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Abstract This article presents a comprehensive review of

numerical methods and models for interface resolving

simulations of multiphase flows in microfluidics and micro

process engineering. The focus of the paper is on contin-

uum methods where it covers the three common

approaches in the sharp interface limit, namely the volume-

of-fluid method with interface reconstruction, the level set

method and the front tracking method, as well as methods

with finite interface thickness such as color-function based

methods and the phase-field method. Variants of the mes-

oscopic lattice Boltzmann method for two-fluid flows are

also discussed, as well as various hybrid approaches. The

mathematical foundation of each method is given and its

specific advantages and limitations are highlighted. For

continuum methods, the coupling of the interface evolution

equation with the single-field Navier–Stokes equations and

related issues are discussed. Methods and models for sur-

face tension forces, contact lines, heat and mass transfer

and phase change are presented. In the second part of this

article applications of the methods in microfluidics and

micro process engineering are reviewed, including flow

hydrodynamics (separated and segmented flow, bubble and

drop formation, breakup and coalescence), heat and mass

transfer (with and without chemical reactions), mixing and

dispersion, Marangoni flows and surfactants, and boiling.

Keywords Microfluidics � Micro process engineering �
Multiphase flow � Interfacial flow � Numerical methods �
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1 Introduction

1.1 Microfluidics and micro process engineering

Microfluidic devices such as microreactors (Ehrfeld et al.

2000), micro heat exchangers (Schubert et al. 2001) and

lab-on-a-chip modules (Geschke et al. 2008) are charac-

terized by systems where at least one of the dimensions is

below a few millimeters. Frequently, this means rectan-

gular channels with cross-sectional dimensions on the order

of tens or hundreds of microns. They find applications in a

number of different fields which range from chemistry

(Doku et al. 2005) and chemical engineering (Hessel et al.

2004; Dietrich 2009) to biology (Gomez 2008) and medi-

cine (Saliterman 2006). In micro process engineering

(Hessel et al. 2009), they are for example used or poten-

tially attractive for the production of fine and specialty

chemicals, the generation of highly mono-disperse emul-

sions, high-throughput catalyst screening and combinato-

rial material science. In the life sciences, applications range

from pharmaceutical research to diagnostic testing and

DNA manipulation (Lion et al. 2006). Very often these

applications involve the flow of multiple fluid phases.

In recent years, several books (Karniadakis et al. 2005;

Tabeling 2005; Nguyen and Wereley 2006; Bruus 2008;

Kockmann 2008; Dietrich 2009) and review papers have

been published which deal with different aspects of

microdevices and microfluidics (Whitesides 2006).

Squires and Quake (2005) give a comprehensive review

of the variety of physical phenomena that occur in

microfluidic devices and discuss the dimensionless num-

bers that indicate the relative importance of the competing

forces. For multiphase microfluidic flows, there exist

rather general reviews (Zhao and Middelberg 2011) as

well as more specific ones. A discussion of phenomena
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occurring at interfaces can be found in Atencia and Beebe

(2005), and an overview on electrokinetics, mixing and

dispersion in multiphase flows for lab-on-a-chip applica-

tions in Stone et al. (2004). Comprehensive reviews on

multiphase microfluidics for chemical and material syn-

thesis and micro process engineering are given by Gün-

ther and Jensen (2006) and Günther and Kreutzer (2009),

respectively. A review on microchemical systems for

continuous-flow synthesis is provided by Hartman and

Jensen (2009), and a review on microstructured reactors

for multiphase reactions by Kashid and Kiwi-Minsker

(2009). A review with special focus on actuation and

manipulation methods of multiphase flow in micro- and

nanochannels is given by Shui et al. (2007). Huebner

et al. (2008) review methods for generating, controlling

and manipulating droplets and discuss novel applications

in the biological and physical sciences where systems

with microdroplets make a significant impact. Reviews on

microfluidics and microdroplets in chemistry are given by

Abou-Hassan et al. (2010) and Theberge et al. (2010).

