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Abstract The concept of a micropatterned surface mor-

phology capable of producing self-stabilization of turbu-

lence in wall-bounded flows is considered in pipes of

non-circular cross-sections which act to restructure fluctu-

ations towards the limiting state where these must be

entirely suppressed. Direct numerical simulations of tur-

bulence in pipes of polygon-shaped cross-sections with

straight and profiled sides were performed at a Reynolds

number Res ’ 300 based on the wall shear velocity and the

hydraulic diameter. Using the lattice Boltzmann numerical

algorithm, turbulence was resolved with up to 540� 106

grid points (8;192� 257� 256 in the x1, x2 and x3 direc-

tions). The DNS results show a decrease in the viscous drag

around corners, resulting in a reduction of the skin-friction

coefficient compared with expectations based on the well-

established concept of hydraulic diameter and the use of

the Blasius correlation. These findings support the con-

jecture that turbulence might be completely suppressed if

the pipe cross-section is a polygon consisting of a sufficient

number of profiled sides of the same length which intersect

at right angles at the corners.

1 Introduction

In previous studies carried out by the authors and associ-

ates (Frohnapfel et al. 2007; Jovanović and Hillerbrand

2005; Jovanović et al. 2005), the unified theory of skin-

friction reduction in turbulent wall-bounded flows was

proposed along with the results of its validity using avail-

able databases of direct numerical simulations. The starting

point in reasoning about the main mechanism involved in

turbulent drag reduction in fully developed channel and

pipe flows by high polymers, surfactant additives, rigid

fibers, and riblets including the closely related phenomena

observed in strongly accelerated and supersonic flows,

relied on the role played by the average total energy dis-

sipation U :
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The two terms in Eq. 1 correspond to direct (I) and tur-

bulent dissipation (II) and their overall contribution to U
can be evaluated from the work done against the wall shear

stress, sw, per unit mass of the working fluid, qV, where Aw

is the wetted surface area and UB is the bulk velocity. The

analysis involving an order of magnitude estimation of the

terms in Eq. 1 shows that, in turbulent flows at large

Reynolds numbers, the largest contribution to U is due to

turbulent dissipation, e; which reaches a maximum at the

wall and decays away from the wall region. This evidence
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leads to the conclusion that a large turbulent drag reduction

can be expected if the turbulent dissipation at the wall is

minimized, leading to minimization of U:
By projecting the dynamics of turbulence from the real

space into the functional space formed by two scalar

invariants, IIa ¼ aijaji and IIIa ¼ aijajkaki; of the anisotropy

tensor, aij ¼ uiuj=q2 � 1=3dij (uiuj and q2 denote the Rey-

nolds stress tensor and its trace, respectively), it was shown

(Jovanović and Hillerbrand 2005) that the turbulent dissi-

pation rate must vanish at the wall, ewall ! 0 as x2 ! 0; if

the velocity fluctuations in the near-wall region satisfy

local axisymmetry with invariance to rotation about the

axis (say x1) aligned with the mean flow direction so that

the streamwise intensity, u2
1; is much larger than in the

other two directions along which the intensities are same,

u2
2 ¼ u2

3; and the wall location corresponds to the one-

component state. Owing to the invariances ðou1=ox2Þ2 ¼
ðou1=ox3Þ2; ðou2=ox2Þ2 ¼ ðou3=ox3Þ2 and ðou2=ox3Þ2 ¼
ðou3=ox2Þ2; which must be satisfied in this special state of

wall turbulence leading to ewall ! 0; kinetic energy

k, which grows as k ¼ 1=2ðewall=mÞx2
2 as x2 ! 0; cannot

be amplified and therefore turbulence must decay, leading

to flow relaminarization (for details see Jovanović and

Hillerbrand 2005 and Jovanović et al. 2005). These con-

clusions are in close agreement with results of direct

numerical simulations with forced boundary conditions

which display a high drag reduction when turbulence in the

viscous sublayer is manipulated to tend towards the one-

component limit in an axisymmetric fashion (Frohnapfel

et al. 2007; Lee and Kim 2002; Satake and Kasagi 1996).

