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Abstract A method is presented for simulating the con-

vection in fluid flows induced by high frequency electric

fields typical, e.g. for electrohydrodynamic pumping in

microchannels. Time scale separation between electric

field frequency and hydrodynamic flow scales is explicitly

taken into account in the derivation of the model. A finite

volume numerical scheme is presented which resolves the

problem three dimensionally in space. The method is

checked against experimental findings.

Keywords Electrohydrodynamics � Microfluidic �
Traveling waves

1 Introduction

In this work, we present a method for simulating the con-

vection in fluid flows induced by high frequency electric

fields. Our work is motivated by electrohydrodynamic

(EHD) pumping technologies in lab-on-chip applications as

described in Sect. 2. The extended potential of the method

presented here was shown in (Böttcher et al. 2011), where

a full simulation of EHD pumping in comparison with a

complex filtration experiment has been carried out in col-

laboration with the authors without presentation of the

actual derivation of the method in both modeling and

numerics. In this paper, we derive the set of model

equations in Sect. 3 and present a numerical method for

solving these equations in Sect. 4. For validation purposes,

we compare our results with the analytically approximable

experimental results of (Melcher 1967) in Sect. 5.
Many papers dealing with the interaction of high frequency

electric fields with fluid flows consider quasi one-dimensional

settings or simplified two-dimensional geometries. The

interaction between the electric fields and the flow is some-

times represented by a Coulomb force term (Ramos et al.

1998) f ¼ qeE and sometimes via an electric stress tensor

(Melcher 1967) Tij ¼ eEiEj � 1
2
dijE

2: To eliminate any

modeling ambiguity, we present a thermodynamically con-

sistent rederivation of the relevant electrohydrodynamic

equations starting from the most general set of equations for

electric and hydrodynamic fields.
The full simulation of EHD pumping has also been

approached recently by Iverson et al. (2009). Our method

differs significantly from their approach, which does not

make use of the time scale separation between hydrody-

namic and electrodynamic variables. It is, therefore, not

applicable for high frequency pumping, since the numerical

time scale has to be smaller than the inverse of the highest

frequency scale, which is much too small for any feasible

flow simulation. A simulation of induced flow and electric

fields is in (Iverson et al. 2009) only possible, if the time

scale for changes in the electric field, i.e. the traveling

wave frequency corresponds to the hydrodynamic time

scale set by the flow speed and the dimension of the

geometry. In our approach, the resulting forces on the fluid

are averaged over the time scale set by the inverse fre-

quency of the applied ac-electric field. The time scale for

the resulting effective equations is, therefore, only the

hydrodynamic scale and the numerical time scale for these

equations is not bounded by the frequency scale of the

electric field.
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2 Traveling wave-based electrohydrodynamic pumping

High frequency alternating electric fields have long been

used to transport fluids and suspended particles through

microchannels (Fuhr et al. 1992; Green et al. 2000). For

transporting particles under the influence of electric fields,

one has to distinguish between applications where inho-

mogeneous electric fields exert a force directly on the

particles by inducing an effective dipole moment in the

particles (dielectrophoresis) (Ramos et al. 1998) and

applications where one tries to induce an effective force on

the liquid only, to avoid potentially harmful stresses on the

particles (Fuhr et al. 1992, 1994). This can be achieved,

e.g. by matching the frequency-dependent dielectric con-

stant of the liquid and the particles. Two major different

forces, electrothermal and electroosmotic forces (Ramos

et al. 1998), can cause fluid flow in channels. Electro-

thermal forces are related to variations of either the

dielectric function or the conductivity of the liquid over the

width of the flow channel, e.g. due to induced temperature

fields (Felten et al. 2006) or other effects like gradients in

the salt concentration if electrolytes are used as liquids.

Electroosmotic forces are due to the force on the electric

double layer formed close to the electrodes (Green et al.

2002). Due to the much smaller spatial scale kD of the

double layer (kD is usually in the order of a few nanometers

in liquids) and the width d of the considered channels

ð100 lm. d.10 cmÞ, the frequency scale of ac-electroos-

mosis is by a factor kD=d smaller compared to electro-

thermal flow. We will concentrate on flows induced by

spatial gradients of the dielectric function or the electrical

conductivity across the flow channel, although the theory is

also applicable to ac-electroosmosis. We will point out in

Sect. 3 the terms which give rise to each of the two effects,

respectively. Only recently local flow phenomena such as

vortices or locally high velocities have attracted attention

(Green et al. 2002; Felten et al. 2008; Böttcher et al. 2011)

for these applications.