As systems are reduced in size, phenomena such as

viscosity, diffusion, surface tension and contact lines

become ever more important and may, at the microscale,

dominate over gravitational and inertial effects which are

often dominant in macroscopic flows. Though the flow in

microdevices is in general laminar (Re \ 2000) this does

not imply that inertia can always be neglected (Di Carlo

2009). In many cases, the Reynolds number (Re) is larger

than one so that neglecting inertia using the (linear) Stokes

equations is not appropriate. Also the influence of geom-

etry is significant since for a given pressure drop the flow

rate through a capillary changes with the fourth power of

the radius in laminar flow (Stone and Kim 2001). There-

fore, since viscosity, inertia and surface tension forces are

all important often the numerical solution of the full (non-

linear) Navier–Stokes (NS) equations is required. Repre-

senting and tracking an interface with complicated shape

and dynamics that can develop large deformations, singu-

larities, and topological changes within three-dimensional

(3D) confined geometries is a numerical challenge.

While numerical methods and models for general mul-

tiphase flows are the topic of several books (Prosperetti and

Tryggvason 2007; Tryggvason et al. 2011; Groß and Re-

usken 2011) and review papers (Scardovelli and Zaleski

1999; Lakehal 2002; Lakehal et al. 2002), there exist only

few reviews that are specifically devoted to microdevices.

Cristini and Tan (2004) gave a review on theoretical and

numerical studies and methods for droplet formation,

breakup, and coalescence in flows relevant to the design of

microchannels for droplet generation and manipulation.

Erickson (2005) presented an overview of tools, techniques

and applications for modeling and numerical prototyping

of labs-on-chip. Also in books (Hessel et al. 2004;

Karniadakis et al. 2005; Bruus 2008; Kockmann 2008) or

book chapters (Fletcher et al. 2009) numerical and mod-

eling aspects for interfacial multiphase flow simulations in

microdevices are covered rather briefly and a comprehen-

sive in depth review is missing. This article aims to close

this gap.

1.2 Classification of methods for two-phase flows

In gas–liquid and immiscible liquid–liquid flow, the phases

are separated by an interface. The interface is deformable

and the two-fluid flow may undergo topological changes

due to breakup and coalescence. Macroscopic two-fluid

flows in chemical engineering are often turbulent and the

phase distribution is characterized by a large number of

disperse elements (with a wide size distribution) and a free

surface (e. g. in stirred tanks, bubble columns or air-lift

reactors). The length scales of the problem that have to be

resolved in a direct numerical simulation ranges then from

the diameter of the stirred tank or bubble column down to

the radius of curvature of the smallest bubbles. This spans

at least four orders of magnitude. Full 3D time-dependent

interface resolving numerical simulations over sufficiently

long problem time to reach statistically relevant data are

therefore impossible, and will it be for the foreseeable

future. For this reason, simulation methods are usually used

for such problems which do not resolve details of the

interface. In the Euler–Euler (E–E) approach, an averaging

procedure (i.e. time, volume, or ensemble averaging) is

used to obtain so-called interpenetrating field equations

which are valid in the entire domain (Ishii 1975; Drew and

Passman 1999; Ishii and Hibiki 2006). The E–E method (or

two-fluid model) can be applied in principle to any two-

phase flow pattern. The second widely used method for

computation of macroscopic two-phase flows is the Euler–

Lagrange (E–L) method (Crowe et al. 1998). The method is

restricted to disperse flows and is based on the point par-

ticle approach where the flow around individual disperse

elements of presumed shape is not resolved by the grid.

Both, the E–E and E–L methods rely on physical models

for the interfacial transfer of momentum, heat, and mass.

These models are often based on the theoretical or exper-

imental results obtained for single ‘‘isolated’’ bubbles or

drops far from walls. For macroscopic applications, inter-

face resolving simulations are used only in very special

cases.