We may support this fundamental deduction more

clearly by examination of the Reynolds equations for the

mean flow:
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in simple parallel wall-bounded flows, considered in Sect. 4,

by demanding statistical axisymmetry in the turbulent

stress tensor uiuj ¼ Adij þ Bkikj; where A and B are the

scalar functions and ki is the unit vector defined in such

way that uiuj is invariant under rotation about the axis

defined by its scalar arguments say ki = (1, 0, 0). It is

straightforward to show that for such a stress configuration

Eq. 2 transforms from the unclosed to the closed form:
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and obviously lead to solutions which coincide with

corresponding solutions for laminar flows. Following a

similar analytical path, constraints were derived in Rotta

(1972) which insure persistence of the secondary flows

and the self-maintenance of turbulence in pipes of non-

circular cross-sections. From these results, it also appears

that statistical axisymmetry, as discussed above, in the

turbulent stresses leads to flow relaminarization and

therefore to a large viscous drag reduction effect.

Based on the considerations summarized above, we may

attempt to devise a microflow control technique, in the

form tentatively proposed in Fig. 1, with the aim of pro-

ducing a large viscous drag reduction in wall-bounded

flows. The outstanding question is whether and how this

can be accomplished rationally by simple means such as

modification of the surface morphology in order to force

the velocity fluctuations in the near-wall region to tend

towards the statistically axisymmetric state and reach the

one-component limit at the wall.

2 The cross-sectional geometry

In order to elucidate the surface morphology which pro-

motes a large viscous drag reduction, we shall first examine

the statistical features of turbulence in a fully developed

flow through a straight duct of square cross-section as

shown in Fig. 2 (center). It is well known (Schlichting

1968) that secondary flows appear near duct corners known

as Prandtl’s vortices of the second kind, which cannot

develop if the flow assumes the laminar state. These

counter-rotating vortices are formed due to interaction of

the high-speed fluid, originating from the core region, as it

Fig. 1 Enlarged cross-sectional view of the micropattern surface

morphology manufactured in a thin plastic foil for producing a large

viscous drag reduction effect. The flow direction is perpendicular to

the plane of the figure. The surface pattern design follow the analysis

presented in this study. It is expected that turbulence will reach the

statistically axisymmetric state in and around the region occupied by

the cavity and that this state will prevail over the surrounding almost

flat region leading to flow relaminarization. The minimum attainable

dimensions are restricted by the production process and correspond to

the pattern width period b of 100 lm and the recession depth h of

25 lm (see Fig. 2e0)
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is transported towards the duct corners where it is forced to

split sideways along both walls.

The flow development along the wall normal bisector

shown in Fig. 2 (center-bottom-right) is weakly influenced

by side walls and the turbulence statistics resemble trends

observed in the plane channel flow. The trajectory in the

anisotropy-invariant map shows that the data correspond-

ing to the region of the viscous sublayer lie along the

two-component state (2C) mid-way between the two-

component isotropic state (2C-iso) and the one-component

state (1C). Away from the wall region, the trajectory shows

a pronounced tendency for turbulence to approach the

axisymmetric state, which is reached at the duct centerline.

In the viscous sublayer, the velocity fluctuations normal to

the wall are suppressed, u2 & 0, so that fluid motions are

constrained to planes parallel to it (x1, x3) having only

streamwise, u1, and spanwise, u3, velocity components.

Such a flow structure allows the development of turbulent

dissipation which reaches a maximum at the wall and

decays away from it following the local equilibrium

between the turbulence production and turbulence dissi-

pation. As a consequence of spatial variation of turbulence

statistics, the mean velocity profile is almost uniform in the

core region and exhibits a steep gradient at the wall (see

Fig. 2, center-top-left).

The evolution of turbulence along corner bisectors

shown in Fig. 2 (center-top-right) is strongly influenced by

side walls forcing normal and spanwise velocity compo-

nents to develop in the same fashion. Both of these velocity

components are suppressed near walls and the trajectory in

the anisotropy-invariant map shows that turbulence is

axisymmetric along the entire corner bisector starting from

the wall at the one-component limit (1C) up to the duct

centerline where turbulence is almost isotropic. The

structure of the viscous sublayer is altered in such a way

that turbulent dissipation cannot develop at the wall and is

reduced significantly away from it compared with the

corresponding distribution along the wall normal bisector.

