the value of the coefficient as is

unity. However, Barber and Emerson (2002) reviewed

some rigorous kinetic analyses of the BE for the planar

Table 10 Overview of the descriptions of periodic and random rough surfaces

Rough surface Construct type Schematic diagram References

Periodic Sinusoidal Cao et al. (2006); Kunert and Harting (2007)

Rectangular Cao et al. (2006); Kunert and Harting (2007);

Lilly et al. (2007)

Triangular Cao et al. (2006); Kunert and Harting (2007);

Lilly et al. (2007)

Trapezoidal Papadopoulos et al. (2011)

Random Gaussian distribution Bahrami et al. (2006); Cao et al. (2006)

Random peak Croce and Agaro (2004)

Porous medium Kleinstreuer and Koo (2004)

Fractal geometry

(2D)

Chen et al. (2009)

Random triangular wave Cao et al. (2006)

Coons patch Xiong and Chung (2010)

Fractal geometry

(3D)

Zhang et al. (2012a, b)
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flows (Albertoni et al. 1963; Loyalka et al. 1975;

Wakabayashi et al. 1996), and explained that:

as ¼ 1:016191� 2
ffiffiffi

p
p � 1:1466 ð103Þ

The value 1.016191 was obtained numerically by

Loyalka et al. (1975) from the kinetic equation BGK

model under the assumption of a full accommodation of the

molecules at the wall, whereas Wakabayashi et al. (1996)

obtained a value of 0.98737 by solving the LBE. Young

(2011) obtained the values for the linearized Grad 13-

moment (LG13) and linearized Regularized 13-moment

(LR13) BGK models are 0.886 and 0.919, respectively.

Ewart et al. (2007b) obtained the value of as ¼ 0:933

0:003 for helium using the first-order fitting, while Graur

et al. (2009) obtained the most pertinent values of a1st
s ¼

0:889
 0004 and a2nd
s ¼ 0:956
 0005 for the first-order

and second-order treatments, respectively, for nitrogen

using the same criteria as those performed by Ewart et al.

(2007b). Table 7 also provides various values and

formulations of slip coefficients concerning as obtained

from different approaches. Barber and Emerson (2002)

concluded that the different solutions between the BE and

Maxwell estimation of as lead to considerable confusion

and prevent the clear understanding of gas microflows.

As listed in Table 12, it can be observed that the obvious

differences among the various experimental and data-fit-

ting approaches. For the first- and second-order polynomial

fitting approaches, the TMAC of second order is closer to

unity than that of first order. The different values of rp and

rv obtained for various gases indicate that nature of the gas

plays a significant role on the slip characteristics in the gas

microflows.

5.6.1 Experimental measurement

The experimental measurement of the TMAC is very

important and valuable. Agrawal and Prabhu (2008b)

reviewed different measurement approaches to determine

the TMAC with various gas–surface combinations and

conditions and clearly described the mechanisms of accu-

rate experimental measurements. Finger et al. (2007)

summarized that the TMACs obtained from most of the

experimental measurements are in the range of 0.85–1.06,

while some researchers had experimentally observed

TMACs to be between 0.2 and 1.0 (Gad-el-Hak 1999;

Karniadakis and Beskok 2002).

Generally, the determination of the TMAC depends on

the mass flow measurement. Table 13 provides several

typical experimental measurement methods to obtain the

TMACs for helium from the literature. Even for the same

gas of helium, the TMAC values have differences for dif-

ferent measurement methods and at various Knudsen ran-

ges. Although many experiments are performed to

determine the TMAC, there has no methodology, which

can predict the TMAC for a given set of conditions. The

difference and uncertainty in the measurements unavoid-

ably lead to widely varying TMACs. Therefore, the results

of these previous works on the measurements of the

TMACs cannot be directly used in a quantitative way for

micro- and nanoflows.