In mini- and microscale, the flow is predominantly

laminar and the number of bubbles or drops in disperse

flows is computationally manageable. The disperse ele-

ments are proximate to walls and there is significant

interaction between the individual bubbles or drops (e.g. in

emulsification processes) so that physical models obtained

for isolated fluid particles cannot be used. For this reason,
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the E–E and L–E method do not play a significant role for

computation of two-fluid flows in small dimensions. In

microchannels, the phases are well separated and it is hard

to predict or assume the shape of disperse elements in

advance, so that interface resolving numerical simulations

are instead the method of choice.

1.3 Scope and outline of this review

The present review is structured in two parts. In the first

part, the various numerical methods and models that are

available for simulation of interfacial two-fluid flows are

presented and discussed. This includes the lattice Boltz-

mann, volume-of-fluid, level set, front tracking and phase-

field methods and their variants. In the second part,

applications of these methods in microfluidics and micro

process engineering are reviewed. These are structured in

separated and segmented flow, bubble and drop formation,

breakup and coalescence, heat and mass transfer (with and

without chemical reaction), mixing and dispersion, Ma-

rangoni flows and surfactants, and boiling.

Though the intention of this review is to cover a wide

range of methods and applications, there are nevertheless

also some issues that are disregarded. In general, compu-

tational methods for free surface/two-phase flows can be

categorized into three groups: meshless methods, moving

grid methods, and fixed grid methods. In meshless methods

(such as smoothed particle hydrodynamics and dissipative

particle dynamics), a finite set of discrete points are used to

represent the fluid motion (Heyes et al. 2004). Though

there is an increasing interest in these methods, they have

only limited application in microfluidics so far and are thus

not considered here. Fluid flows in small-scale systems are

driven by applied pressure difference, electric fields, cap-

illary forces owing to wetting of surfaces, and gradients in

interfacial tension. In this review we focus on pressure

driven and capillary driven flows, but do not discuss flows

driven by electric fields. For most applications considered

in the second part of this review, the mean free path k is

much smaller than the characteristic length scale L of the

flow. Typically, the Knudsen number Kn � k=L vanishes

or is below 0.001 so that the flow can be treated as con-

tinuum, and the Navier–Stokes equations apply (Gad-el-

Hak 1999). Velocities are small in general so that

compressibility effects are negligible. Further, we restrict

this review to gas–liquid and immiscible liquid–liquid

flows where the shape of the interface is not prescribed but

part of the solution. Applications for particulate flows in

microchannels (such as particle separation and filtration

and flow cytometry of cells and chromosomes) are not

considered and the interested reader is referred to Di Carlo

et al. (2007) and Di Carlo (2009).

2 Methods and models

Theory and modeling methods can be conveniently

classified into four groups, depending on the length and

time scales to which they imply (Gubbins and Moore

2010): (a) the ‘‘electronic’’ scale of description, in which

matter is regarded as made up of fundamental particles

(electrons, protons, etc.) and is described by quantum

mechanics; (b) the atomistic level of description, in

which matter is made up of atoms, whose behavior

obeys the laws of statistical mechanics; (c) the mesoscale

level, in which matter is regarded as composed of blobs

of matter, each containing a number of atoms; and (d)

the continuum level, in which matter is regarded as a

continuum, and the well-known macroscopic laws

(equations of continuity and momentum conservation,

constitutive equations such as Fourier’s law, etc.) apply.

In this review, we will only very briefly cover atomistic

methods such as molecular dynamics (MD) and the

direct simulation Monte Carlo method (DSMC), but will

focus on the lattice Boltzmann method as an example for

mesoscale methods and on continuum methods based on

the Navier–Stokes (NS) equations.

2.1 Atomistic methods

At the atomistic level of description, matter is composed

of atoms or molecules and obeys statistical mechanics.