As a result of such spatial development of turbulence, the

mean velocity profile shows a tendency for flow relami-

narization with a significant reduction in the slope at the

wall (see Fig. 2, center-top-left). The distribution of the

wall shear stress (reproduced from the study of Gavrilakis

1992) shown in Fig. 2 (center-bottom-left) reflects these

trends and displays consequential changes in the turbulence

structure along various cross-sections of the duct.
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Fig. 2 The structure of turbulence in a square duct flow (center) and

in pipes of non-circular cross-sections (left and right). a Along wall-

normal bisectors, the turbulence structure has the form common for

wall-bounded flows. b Along corner bisectors, turbulence approaches

the ideal trajectory in the anisotropy-invariant map, resulting in a

significant reduction in the dissipation (e) and spectral transfer with

formation of quasi-deterministic highly elongated streaks induced by

secondary motions. c, d Close to corners, reduced spectral transfer

results in a noticeable reduction in the wall shear stress. e–h0 Possible,

polygonal or similar, flow configurations of pipe cross-sections with a

finite number of corner bisectors: in such configurations, turbulence

might be self-suppressed whenever secondary motions start to appear
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The variation of turbulence statistics along two different

bisectors of the duct flow provides useful hints on how

turbulence anisotropy, dissipation rate, mean flow and the

wall shear stress can be altered rationally. This immedi-

ately suggests that if we intend to achieve a large viscous

drag reduction, the cross-sectional geometry has to be

composed of a large number of corner bisectors in order to

ensure that axisymmetry in turbulence prevails not only

near the wall but also across the entire flow domain.

As an initial guess, polygon-shaped cross-sections, shown

in Fig. 2 (left), consisting of a large number of straight sides

between corners, might be considered. For a large number of

corners, such configurations asymptotically approach the

circle and we may argue, in the context of the previous dis-

cussion, that the mechanism responsible for the remarkable

stability of circular pipe flows at very large Reynolds num-

bers is due to increased anisotropy in the disturbances

induced by the surface curvature. Some supporting evidence

may be added with respect to the above issue: (1) examina-

tion of the transport equations for the Reynolds stresses and

anisotropy-invariant mapping of turbulence in circular pipe

flows using DNS databases reveal higher anisotropy in the

viscous sublayer compared with plane channel flows (Pas-

htrapanska 2004); (2) experiments performed in circular

pipes confirmed an increase in the transition Reynolds

number with increasing surface curvature, e.g., decreasing

the pipe diameter (Haddad 2009); (3) analysis of the exper-

imental and numerical data shows that the turbulent Rey-

nolds number, Rk = qk/m based on Taylor’s micro-scale k
which is related to e by e ’ 5mq2=m; in pipe flows (Rk& 1.996

Res
1/2 ? 0.108) is lower than in plane channel flows (Rk &

2.971 Res
1/2 - 6.618), which implies a reduction in the

spectral separation L/gK due to the surface curvature effect

(Jovanović and Pashtrapanska 2004). The spectral separa-

tion L/gK measures the strength of turbulence and represents

the ratio between the large, L, and smallest scale, gK, of

turbulent motion defined in terms of Kolmogorov’s length

scale gK ¼ ðm3=eÞ1=4:

For a finite number of corner bisectors, simple polygon

configurations with straight sides between corners are not

appropriate since these configurations do not ensure axi-

symmetry of turbulence near the wall (as will be shown in

Sect. 4.2). In order to force axisymmetry, polygons with

profiled side walls intercepting at right-angles are sug-

gested, as shown in Fig. 2 (right), as the simplest means to

obtain the desired turbulence structure which promotes

high drag reduction. The preferred cross-sectional geome-

try can be conveniently characterized in terms of the corner

recession depth, h, and the distance between neighboring

corners, b. These two parameters should logically scale

with flow quantities available at the wall such as the wall

shear velocity, us, and the fluid viscosity, m. Following the

discussion presented in Sect. 1, we may suggest that h has

to be of the order of the sublayer thickness, h? = hus/

m B 5, and b is expected to scale with the width of low-

speed streamwise streaks observed in the viscous sublayer

of fully developed wall turbulence, b? = bus/m & 20–25

(Kline et al. 1967).