To verify the differences from several methods, Yam-

aguchi et al. (2011) employed the constant-volume method

presented by Arkilic et al. (2001) and Ewart et al. (2007b)

to measure the mass flow rate through a single microtube

and deduced the TMAC from the slip coefficients using the

Maxwell model, Loyalka model (Loyalka et al. 1975) and

Table 11 Overview of roughness model and slip model for different microfluidic devices

Component Roughness model Slip model References

Microchannel Triangular, rectangular, sinusoidal and random

triangular wave models

Maxwell’s first-order model (Maxwell 1879) Cao et al. (2006)

Triangular and random triangular wave models Maxwell’s first-order model (Maxwell 1879) Khadem et al. (2009)

Two-dimensional W–M function-based model No-slip model Chen et al. (2009)

Conical model No-slip model Lilly et al. (2007)

Fractal geometry model Hadjiconstantinou’s second-order model

(Hadjiconstantinou 2003)

Liu and Ni (2008)

Microtube Coons surface model No-slip model Xiong and Chung

(2010)

Sinusoidal corrugation model First-order model (Barber and Emerson 2006) Duan and Muzychka

(2008, 2010)

Porous flow model High-order model (Weng et al. 1999) Li et al. (2002)

Microbearing Sinusoidal wave model Wu’s second-order model (Wu and Bogy 2003) Zhang and Meng (2009)

Striated rough surface model No-slip model White (2010)

Three-dimensional W–M function-based model Wu model (Wu 2008) Zhang et al. (2012a, b)

Micropipe Triangular wave model No-slip model Ozalp (2008, 2011)
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Sharipov model (Sharipov 2004). As listed in Table 14, the

TMACs are smaller than unity, and rL
v and rS

v are more

accurate than rM
v from the viewpoint of the kinetic theory.

The results show that the differences in gas species are

small and a little difference in two geometry conditions

(Yamaguchi et al. 2011).

Barber and Emerson (2002) verified that the TMAC is

substantially a function of molecular weight of the gas,

energy of the incoming molecules, wall material, and sur-

face roughness. The surface roughness plays a significant

effect on the TMAC. The TMAC values can vary about

15 % with the surface roughness effect even for the same

surface material (Thomas and Lord 1974; Jang and

Wereley 2006). However, there are two kinds of contro-

vertible results. On the one hand, Blanchard and Ligrani

(2007) designed and performed experiments to measure the

TMAC on the walls with different rough surfaces, and

found that a smaller value of TMAC is obtained for the

rougher surface. A strong dependence of the TMAC on the

surface roughness can be seen from Table 15 for both air

and helium. Turner et al. (2004) also obtained that the

effects of surface roughness on friction factors, accom-

modation coefficients, and slip velocity are generally

insignificant. On the other hand, Chew (2009) summarized

the comparison of TMAC measurements from the litera-

ture, as listed in Table 16. In the comment, it can be

observed obviously that most of the TMACs are signifi-

cantly below unity, but the TMAC increases above

unity for rough surfaces. Sun and Li (2008) verified that

the surface roughness often causes the gas molecules col-

liding with the wall more frequently so that the TMAC

increases with the increase of the roughness. Neither the

diffusive proportion nor the mass flow rate is influenced

by the surface topology (Veltzke and Thoming 2012).

Therefore, it is necessary to find a universal measurement

method to determine the TMAC with surface roughness

effects.

5.6.2 Analytical model

Since it is currently impossible to make a direct measure-

ment of the TMAC, the TMAC value should be inferred by

other methods. Barber and Emerson (2002) suggested that

the TMAC varies with the Knudsen number based on an

analytical model from the experimental observations

(Arkilic et al. 2001; Maurer et al. 2003). The analytical

model to calculate TMAC should consider the consistent

relationship between the slip coefficients and slip models

(Agrawal and Prabhu 2008b; Cao et al. 2009).

From the determination of the first-order slip coefficient

C1 reviewed in Sect. 4, one can deduce the TMAC using

the following formulation:

rv ¼
2

C1 þ 1
ð104Þ

Maurer et al. (2003) presented a formulation of the

TMAC based on the regression analysis method (Arkilic

et al. 2001) and gave the determination expression as:

rv ¼
12Kn

Sþ 6Kn� 1
ð105Þ

where the slip coefficient S can be referred to the mass flow

rate. Maurer et al. (2003) suggested that it allows reducing

the uncertainty on the determination of the TMAC by

taking the second-order term into account. Moreover,

Eq. (30) is also an appropriate expression for calculating

the TMAC from the slip coefficient definition (Sharipov

2011). However, the validity of the existing models should

be verified with further works.