The experimental method described in Böttcher et al.

(2011) allows transport of a large range of particle con-

centrations down to very low concentrations. A scheme of

the apparatus is depicted in Fig. 1. To investigate the flow

locally around the electrode area without any restriction on

the shape of the electrodes, a method is needed to spatially

resolve the three-dimensional flow phenomena induced by

high frequency electric fields in great detail. For the water

used in (Böttcher et al. 2011) and the involved flow speeds

and electric field frequencies, the time scales of electric and

flow field are separated by several orders of magnitude.

Therefore, a time-averaging ansatz like the one we will

present in the following section is necessary to obtain

numerical results for the fluid flow.

3 Derivation of the equations

We will use the hydrodynamic theory of electromagnetic

fields in continuous media (Landau 1984; Liu 1993) to

derive the equations for the description of traveling wave

phenomena. We begin with the Maxwell equations for the

displacement D, the electric field E and the two magnetic

fields B and H.

rB ¼ 0rD ¼ qe ð1Þ
oB

ot
¼ �r� E

oD

ot
¼ r�H� je ð2Þ

Here qe and je are the charge density and density of electric

current, respectively. The equations for the standard

traveling wave induced flow are derived under a few

constraining assumptions. First of all, the relation between

E and D as well as between B and H is assumed to be

linear and quasi static

D ¼ e0eE ð3Þ
B ¼ l0lH; ð4Þ

i.e the dielectric function e and the the magnetic

permeability l may be frequency dependent but change

only slightly in the frequency range of the traveling wave.

Hence, there should not be any dielectric resonances for the

frequency under consideration. This sets an upper bound

for the allowed frequencies depending on the liquid used.

The frequencies in traveling wave applications are mostly

below the MHz regime. Water solutions and the oil

considered in this paper do not have resonances in this

regime. Spatial variation of e (e.g. induced by temperature

variations) is allowed and is the cause for electrothermal

pumping. In all applications of the traveling wave

technology, the frequency x of the wave is much smaller

than c/k, where c and k are the vacuum speed of light and

the typical wavelength of the wave, which is imposed by

the construction of the electrodes as, e.g. in Fig. 1 and the

condition

UcðxÞ ¼ Uc
0ðrÞ cos ðk � rÞ; UsðxÞ ¼ Us

0ðrÞ sin ðk � rÞ:
ð5Þ

Here Us
0 and Us

0 are the amplitudes of respective voltage

contributions, k the wave vector in the two-dimensional

manifold of the electrodes and r a vector for a position in

the manifold of the electrodes. Therefore, a transversal

propagating solution of the Maxwell equations is excluded

by the traveling wave boundary conditions.

In a more formal way, this can be seen by expressing the

magnetic field B and the electric field E in the standard

way by the electric potential U and the vector potential A

B ¼ r� A ð6Þ
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E ¼ �rUðr; tÞ � otA ð7Þ

To describe electrohydrodynamic pumping of neutral

liquids in channels with traveling waves it is sufficient to

choose (Melcher 1966)

je ¼ rE ð8Þ

as the constitutive relation for the electric current. Here r
is, in general, a spatially varying electric conductivity. An

additional convective contribution to the electric current can

be neglected in traveling wave applications for electrically

neutral liquids (Melcher 1966). Replacing Eqs. (3)–(7) and (8)

in (2) and using Coulomb gauge ðr � A ¼ 0Þ we obtain

�r
2A

l0l
¼ �e0eottA� rotA� rrU� e0erotU ð9Þ

To evaluate the relative importance of the various terms, it

is useful to rescale the equations using the natural units of

the problem. The wavelength k and frequency x of

the traveling wave are imposed by the construction of the

external electrodes. An additional important scale is the

lateral dimension d of the channels used in traveling

wave applications, since they determine the order of the

gradients of electromagnetic fields orthogonal to the

boundaries of the channel. Let us define the spatial

scale d as the maximum of these two scales

d ¼ maxðk; dÞ ð10Þ

The product

cx ¼ xd ð11Þ

defines the velocity scale of the traveling wave. Although

there is a wide range of frequencies and wavelengths used

(Ramos et al. 1998; Green et al. 2000; Böttcher et al. 2011;