3 Computational domain and numerical method

3.1 Computational domain

The simulated flow configurations and the coordinate sys-

tem employed are shown in Fig. 3. For wall-bounded flows

the velocity scale us is related to the streamwise pressure

gradient oP=ox1 through the mean momentum equation

us ¼ ½0:25ðDh=qÞðoP=ox1Þ�1=2; where Dh is the hydraulic

diameter defined in terms of the cross-sectional area,

A, and the wetted perimeter, O, as Dh = 4A/O. Following

common practice, all variables are normalized using inner

scales (us and m) and this is identified in the text by the

superscript ?, e.g., x? = x us/m.

There are two possibilities for performing numerical

simulations of a turbulent pipe flow: either to fix the flow

rate through the pipe or to prescribe the axial pressure

gradient and therefore us. For our simulations, we chose the

latter option and thereby the Reynolds number Res, based

on us and the hydraulic diameter Dh, was fixed, for the flow

simulations described in Sect. 4, to the value Res = Dh us/

m = Dh
? ^ 300.

For the geometries shown in Fig. 3, the flow is homo-

geneous in the streamwise direction so that periodic

boundary conditions were used in this direction. Using an

equidistant cartesian grid with 4,096 9 129 9 129 points

in the x1, x2 and x3 directions for a pipe of square cross-

u1

u2

u3

x1

x2

x3

Normal wall
bisector

Corner
bisector

Mean flow
direction

(a) (b)

Fig. 3 Computational domain with coordinate system (a) and sim-

ulated cross-section configurations (b)
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section considered in Sect. 4.1 and 8;192� 257� 256

points for pipes with octagonal cross-sections presented in

Sect. 4.2, the non-dimensional grid spacings were Dxþi ¼
2:32 and Dxþi ¼ 1:17; respectively. The estimated value of

the Kolmogorov length scale, gK
? = (0.25 Res us / UB)1/4,

obtained from the average dissipation rate across the entire

flow domain per unit mass of the working fluid, was gþK �
1:5: The grid resolutions Dxþi ’ 1:54gþK and Dxþi ’ 0:78gþK
were therefore fine enough to resolve almost all dissipation

and obtain reliable results for first- and second-order tur-

bulence statistics.

3.2 Numerical method

The choice of the numerical method was motivated by the

demand for an algorithm with small computing costs per

grid point and time step. In this respect, the lattice Boltz-

mann method (LBM) was a logical and attractive choice

and will be briefly described.

The LBM utilizes the fact that information on the

velocity U and the pressure p of a viscous fluid can be

obtained by solving a kinetic equation for a one-particle

distribution function f instead of Navier–Stokes equations

directly. The function ~f ¼ ~f ðn; r; tÞ depends on the

molecular velocity n, the position in space r and the time ~t:

The hydrodynamic quantities are obtained from the

moments of the distribution function.

A very popular kinetic model is described by the

Boltzmann equation together with the so-called Bhatnagar–

Gross–Krook (BGK) ansatz (Bhatnagar et al. 1954) for the

collision operator

�
o~t þ n � rr þF � rn

�
~f ðn; r; ~tÞ

¼ �
~f ðn; r; ~tÞ � ~f eqðn; r; ~tÞ

k
; ð4Þ

where F is the external force. The function ~f eq

corresponds to the equilibrium (Maxwell–Boltzmann)

distribution and k is a relaxation time. This equation is

discretized in time and space. Additionally, a finite set of

velocities ci for n has to be defined. As a result of

discretization, the following non-dimensional equation is

obtained:

fiðxþ ci; t þ 1Þ � fiðx; tÞ ¼ �xðfiðx; tÞ � f eq
i ðq;U

þ E
2q ; x; tÞ þ 3tp

2�x
2

ci � E;
ð5Þ

where fi is the distribution function of the velocity ci:

A detailed derivation of how the lattice Boltzmann equa-

tion recovers the Navier–Stokes equation can be found in

Hou et al. (1995) and especially for Eq. 5 in Buick and

Greated (2000).