Agrawal and Prabhu (2008b) presented the correlation

between the TMAC and Knudsen number based on the

available data by the following expression:

rv ¼ 1� logð1þ Kn0:7Þ ð106Þ

The equation was chosen to be rv ! 1 as Kn ! 0 and

the explanation of the decrease of the TMAC with the

Table 12 Experimental coefficients obtained from the first-order and second-order polynomial fitting reported by Maurer et al. (2003), Ewart

et al. (2007a, b) and Graur et al. (2009)

Gas r1st
p r2nd

p r1st
v r2nd

v
Knudsen range References

Helium 1.060 ± 0.070 – 0.977 ± 0.030 0.06–0.8 Maurer et al. (2003)

1.216 ± 0.007 – 0.905 ± 0.004 – 0.03–0.7 Ewart et al. (2007b)

1.153 ± 0.008 1.140 ± 0.022 0.919 ± 0.009 0.083 ± 0.012 0.03–25.7 Graur et al. (2009)

1.252 ± 0.009 1.052 ± 0.020 0.829 ± 0.004 0.914 ± 0.009 0.009–0.31 Ewart et al. (2007a)

Nitrogen 1.253 ± 0.011 1.104 ± 0.010 0.889 ± 0.004 0.956 ± 0.005 0.008–30.5 Graur et al. (2009)

1.415 ± 0.028 1.066 ± 0.088 0.770 ± 0.010 0.908 ± 0.041 0.003–0.29 Ewart et al. (2007a)

Argon 1.355 ± 0.022 1.205 ± 0.064 0.848 ± 0.008 0.910 ± 0.028 0.01–3.76 Graur et al. (2009)

1.588 ± 0.021 1.147 ± 0.042 0.725 ± 0.007 0.871 ± 0.017 0.003–0.30 Ewart et al. (2007a)
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increase of Knudsen number was not reported (Agrawal

and Prabhu 2008b).

McCormick (2005) estimated the accommodation

coefficient as an inverse problem from the experimental

data (Siewert 2003) with an iterative method. The

accommodation coefficients for the Maxwell one-parame-

ter model and CL two-parameter model are estimated as:

ðrvÞM ¼ 3:6603ð0:7268

þ 1:648SÞ 1þ 1:0928

ð0:7268þ 1:648SÞ2

 !1=2

�1

2

4

3

5

ð107Þ

and

ðrvÞCL � 4:8804ð0:761

þ 1:1648SÞ 1þ 0:8196

ð0:761þ 1:1648SÞ2

 !1=2

�1

2

4

3

5

ð108Þ

To explain the effect of Knudsen number on the TMAC,

Fig. 12 shows variation of the TMAC as a function of

Knudsen number from different experiment data and

analytical results. It can be found that the TMAC varies

irregularly and fluctuates near the unity with the change of

Knudsen number in the slip and transition flow regimes.

Most of the TMAC values are less than unity in the transition

flow regime, especially for the analytical results. The TMAC

value decreases monotonically with the increasing of

Knudsen number from the analytical models presented by

Maurer et al. (2003) and Agrawal and Prabhu (2008a, b).

However, the TMAC has larger difference between these

two methods in the slip flow regime. From the experimental

measurements, Gabis et al. (1996) and Maurer et al. (2003)

predicted that the TMAC decreases generally with the

increase of Knudsen number for helium. Yamamoto et al.

(2006) also found the same result for nitrogen. However, the

TMAC does not decrease monotonically with increasing

Knudsen number for argon (Gabis et al. 1996). Even for the

same gas such as air, the TMAC displays different varying

trends in the slip and transition flow regimes. Whatever the

Knudsen number range and whatever the analytical

approach, it can be found that the values of TMAC

decrease with the increase of molecular weights of the gas

(Graur et al. 2009). The effect of Knudsen number on the

TMAC is still not clarified from the literature and should be

predicted from the experimental measurements.