The equations of statistical mechanics can be solved

numerically by either the MD or DSMC method. While

in MD individual particles are considered which move

under their own intermolecular forces and follow New-

ton’s second law, in DSMC particle groups are consid-

ered and their moves are completely stochastic. Fluid

properties, such as the flow velocity or density field, can

be calculated as averages over the trajectories of the

particles. Both MD and DSMC constitute a powerful and

growing set of techniques for fluid dynamic simulations;

see e.g. the review by Kadau et al. (2010). These

methods are, however, computationally expensive, and

the computational effort increases linearly with the

number of particles and the physical time scale simu-

lated. While recently the first trillion atom simulation

was performed on the BlueGene/L system (Germann and

Kadau 2008), due to limits of computational capacity

these simulations are currently restricted to the descrip-

tion of length scales of the order of microns and time

scales of the order of microseconds. Thus, for engi-

neering applications of fluid mechanics there is, in the

foreseeable future, no alternative to a mesoscale or

continuum description.
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2.2 Lattice Boltzmann (LB) method

In recent years, the lattice Boltzmann method has evolved

into a promising method of computational fluid dynamics

(CFD), see e.g. Succi (2001) and Aidun and Clausen

(2010) for details. The fundamental idea is to construct

simplified kinetic models that incorporate the essential

physics of microscopic processes. Macroscopic hydrody-

namic behaviors, such as interface dynamics, naturally

emerge as a result of this kinetics. According to Verhaeghe

et al. (2009), the LB approach is a simple explicit algo-

rithm which can be derived from the linearized Boltzmann

equation and is often associated with a square (in 2D) or

cubic (in 3D) lattice on which the discretized particle

distribution function fiðrj; tnÞ � f ðrj; ci; tnÞ evolves. The

particle velocity space is discretized into a symmetric

discrete velocity set cif g ¼ � cif g. The grid size and the

time step are chosen in such a way that in discrete time

tn � dtN0 ¼ dtf0; 1; 2; . . .g fictious particles represented by

ffig move synchronously from one grid point rj to one of

its neighbors rj þ cidt according to their discrete velocities.

In the most general form, the lattice Boltzmann equation

can be written as

fðrj þ cdt; t þ dtÞ ¼ fðrj; tÞ þX fðrj; tÞ
� �

þ Fðrj; tÞ ð1Þ

where X is the collision term and F the external forcing,

and bold-face symbols denote ðQþ 1Þ-tuple vectors for a

model of ðQþ 1Þ discrete velocities, e.g.

fðrj þ cdt; t þ dtÞ ¼ ðf0ðrj; tn þ dtÞ; . . .;

fQðrj þ cQdt; tn þ dtÞÞT ð2Þ

where T denotes the transpose operator. In practice, a LB

time step involves a propagation or streaming substep,

where fictious particles (given by the distribution function)

move to their neighboring sites, and a collision substep,

where they collide with fictious particles coming in from

the other directions and the distribution functions are

changed by the effects of interparticle collisions (which

account for example for intermolecular forces). Commonly

used lattices in two and three dimensions are the D2Q7

(D = 2, Q = 7), D2Q9, D2Q13 and D3Q15, D3Q19,

D3Q27 models, respectively. Macroscopic quantities such

as the density and the fluid velocity are obtained by taking

suitable moments of the distribution function

q ¼
XQ

i¼1

fi; u ¼ 1

q

XQ

i¼1

fici; ð3Þ

Within the LB framework, there exist different

approaches for immiscible multiphase flows (Chen and

Doolen 1998; Succi 2001; Nourgaliev et al. 2003; Aidun

and Clausen 2010). One approach is the color gradient

method which contains two sets of LB populations, one for

each phase (Gunstensen et al. 1991). Interfaces are

implicitly defined by the fluid fraction isosurface where

the content of the two fluids is equal. To prevent the two

fluids from mixing with each other, a so-called recoloring

step is applied which acts as anti-diffusion. Another

method is that of Shan and Chen (1993), which also uses

a distribution function for each chemical component and

defines an interaction potential to ensure phase separation.

The third widely used method is the free energy approach

which relies on a second set of populations which describes

the fluid fraction by an order parameter (Swift et al. 1996).