Fuhr et al. 1992), in all applications of traveling wave

technology, the relation

cx � c ð12Þ

is fulfilled. Here, the relation c2 ¼ 1
e0l0

for the vacuum

speed of light was used. Another important velocity scale

can be derived from the electric conductivity r by the

definition

cr ¼
rd
e0

ð13Þ

For the oil used in the experimental comparison (Sect. 5) in

this paper, cr is of the order of 10 � d where d is measured

in meters. For water, it is of the order of 104 � d: Even for

electrolytic solutions in microchannels (i.e. d � 10�3 m),

where cr can reach values of � 108 � d; the relation

cr � c ð14Þ

is fulfilled. Rescaling Eq. (9) and using the definitions Û :

¼ U
d ; Â :¼ xA we obtain

r̂2Â ¼ cx
2

c2
elôttÂþ

crcxl
c2

ôtÂþ
crcxl

c2
r̂Û

þ c2
x

c2
elr̂ôtÛ: ð15Þ

Due to (12) and (14) the right hand side of (15) is much

smaller than the left hand side. Therefore in leading order,

a two-scale solution is possible. The magnetic field is

obtained by setting in leading order the right hand side of

(15) to zero and applying the curl operator to obtain

r2H ¼ 0: ð16Þ

Since there are no macroscopic electric currents in neutral

liquids this static equation is solved by H = 0 and A = 0.

Using this solution in the right hand side of (15) and

applying in addition the gradient operator, we arrive finally

at a scalar equation for the potential

0 ¼ �rðrrUÞ � rðe0erotUÞ ð17Þ

To gain a better understanding of this equation, we rewrite it as

otqe þ
r
ee0

qe ¼ �rr � rU� e0re � otrU ð18Þ

e0r � ðerUÞ ¼ qe: ð19Þ

If the dielectric function e and conductivity r are spatially

constant, the right hand side of equation (18) vanishes and

we obtain formally the solution

qe ¼ q0
e exp � r

ee0

t

� �
ð20Þ

Fig. 1 Scheme of the setup of

the motivating EHD-pumping

device showing a possible

particle aggregation above the

electrodes. These induce the

high frequency electric field that

in turn causes three-dimensional

local flow phenomena
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r2U ¼ q0
e

ee0

: ð21Þ

This set of equations has nonzero solutions only close to

electrodes within a range of the Debye screening length kD,

i.e. a few nanometers for the liquids under consideration.

To obtain explicit solutions, the equations have to be

extended by a theory of the electric double layer (Russel

et al. 1989). In this way, a theory for electroosmosis can be

obtained (Green et al. 2002).

We will consider the case of spatially varying dielectric

function e and/or electric conductivity r. The range of

spatial variation is set by the thickness of the channel. In

most applications, this will be in the range above about

100 lm and below 10 cm; but we want to emphasize the

limits of the theory are given only by Eqs. (12) and (14).

The spatial gradients of e and r on the right hand side of

(18) act as a source for the spatial variation of the electrical

potential and allow for nonzero solutions of the potential.

Due to (16) and the traveling wave boundary conditions,

the vector potential and thus the magnetic fields will be set

to zero in the following considerations. Only the time

averaged electric force will play a role. Thus, the deriva-

tion of the electrohydrodynamic equations is considerably

simplified compared to the more general framework

described in (Liu 1993; Jiang 1996).