Table 13 The values of TMAC for helium from various experimental measurement methods

Measurement method rv Knudsen range References

Oil drop method 0.874 \0.5 Millikan (1923)

Rotating cylinder method 0.94 0.04–0.1 Kuhlthau (1949); Agrawal and Prabhu (2008a)

0.74 0.1–8.3

Spinning rotor gauge method 0.941 0.005–0.583 Tekasakul et al. (1996)

Molecular beam method 0.67–0.96 – Seidl and Steinheil (1974)

Unsteady flow method 0.895 ± 0.004 0.001–2 Suetin et al. (1973)

Flow through microchannel 0.93 0.029–0.22 Colin et al. (2004)

Constant-volume method 0.91 ± 0.004 0.003–0.3 Ewart et al. (2007b)

Table 14 Comparison of the TMACs using the Maxwell model,

Loyalka model (Loyalka et al. 1975) and Sharipov model (Sharipov

2004) adapted from Yamaguchi et al. (2011)

Gas rM
v rL

v rS
v

Argon 0.812 ± 0.034 0.877 ± 0.038 0.872 ± 0.037

Nitrogen 0.794 ± 0.022 0.857 ± 0.024 0.851 ± 0.024

Oxygen 0.794 ± 0.021 0.857 ± 0.024 0.851 ± 0.023

Table 15 Average values of the average roughness Ra and TMAC

for different surfaces with average channel height 6.85–29.2 lm

reported by Blanchard and Ligrani (2007)

Gas Smooth disk Medium rough

disk

Rough disk

Ra (nm) TMAC Ra (nm) TMAC Ra (nm) TMAC

Air 10 0.885 404 0.346 770 0.145

Helium 10 0.915 404 0.357 1,100 0.253

Table 16 Summary of TMAC measurements between smooth and

rough silicon reported by Chew (2009)

Gas Smooth silicon

(10–100 nm)

Rough silicon

(10 lm)

Air 0.95 1.04

Helium 0.99 1.00

Hydrogen 1.02 1.04

Water vapor 0.99 1.02

Nitrogen 0.99 1.01
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5.6.3 Simulation and numerical model

Experimental measurements are specific to some given

conditions and not easily applied or extended to new sit-

uations in micro- and nanoflows. Some researchers sug-

gested that it has become common practice in numerical

modeling and simulation of gas microflows to predict the

TMAC (Finger et al. 2007). Various numerical and simu-

lation approaches, such as the MD method (Cao et al. 2005;

Kovalev et al. 2011; Barisik and Beskok 2011), DSMC

method(Bird 1994; Gallis and Torczynski 2011), LB

method (Sbragaglia and Succi 2005; Homayoon et al.

2011), are widely used to model the gas-surface interac-

tions at the wall.

For a given set of gas atoms colliding in a surface, Finger

et al. (2007) used the MD simulation model to estimate the

TMAC of rarefied gas, and defined the TMAC as:

rvðFÞ ¼

P

Na

muin �
P

Na

mufin

P

Na

muin

ð109Þ

where Na is the total number of gas atoms, in and fin denote

the initial and final values before and after the gas atom

collides with a solid surface.

Using the MD simulation model, Cao et al. (2005) and

Kovalev et al. (2011) investigated the effect of temperature

on the TMAC and found that the TMAC decreases with the

increase of temperature following an exponential decay

law, and is more sensitive to lower temperatures than to

higher ones. Moreover, the adsorbed materials may be in

multiple layers and their surface effects should be taken into

account (Gad-el-Hak 1999; Finger et al. 2007). Sun and Li

(2008) studied the effect of gas adsorption on the TMAC in

gas microflows using MD simulations. The gas adsorption

can lead to a longer gas-wall interaction time, which will

cause the TMAC increasing and reaching the maximum

value when an explicit gas layer is formed. MD and DSMC

methods can be used to predict the TMAC and model

micro- and nanoflows for a wide range of the Knudsen

number (Cao et al. 2009). However, the computational cost

of these molecular based methods is prohibitively high such

that they cannot be widely used for practical fluid flow

simulations at the micro- and nanoscales. Although the LB

method can be used to simulate gas flows in all regimes

upon appropriate adjustments (Sbragaglia and Succi 2005;

Homayoon et al. 2011), it needs to be improved and

extended to accurately predict the value of TMAC.