While the early versions of LB methods for multiphase

flows were based on fictitious interactions or heuristic

ideas, Luo and Girimaji (2003) rigorously derived a two-

fluid LB model from kinetic theory. Also, early models

were, for reasons of numerical stability, limited to small

values of the density and viscosity ratio. Since then, there is

an ongoing effort to improve the stability of the LB method

for two-phase flows with high density ratio (Inamuro et al.

2004; Lee and Lin 2005; Zheng et al. 2006; Yan and Zu

2007; Cheng et al. 2010). Surface tension can be

incorporated in LB schemes by a number of different

methods, which will not be reviewed here. The interested

reader is referred to Lishchuk et al. (2003) and Jia et al.

(2008), where also the status of the Shan–Chen and the

free-energy model is critically reviewed.

A popular way to simplify the collision integral is the

lattice Bhatnagar-Gross-Krook (LBGK) model which

expresses it as a simple relaxation term with time scale s
towards a suitable equilibrium (Bhatnagar et al. 1954). The

LBGK model has, however, some drawbacks which are

related to the dependence of the boundary conditions on the

viscosity, see Verhaeghe et al. (2009); furthermore, its

applicability is restricted to unity Prandtl and Schmidt

numbers (Luo and Girimaji 2003). Therefore, there is a

tendency to employ multiple relaxation time models,

especially in the context of LB methods for multiphase

flows (Pooley et al. 2008).

The main advantages often attributed to the LB method

as compared to continuum methods are the ease of

implementation (since the nonlinear Navier–Stokes equa-

tions are replaced by the semi-linear Boltzmann equation),

the simplicity in simulating domains with complex geom-

etry, and the ease of parallelization (since only local

operations are performed); for a critical scrutiny of these

advantages see Nourgaliev et al. (2003). For multiphase

flows, LB models have advantages over conventional

methods because they do not track interfaces, but can

maintain sufficiently sharp interfaces without significant

effort. Chao et al. (2011) e.g. performed long time simu-

lations of flows with density ratio up to O(100) where the

interface thickness is maintained within five to six lattices.
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A disadvantage of LB methods is that macroscopic fluid

properties and transport coefficients cannot be prescribed

as input parameters (as in continuum methods). In the LB

method, the macroscopic behavior of the fluid system, such

as the dynamics of the density, velocity, and temperature

fields, the equation of state, the viscosity and the coefficient

of surface tension, are all consequences of the microscopic

or mesoscopic dynamics of the distribution function. Thus,

simulating a fluid system with a given set of thermophys-

ical properties (density, viscosity, diffusivity, surface ten-

sion,…) requires adjustments of the microscopic

parameters, which constitute the input parameters in the

LB method. A further disadvantage is that due to the

kinetic nature of the LB method, hydrodynamic boundary

conditions are difficult to satisfy on a grid point exactly.

Also the lack of strict mass conservation is an issue with

some interpolation methods (Rohde et al. 2006) and wall

boundary condition formulations (Bao et al. 2008). To

improve mass conservation, Chao et al. (2011) applied a

global mass correction procedure which required, however,

substantial additional CPU time.

2.3 Continuum methods

For most fluids, the scale of tens or hundreds of micrometer

is well suited to the standard continuum description of

transport processes, even though surface forces play a more

important role than in macroscopic applications (Stone and

Kim 2001). Continuum methods for computation of two-

fluid flows are based on macroscopic conservation laws for

mass, momentum and energy. They rely on the coupling of

a method for description of the phase evolution (which

often expresses the conservation of phase specific mass)

with a solver for the momentum equation (e.g. the Navier–

Stokes equation) and the energy equation. Here, we are

interested in the full non-linear problem and do, therefore,

not consider methods that are limited to Stokes flow, such

as the boundary integral method (Pozrikidis 2001). In the

following, we discuss first various methods for description

of the interface evolution and then consider the coupling of

these algorithms with equations describing the transport of

momentum, species mass, and energy. Detailed informa-

tion about these balance equations can be found in various

text books, see for example Bird et al. (2007).