The equation for the component qui of the momentum

density qu is given by

otðquiÞ þ ojðquiujÞ ¼ ojðpijÞ: ð22Þ

For the derivation of the effective electric force in the

electrohydrodynamic equations, it is sufficient to consider

pressure, electric fields and viscous dissipative contribution to

the stress. Using the formalism of Liu (1993) and Jiang (1996),

we can write for the components pij of the stress tensor

pij ¼ ð�p� ED�UÞdij þ
1

2
ðEiDj þ EjDiÞ þ gðoivj þ ojviÞ

ð23Þ

The differential of the energy U is given by

dU ¼ EidDi: ð24Þ

Using (1), the force density qj pij can be transformed to

ojpij ¼ �oip� ðD�r� EÞi þ qeEi þ ojðgojviÞ
þ ojðgoivjÞ: ð25Þ

For incompressible Newtonian flow, i.e r � v ¼ 0 and

constant viscosity g, Eq. (25) can further be simplified

using (2) and _B ¼ 0

ojpij ¼ �oipþ qeEi þ go2
j vi ð26Þ

To obtain the average velocity field, we introduce for time-

dependent functions f(t) a moving average hf ðtÞit defined by

hf ðtÞit ¼ 1

T

ZtþT

t

f ðt0Þdt0: ð27Þ

Here the T = 2 p/x is the time for one cycle of the

traveling wave. If we decompose the velocity v in an

averaged and a fluctuation component

v ¼ uðtÞ þ ucðrÞ cosðxtÞ þ usðrÞ sinðxtÞ; ð28Þ

the time averaged Navier–Stokes equation is given by

otðquiÞ þ ojðquiujÞ ¼ �oipþ hqeEiit þ go2
j ui: ð29aÞ

r � u ¼ 0: ð29bÞ

The convective term in the momentum equation contains

after time averaging terms quadratic in uc and us. But these

terms can be cancelled by an additional static pressure which

has to be introduced to preserve the incompressibility also for

the velocity fluctuations. The additional equations to be solved

are

ojðquc;iuc;jÞ ¼ �oipc ð30aÞ

ojðqus;ius;jÞ ¼ �oipc ð30bÞ

r � uc ¼ 0 ð30cÞ
r � us ¼ 0: ð30dÞ

As a next step, we need the equation for the electric

force density f ¼ hqeEit: For numerical purposes, it is

more convenient to use a real representation of Uðr; tÞ i.e.

Uðr; tÞ ¼ UcðrÞcosðxtÞ þ UsðrÞsinðxtÞ: ð31Þ

With this ansatz we obtain from Eq. (17) a coupled set of

equations for UcðrÞ and UsðrÞ

oi
�ex r
r ex

� �
oiUc

oiUs

� �� �
¼ 0: ð32Þ

With the help of Uc and Us the average electric force

density f can be written in the form

f ¼ 1

2
ðr � ðerUcÞÞ rUc þ ðr � ðerUsÞÞ rUsÞ: ð33Þ

In electrothermal applications, the spatial dependence is

due to the temperature dependence of the dielectric

function or the conductivity. Therefore, in addition to the

electrohydrodynamic Navier–Stokes equations (29a, 29b),

the heat equation is to be solved to obtain a complete

description of processes in the micro channel. As for the

Navier–Stokes equations, we only have to consider the

short time averaged equation and can neglect the magnetic

distributions as heat sources.

ocpqT

ot
þrðucPqTÞ ¼ rðkrTÞ þ hrðTÞE2i: ð34Þ
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The average Joule heating term is given by

hrðTÞE2i ¼ rðTÞ 1
2
ððrUcÞ2 þ ðrUsÞ2Þ: ð35Þ

4 Numerical simulation

The numerical simulation of the interaction of the electric field

with the fluid flow combines and extends standard methods for

time and space discretization. We require a stable method to

obtain approximate solutions to the system (29a, 29b), (32).

To simplify the presentation, a domain setup as in Fig. 2 is

used. However, the developed simulation method is applica-

ble to general domains with the traveling wave boundary may

be induced by arbitrarily shaped electrodes.

We treat the complete system as a Navier–Stokes problem

with a volume force influence on the momentum. This force is

computed from (33) using the solution of system (32).

For advancing the incompressible Navier–Stokes equa-

tions in time, the so-called splitting methods introduced by

(Chorin 1968; Patankar 1972) are suitable. A recent over-

view of these methods can be found in (Guermond et al.

2006). For the space discretization finite volume (FV)

methods are a convenient choice, we use the discretizations

from Ferziger (1996, Chapter 7).

Because the equations depend on time and space, we are

dealing with an initial and boundary value problem. The

potential system (32) implicitly depends on time through the

dependence of the electrical conductivity on temperature. We

simplify the equations by replacing this time dependence from

the potential system for the numerical simulation by a linear,

space-dependent approximation for the electrical conductiv-

ity for our experimental comparison in Sect. 5.

4.1 Initial and boundary conditions

Initial conditions are needed for the unknown velocity u,

pressure p and the potentials Uc;Us: The system of

potential (32) is elliptic, therefore, the solution depends

only on the boundary conditions and is hence independent

of the initial conditions. We initialize the potential fields

with 0. Without an electric field, no forces act on the fluid

and hence the momentum of the fluid is also initialized

with 0. As there are no external forces other than that from

the electrical field, we assume that the pressure initially is

constant in space inside the domain and we fix it to 0.

As the traveling wave boundary condition on the top

boundary of the domain for our experimental comparison

setup in Sect. 5, we use the condition given in Eq. (5) with k

pointing in x direction and r spanning the whole top boundary.

In our numerical test, the dielectric function e is assumed to

be constant. Only the electric conductivity exhibits a spatial

variation. In general, this variation is due to a temperature

dependence. Temperature variations are in most applications

implicitely induced by the averaged Joule heating term, Eq.