Equation 5 appears to be a first-order scheme but is in

fact second order in time (He and Luo 1997). Without loss

of generality, we may choose dt = 1 for the time step and

q = 1 for the density. The force density E is given by the

pressure gradient according to E ¼ rp; whereby E1 is the

only remaining component in our case. The macroscopic

behavior of Eq. 5 is obtained by a Chapman–Enskog pro-

cedure (Chapman and Cowling 1999) together with a

Taylor expansion of the Maxwell–Boltzmann equilibrium

distribution for small velocity (small Mach number). For

this equilibrium distribution

f eq
i ¼ tpq 1þ ciaUa

c2
s

þ UaUb

2c2
s

ciacib

c2
s

� dab

� �� �
ð6Þ

it can be shown that the Mach number must be |u/cs| �1 in

order to satisfy the incompressible Navier–Stokes equa-

tions. The parameters tp and p ¼ kcik2
depend on the dis-

cretization of the molecular velocity space. Various models

can be found in (Qian et al. 1992). For the present simu-

lations, a three-dimensional model with 19 velocities

ci; i ¼ 0; . . .; 18 (D3Q19) was employed. The D3Q19

model has the parameters t0 = 1/3, t1 = 1/18 and t2 = 1/36.

A sketch of ci is given in Fig. 4.

The most commonly used condition to implement solid

walls into the LBM is the so-called bounce-back rule

sketched in Fig. 5. This rule forces the populations leaving

the computational domain to return to the node of departure

with the opposite velocity. This rule is very simple and

enforces mass conservation. Here it is implemented in such

a way that the solid boundaries are placed half way

between two nodes. This is referred to in the literature as a

bounce-back on the link (BBL). It has been shown that the

BBL scheme gives second-order accurate results for plane

boundaries (He et al. 1997) but the same cannot be claimed

for curved boundaries. In combination with the marker-

and-cell approach, even geometries much more complex
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Fig. 4 Employed lattice arrangement and the velocity vectors ci for

three-dimensional 19-velocity D3Q19 model
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than plane walls can be matched to the grid. The bounce-

back rule is used for treatment of the flow close to the solid

boundaries in the present simulations.

For all simulations reported in this paper, an initial field

was generated by a superposition of the universal velocity

distribution uþ0 and perturbation produced by a periodic

array of eddies according to

vþ0 ¼ uþ0 þ Aþ
0

xc þ
31
� xþ3

xþ2 � xc þ
21

0
B@

1
CA exp

� ðxþ2 � xc
21
Þ2 þ ðxþ3 � xc

31
Þ2

	 


ðRþÞ2

2
4

3
5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
streamwise

þBþ
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spanwise

:

ð7Þ

Although the exponential functions violate the

incompressibility condition, they served to damp the

amplitude of the eddies near the wall and avoid stability

problems during the initial phase of the simulation. In the

present simulation, the constants in the universal velocity

distribution

U1

us
¼ 1

j
ln

x2us

m
þ C; ð8Þ

were chosen as j ¼ 0:4 and C ¼ 5:2: The other parameters

involved in Eq. 7 were set to Aþ ¼ Bþ ’ 0:001 and

Nc = 8. The initial velocity field corresponds to a finite

array of periodic spanwise eddies with centers along a line

parallel to the x1 axis and one streamwise eddy centering in

the middle of the x2–x3 plane. The center of the first

spanwise eddy was located at xc
1i
¼ Dþh =2 from the inflow

boundary and the rest of the eddies were separated at

regular intervals of about 2Dþh :

Our implementation of LBM, shown in Fig. 6, was

validated against the well-resolved pseudo-spectral simu-

lation of a plane channel flow at Res & 180. Results of the

lattice Boltzmann simulation reported previously (Lam-

mers 2004; Lammers et al. 2006; Lammers et al. 2011)

confirm that profiles of the mean velocity, root-mean-

square velocity fluctuations, turbulent shear stress and the

balance of the turbulence kinetic energy equation agree

closely with the published results (Kim et al. 1987).

The computations presented in the following section

were performed on the NEC SX-8 of the High Performance

Computing Center in Stuttgart.