2.3.1 Description of the interface evolution

In the classical view, an interface is the thin boundary layer

that separates two distinct phases of matter (each of which

may be a solid, or a liquid or a gas) and that has properties

distinct from the bulk material on either side. Continuum

methods can be classified in approaches where the interface

thickness is zero (sharp interface) or finite (diffusive

interface). In sharp interface methods, the physical inter-

face is a functional interface of zero thickness and physical

quantities such as density and viscosity are discontinuous

at the interface. Mathematically, such an interface is a

(D - 1) dimensional object in a D dimensional space. In

diffuse interface methods, the interface has a finite thick-

ness and physical quantities vary continuously across the

interface. However, the numerical interface thickness in

diffuse interface methods is usually much larger than the

actual physical thickness which is for liquid–fluid inter-

faces typically a few nanometers (Lyklema 1991; Yang and

Li 1996). In the following, we first describe methods with

formally zero interface thickness and then methods where

the interface thickness is finite, either for numerical or

physical (modeling) reasons. Here, we limit the presenta-

tion to flows without phase change but will discuss

respective extensions in Sect. 2.3.4. For clarity, we illus-

trate in Fig. 1 main features of the various methods that are

covered in the sequel of this section.

Fig. 1 Illustration of the different continuum methods for describing

the evolution of deforming interfaces in Sect. 2.3.1. For methods with

zero interface thickness the interface position is indicated by a solid

red line. For methods with finite interface thickness, the nominal

interface position is indicated by a dashed red line. The interface

thickness (as indicated by the red hatched area) is typically 2–3 mesh

cells for the CF-VOF and C-LS methods and is larger (up to 10 mesh

cells) for the PF method
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2.3.1.1 Methods with zero interface thickness (sharp

interface methods) Numerical methods for interfaces of

zero thickness can be divided into two main groups

depending on the type of the grid. In the first group,

moving unstructured grids are used (Huang and Russell

2011) and the interface is treated as a boundary. The

interface is represented by a set of cell edges (in 2D) or cell

faces (in 3D); this allows a precise representation of

interfacial jumps in the physical variables on the zero-

thickness interface without any smoothing. Such methods

are often based on the arbitrary Lagrangian–Eulerian

(ALE) formulation (Hirt et al. 1974), where the interface is

resolved by a moving mesh (Welch 1995; Hu et al. 2001;

Quan and Schmidt 2007; Ganesan and Tobiska 2008).

Local mesh adaptations including mesh coarsening and

mesh refining can be performed for both the interior and

the interface elements to maintain good mesh quality, to

achieve enough mesh resolution, to capture the changing

curvature, and to obtain computational efficiency. How-

ever, handling topological transitions of fluid particles such

as coalescence, breakup or pinch-off requires rather com-

plex algorithms (Quan et al. 2009).

In this review, the focus is on the second group of

methods. In these the momentum equation is solved on a

structured grid and an interface representation and advec-

tion algorithm is required to define its motion across the

computational domain. These methods may be divided into

two classes. In front-capturing methods, the interface is

implicitly embedded in a scalar field function defined on a

fixed Eulerian mesh, such as a Cartesian grid. The second

category is given by Lagrangian front-tracking methods, in

which the interface is explicitly represented by Lagrangian

particles (‘‘markers’’) and its dynamics is tracked by the

motion of these particles. Among the front-capturing

methods are the volume-of-fluid (VOF) and level set (LS)

method which are, at least in their simplest version, rela-

tively simple to implement. An early Lagrangian method is

the Marker in Cell (MAC) method of Harlow and Welch

(1965), where a fixed number of discrete Lagrangian par-

ticles are advected by the local flow. The distribution of

these particles identifies the regions occupied by a certain

fluid. Modern Lagrangian techniques emerged with the

front-tracking (FT) method (Unverdi and Tryggvason

1992; Tryggvason et al. 2001) which uses surface markers.