(35). This makes the system for the electrical potentials (32)

implicitely time dependent and strongly coupled to the Na-

vier–Stokes system (29a, 29b). In Böttcher et al. (2011), this

coupled system was solved and compared with experiments.

For the test of the numerical algorithm, we assume that the

temperature T varies linearly between bottom and top, which

yields in leading order a linear variation of the conductivity r.

4.2 The discretization

The systems (32), (29a, 29b) are discretized in space by

cell-centered finite volumes. Let the domain X be parti-

tioned into a set of N volumes fVk; k ¼ 0. . .N � 1g of

cuboid shape such that X ¼
PN�1

k¼0 Vk:

Let us exemplify the FV discretization for Eq. (29a). It

is derived by integrating the PDE over each volume Vk. For

ease of notation, let V be any fixed volume Vk.Z
V

ðotðquiÞþ ojðquiujÞþ oip�hqeEiit� go2
j uiÞdxdydz¼ 0:

ð36Þ

This volume integral is then transformed to surface

integrals over the enclosing surfaces of the volume V

where the Gauss theorem is applicable. Otherwise, the

volume integral is approximated by multiplying the volume

V of the cuboid with the value of the field at the midpoint

of the cuboid. Hence, for each PDE, we obtain N ODEs

with only the time derivative remaining in each.

VotðquiÞ þ
Z
oV

ðquiuÞ � ndSþ Voip�
Z
V

ðhqeEiitÞdV � g

Z
oV

ðojuinjÞdS ¼ 0: ð37Þ

The approximations of the surface integrals in the

second and fifth term of (37) are standard, first-order

Fig. 2 The simulation domain

with the traveling wave

boundary condition on top.

The boundaries in x direction

and z direction are periodic
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approximations of values and gradients on the surface

midpoints of the cuboid and can be found, e.g. in (Ferziger

1996). Let us introduce operators for the discrete

divergence and gradient in finite volume discretization

DIV and G. The FV discretizations of the other equations

(29b) and (32) are then straightforward using the same

method and will not be given in detail here.

In time, the equations are discretized on a mesh of

timesteps ftn; n 2 N; n [ 0g � ½0; T 	 � R using implicit

Euler discretization. We advance the system (32), (29a,

29b) in time by substeps. First, we obtain a potential from

(32). The solution of this homogeneous elliptic system only

depends on the boundary conditions, i.e. the traveling wave

prescribed on parts of the domain and given in (5). Hence

this solution needs to be computed only once and does not

need to be recomputed in later time steps.

Then, for the solution of the incompressible Navier–

Stokes system (29a, 29b), we introduce intermediate dis-

crete times within each discrete time interval [tn,tn?1 =

tn ? s] denoted by tn?a with 0 \ a\ 1.

So let us assume a constant density q and that the

pressure pn is known from the previous discrete moment in

time. To obtain a first guess of the velocity in the current

time step, we solve the discretized integral form of the

momentum equation (29a) in componentwise form, given

here for any volume V:

V

s
ðquÞnþ

1
2

i � ðquÞni
h i

þDIVððquÞnþ
1
2

i unÞ þ VGiðpnÞ

� gDIVððGu
nþ1

2

i ÞÞ ¼
Z
V

ðhqeEiitÞdV ; ð38Þ

with ðquÞnþ
1
2 and i ¼ 1; . . .; 3; where the gradient in the last

term of the left side is computed on the midpoints of the faces

and the convective term is linearized. Let us moreover

assume that all other changes in velocity are induced by the

gradient of the pressure correction, then we reach the

following condition for the corrected velocity and pressure

V

s
ðquÞnþ1

i � ðquÞnþ
1
2

i

h i
¼ �VGiðpnþ1 � pnÞ;

i ¼ 1; . . .; d , ðquÞnþ1 ¼ ðquÞnþ
1
2 � sGFðp0Þ ð39Þ

where p0 :¼ pnþ1 � pn: We apply the discrete divergence

DIVð�Þ to (39). Then, with the discretized equation (29b)

DIVðqnþ1unþ1Þ ¼ 0

we transform (39) into an elliptic equation for the

correction to the pressure p0

sDIVðGðp0ÞÞ ¼ DIVðqnþ1
2unþ1

2Þ ð40Þ

for the unknown p0 which is an elliptic equation. Hence, we

have transformed the solution of one-time step into two

steps of solving the linearized velocity equation (38) and

the solution of a second order PDE (40) with a Laplace

operator. We summarize the steps into the Algorithm 1.