4 DNS results

4.1 Turbulent flow through a pipe of square cross-

section

In order to produce the desired componentality of the

velocity fluctuations by cross-sectional geometry which

leads to the realization of axisymmetric turbulence in the

near-wall region, we first performed a simulation of tur-

bulence in a pipe of square cross-section. It is expected that

in such a configuration turbulence will reach the axisym-

metric state along corner bisectors and tend towards the

one-component state at the wall. By evaluating the turbu-

lence statistics in the region between the wall normal and

corner bisectors, it is possible to confirm the results of the

theoretical considerations outlined in Fig. 2 and show that

the axisymmetric state of wall turbulence leads to a large

reduction in the wall shear stress. Starting from the initial

field, governing equations were integrated for about 30

turnover times Dh/us before the flow reached a statistically

steady state. This state could be identified by monitoring

running averages of the turbulence statistics, which were

found to differ marginally along four half-parts of corner

bisectors as shown in Fig. 7.

Figure 8 shows distributions of the mean flow, all com-

ponents of the Reynolds stress tensor and the turbulence

anisotropy across one of the eight octants of a square cross-

section. These results provide a demonstration of desired

modifications of turbulence induced by the presence of the

side walls which intersect at right-angles. Distributions of the

Reynolds stresses reveal that turbulence reaches the axi-

symmetric state in the close vicinity of the corners with

invariance to rotation for 90� about the axis aligned with the

mean flow direction. At corners, turbulent stresses satisfy the

relations which hold for such a form of axisymmetric tur-

bulence: u2
1 [ u2

2 ¼ u2
3 and j u1u2 j ¼ j u1u3 j : Trajectories

in the anisotropy-invariant map reflect these trends and

confirm that anisotropy increases as corners are approached

so that turbulence along the corner bisector follows the right-

Fig. 5 The bounce-back rule and its implementation into LBM for

the treatment of the wall boundaries in numerical simulations of

turbulence
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hand boundary of the anisotropy map which represents axi-

symmetric turbulence with the one-component state located

at the wall.

Following trends in the turbulence statistics between the

profiles shown in Fig. 8a, d, it can be concluded that the

tendency towards axisymmetry is accompanied by a

reduction in the turbulent shear stresses, decrease in the

intensity components and suppression of the pressure

fluctuations. Above corners, peaks in turbulence intensity

and pressure fluctuations are reduced by more than 30 % in

Fig. 6 Flowchart of the LBM and the computer code BEST

employed for direct numerical simulations of turbulence in wall-

bounded flows reported in Sect. 4 and various levels of algorithm

implementation for high-performance computing on different com-

puter architectures (Lammers 2004)
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comparison with sections which lie along normal bisectors.

Approaching corners, slopes of the turbulent stresses and of

the mean flow continuously decrease at the wall. This trend

supports the expectation that a decrease in the turbulent

dissipation rate at the wall, ewall; leads to a lower value of

the integral (Eq. 1) and therefore a decrease in the wall

shear stress, sw:

4.2 Turbulent flow through pipes of polygon

cross-sections

In reasoning about the cross-sectional configurations which

would notably increase the anisotropy of turbulence along

the entire wetted perimeter, which would then prevail

across the whole flow domain, we suggested in Sect. 2

polygon cross-sectional geometries composed of profiled

sides intersecting at right-angles at the corners. For such

configurations with estimated values for h and b, simula-

tion is, however, very demanding owing to the fine reso-

lution needed to capture the evolution of the flow structures

near corners. These structures are expected to have a sig-

nificant impact on the viscous drag.

Using the very efficient lattice Boltzmann algorithm

which currently operates extremely well exclusively on the

equidistant grids, cross-sectional configurations with only a

few corners can be simulated with reasonable effort.
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Fig. 7 The mean velocity in the

flow direction (top) and

turbulence intensity components

(bottom) across four corner

bisectors denoted by I, II, III

and IV of a pipe with square

cross-section
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Therefore, an attempt was made to obtain results by con-

ducting two simulations of turbulence development in

pipes with octagonal cross-sections having straight and

profiled sides. By studying differences in the flow devel-

opment through such pipes, it is possible to extract effects

expected to prevail for a large number of corners.

The simulated cross-sectional geometries are shown in

Fig. 9. Owing to uniform discretization of the flow domain

using equidistant cartesian grids, the wall boundaries are

smooth within the grid resolution, Dxþi ¼ 1:17; and sym-

metry between various orthants of the octagon cross-sec-

tions is preserved within an equivalent degree of

approximation.