It is evident from the above review and discussion that

the TMACs are regularly assumed or approximated using

different definitions. The reason is that there has no

universal methodology which can estimate or predict

the TMAC based on the mechanisms involved in the

momentum transport for the gas-surface interactions at the

wall (Agrawal and Prabhu 2008b; Cao et al. 2009). All of

these will prevent the development of reliable modeling of

the gas microflows.

6 Conclusions

The slip models have experienced tremendous develop-

ments from the original Maxwell’s model and have been

widely used to simulate various gas microflow behaviors in

the slip flow regime, and even extending the N–S equations

into the transition regime.

In this review, we have summarized currently available

slip models for modeling isothermal gas microflows

through the microfluidic devices in MEMS. Although

lacking a universal description of the KL effect on the slip

boundary condition, it is essential to capture the KL

characteristics using the phenomenological model and

physical approach. The slip effect should be considered to

make a correction based on the degree of non-equilibrium

near the surface. The use of higher-order slip conditions

with the N–S constitutive equations can be justified

because rarefied flows are dominated by gas-surface

interactions at the wall (Barber et al. 2004). Not only gas-

surface interaction model but also gas-surface molecular

interaction one can be used to describe the boundary con-

dition. It shows that there are significant differences on the

values of first-order slip coefficients obtained from what-

ever theoretical analyses or experimental measurements. In

addition, various methods and techniques have been pre-

sented to determine the value of the second-order slip

coefficient. However, there is no agreement among them

and it is very difficult to compare them and to indicate the

reliable ones. The large variation in the second-order slip

coefficient and the lack of exact expression for the second-

Fig. 12 Variation of the TMAC as a function of Knudsen number

with different experiment data and analytical results
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order component seem to hinder the extending of the N–S

equations for gas microflows. Therefore, new techniques

and methods should be developed to accurately measure

the mass flow rate, and then to extract the slip coefficient

and model for gas microflow studies.

The influences of the effective MFP and viscosity of the

gas molecules, surface roughness, gaseous mixture and

TMAC on the hybrid slip models for gas microflows are

analyzed and discussed in detail. Although different

effective MFP and viscosity models are proposed from

different viewpoints, they all can be contributed to extend

N–S equations for gaseous microflows with higher Knud-

sen numbers. Furthermore, it indicates that the value of the

slip coefficient for a mixture is larger than that for a single

gas, which can be applied to optimize the design of the slip

boundary condition in gas microflows. The TMAC also

governs the degree of slip at the surface, and its value can

usually be obtained by comparing the experimental or

simulation data of boundary velocities to the solutions of

the N–S equations with specified velocity-slip boundary

conditions. The review also reports the conflicting results

existed in the literature that some predicting the roughness

increases TMAC, some predicting the roughness decreases

TMAC, and some mentioning the relationship between the

roughness and TMAC is more complex. Surface roughness

proves to have a dominating influence on the slip and

should be appropriately described to investigate its effect

on the gas microflows. Furthermore, experimental data

within the KL will be very useful for validating the higher-

order slip boundary conditions and understanding the gas

microflows.

In brief, it is a great challenge to provide accurate data

on the velocity slip and allow a precise verification on the

validity of the best boundary conditions, as well as on the

limits of applicability of the extended N–S equations.

Further researches are required to investigate the exten-

sions of current slip coefficients and models for the non-

isothermal rarefied gas microflows. Theoretical, numerical

and experimental data, both for steady or unsteady rarefied

gas microflows, will be provided to reach a good agreement

in the future work.
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