5 Experimental comparison

In this section, we check the derived equations and

numerical implementation against the results from (Mel-

cher 1967). Let us state the parameters used. As traveling

wave boundary condition, a sinusoidal potential with k ¼
2p=hx ¼ 7:08 1

m
is chosen according to the experimental

wavelength hx = 0.89m. The specific forms and values of

e; r;x and g match the values from Melcher (1967) where

the fluid was corn oil with a density of q ¼ 921 kg=m3: The

relative permittivity for corn oil used in Melcher (1967) is

e ¼ 3:1: We estimate from Melcher (1967, Figure 5) that

the temperature at the bottom is 15 
C and at the top 38 
C:
The electric conductivity is then given by rðyÞ ¼ rð0Þ þ
r1

y
hy
; r1 ¼ rðhyÞ � rð0Þ; cf. (Melcher 1967, Paragraph 2,

p. 1180). The conductivity constants are rð0Þ ¼ 2:95�
10�11 S

m and r1 ¼ 7:9� 10�11 S
m as in Melcher (1967,

Table 1). The traveling wave frequency x is 0:4 � 2p 1
s :

The flow occurs in a channel as depicted in Fig. 2 where

the height of the channel h is 3� 10�2 m and the length is

0:88 m: Results of the simulation with these parameters are

displayed in Fig. 3.

For quantitative comparison, we rely on (Melcher 1967,

Figures 6,8, p. 1183). Experimental (Melcher 1967, Figure

6, p. 1183) and numerical flow profile for a peak potential

of 8:25� 103 V exhibit nearly perfect agreement as shown

in Fig. 3. Furthermore, in Melcher (1967 Figure 8, p.

1183), the peak velocity over the square of the experi-

mental potential signal is displayed. The experimental

signal is a complicated superposition of many frequencies,

where the amplitude of the lowest frequency is the main

driving force for the traveling wave (Melche 1966). Since

we assume a sinusoidal wave, our amplitude of 8:25�
103 V corresponds roughly to an experimental peak

potential of 12:5� 103 V (Melcher 1967). The peak

velocity at this value in Melcher (1967, Figure 8, p. 1183)

is about 0:45 cm
s : The peak velocity in our simulation (see
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Fig. 3) of 0:4116 cm
s is within the experimental error of the

measurements. The slightly lower numerical value may be

explained by the small contribution of higher frequencies

in the experimental voltage to the effective force.

The temperature dependence of the viscosity of corn oil

is given in Melcher (1967, Table 1, Figure 5) and assumed

to vary between 7:5� 10�2 and 2:57� 10�2 Pa s:1 As can

be seen in the numerical simulation, this dependence of the

viscosity is responsible for the off-centering of the velocity

peak in the y profile in Fig. 3. With constant viscosity, the

induced flow shows a close to ideal Hagen–Poiseuille

profile.

6 Conclusion

Using a standard thermodynamic approach (Landau 1984;

Liu 1993; Jiang 1996), we have rederived the time averaged,

thermodynamic consistent equations for electrohydrody-

namical flows induced by high frequency electromagnetic

fields. The equations can be applied to electroosmotic and

electrothermally induced flows. We concentrated on the latter

for validation purposes. A numerical scheme was developed

and implemented which allows efficient, spatially fully

resolved simulations of the electrothermally induced flows

and the electric fields at arbitrary frequencies within the range

of validity of the model, mainly given by (12) and (14). The

shape of the electrodes and shape of the channel can be arbi-

trarily chosen. Furthermore, because of the time averaging

procedure, all regimes from clear separation of hydrodynamic

and electric field time scales to no scale separation can be

simulated. Time variations of the fluid flow on the scale of

electric field alternation will of course not be reproduced

because of the averaging. The range of applications and the

real-world applicability in microchannels have already been

demonstrated in a much more involved test in (Böttcher et al.

2011). There, temperature and convective particle transport

were additionally taken into account. With this current paper,

we deliver the missing derivation of the model and the

numerical method. For validation of the method, we compare

our simulations with the experimental results in (Melcher

1967). Within experimental errors, mainly related to the

mapping of the complex experimental voltage signal to the

one used in the numerical simulations, experiment and sim-

ulation show perfect agreement.

In conclusion, the numerical implementation of the

model offers the possibility to study spatially complex elec-

tromagnetically driven flows in all applications where the

penetration depth of the electric field is comparable or bigger

than the experimental setup and where dissipation and dis-

persion of the electromagnetic field can be neglected.
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