Comparisons of the flow development in pipes of

octagonal cross-sections with straight and profiled sides are

shown in Fig. 10. These results display essential differ-

ences in the flow development in the region around corners

which are expected to play a major role in turbulent drag
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Fig. 8 The turbulence statistics in a pipe flow of square cross-section

at Rem = Dh UB/m^ 4,362. The profiles of the mean velocity,

Reynolds stresses and turbulence anisotropy in the region between the

normal (a), and corner bisectors (d). Arrows indicate the maximum

value of turbulence anisotropy. These data are non-dimensionalized

by the wall friction velocity calculated from the pressure gradient

along the pipe and plotted versus the normalized distance starting

from the pipe centerline up to the wall, s? = sus/m
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Fig. 9 Discretisized cross-

sectional geometries of

turbulent pipe flow: octagon

with straight sides (left) and

octagon with profiled sides

(right)
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Fig. 10 The structure of turbulence in pipes with octagonal-shaped

cross-sections. Comparisons of trajectories in the anisotropy-invariant

maps and profiles of mean velocity in the region between the wall

normal bisector and the corner bisector for an octagon with straight

sides against an octagon with profiled sides. Arrows indicate the

maximum level of the turbulence anisotropy
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reduction and potentially also in self-stabilization of the

laminar boundary layer development at large Reynolds

numbers.

The computed trajectories in the anisotropy-invariant

maps in Fig. 10 (right) reveal that anisotropy increases

along the profiled sides of the octagonal cross-section and

reaches at the corners almost the one-component limit.

This trend in turbulence anisotropy is reflected in distri-

butions of the mean velocity which display a continuous

reduction of the wall shear stress as corners are approa-

ched. These results correspond to a Reynolds number of

Rem = Dh UB/m ^ 4,386 and a skin-friction coefficient of cf

= sw/(0.5Uqb
2 ) = 2(Res/Rem)2 = 9.35 9 10-3. This value of

cf is 3.9 % lower than the prediction based on the well-

known Blasius correlation cf = 0.0791Rem
-1/4 (Schlichting

1968).

Across the octagonal cross-section with straight sides,

there is no noticeable increase in anisotropy as observed in

the cross-section with profiled sides and consequently no

trend in reduction of the wall shear stress at and near

corners, as can be concluded from Fig. 10 (left). These

results correspond to a Reynolds number of Rem ^ 4,277

and a skin-friction coefficient of cf ^ 9.838 9 10-3. For

this cross-sectional configuration, the value of cf obtained

is slightly higher than that deduced from the Blasius

correlation.

5 Conclusions

An attempt was made, on purely theoretical grounds, to

derive the cross-sectional geometry of a fully developed

pipe flow which forces near-wall turbulence to approach

the limiting state where it must be completely suppressed.

Following invariant analysis of turbulence, a cross-sec-

tional geometry was suggested in the form of polygon with

profiled sides intersecting at right-angles at the corners. A

description is provided of the manner in which the pro-

posed geometry alters near-wall turbulence leading to a

significant turbulent drag reduction.

In order to support the proposed concept of microflow

control, direct numerical simulations of turbulence in pipes

of non-circular cross-sections were performed using the

lattice Boltzmann numerical method. Simulation results

confirmed that the main mechanism responsible for the

turbulent drag reduction is related to the ability of the

profiled surface to increase the anisotropy in the velocity

fluctuations very close to the wall. It is hoped that further

simulation work following the concept outlined in this

paper will bring additional evidence in closer accord with

the theoretical expectations.
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Theorie und ihre Anwendung. B.E. Teubner, Stuttgart

Satake S, Kasagi N (1996) Turbulence control with wall-adjacent thin

layer damping spanwise velocity fluctuations. Int J Heat Fluid

Flow 17:343–352

Schlichting H (1968) Boundary-layer theory, 6th edn. McGraw-Hill,

New York

440 Microfluid Nanofluid (2012) 13:429–440

123


	Erlangen pipe flow: the concept and DNS results for microflow control of near-wall turbulence
	Abstract
	Introduction
	The cross-sectional geometry
	Computational domain and numerical method
	Computational domain
	Numerical method

	DNS results
	Turbulent flow through a pipe of square cross-section
	Turbulent flow through pipes of polygon cross-sections

	Conclusions
	Acknowledgments
	References