FT methods can give a more precise evolution of a

deforming interface, but they may be relatively complex,

with their need to book-keep logical connections among

surface elements. In the following, we discuss these

methods in the order of their historical appearance, i.e. the

VOF, LS and FT method.

In the sharp interface limit, one can define two phase

indicator or characteristic functions X? and X- = 1 – X?

with value 1 in one phase and 0 in the other phase. When

there is no phase change then the value X� of a fluid

particle is constant along its trajectory (i.e. Lagrange

invariant). Then, the following so-called topological

equation holds and can be used to describe the interface

evolution

DX�
Dt
¼ oX�

ot
þ u � rX� ¼ 0 ð4Þ

Here, the flow field uðx; tÞ is obtained by solution of the

momentum equation, see Sect. 2.3.2. Since the density of

each fluid is assumed constant it is Dq�=Dt ¼ 0, which is

equivalent to Eq. (4). This means that the mass

conservation of the two phases (which is synonymous

with volume conservation for incompressible fluids) can be

represented by the combination of the topological equation

for one phase (here we take the ?phase) with the condition

for a divergence free velocity field

r � u ¼ 0 ð5Þ

Interface reconstruction volume-of-fluid (IR-VOF)

method In interface reconstruction (IR) VOF methods,

the convective term in Eq. (4) is, by combination with Eq.

(5), written in conservative form and integrated over the

volume Vmc of a mesh cell with boundary oVmc.

Application of the Gauss divergence theorem and

division by Vmc yields

ofþ
ot
þ 1

Vmc

ZZ
�

oVmc

ðn̂oVmc
� uÞXþdS ¼ 0 ð6Þ

Here,

fþ �
1

Vmc

ZZZ

Vmc

XþdV with 0� fþ � 1 ð7Þ

is the volume fraction of phase ? in the mesh cell and

n̂oVmc
is the unit normal vector on oVmc (pointing outward

of the mesh cell). For a hexahedral mesh cell e.g., the

closed surface integral over oVmc consists of six contribu-

tions, one for each face of the mesh cell. The evaluation of

these surface integrals requires the knowledge of the

velocity and phase distribution at the mesh cell faces. The

velocity is approximated by the face centered mean value,

which is obtained by solution of the momentum equation

(e.g. on a staggered grid). The distribution of X? within the

mesh cell (and on its faces) is obtained by an interface

reconstruction procedure (see below). Equation (6) is

integrated in time by a so-called advection step where the

volume flux of phase ? across all mesh cell faces is

evaluated in a geometrical manner, see below. Since the

volume of fluid that is fluxed across a certain mesh cell face

appears in the donating mesh cell as sink term and in the

accepting one as source term of the same magnitude, all

volume fluxes across mesh cell faces in the entire
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computational domain should sum up to zero (at least in

principle, see below). This inherent volume (and mass)

conservation property is the main advantage of IR-VOF

methods.

A mesh cell with 0 \ f? \ 1 is called a cut cell. For

geometrical representation of the interface in a cut cell

different concepts are used, namely piecewise constant,

piecewise linear, and piecewise parabolic interface seg-

ments. In the earliest work on the VOF method, the interface

orientation was always aligned with one side of a rectangular

mesh cell. Examples for this piecewise constant approach are

the simple line interface calculation (SLIC) method of Noh

and Woodward (1976) and the stair-stepped interface

representation of Hirt and Nichols (1981). Today, SLIC

methods are seldom used though there are some recent

efforts to improve the method (Yokoi 2007). State-of the art

are so-called piecewise linear interface calculation (PLIC)

methods. In PLIC methods, the interface is represented by a

line (in 2D) or a plane (in 3D). The orientation of the plane

within a cut cell is obtained by reconstructing its unit normal

vector C (pointing into phase ?) from the discrete values of

f? in the neighborhood of each mesh cell. Once n̂þ is known,

the position of the plane within the cut cell is determined

from the condition that the interface divides the cut cell in

two parts, so that the correct value of f? is obtained. For this

task, analytical relations are available for orthogonal hexa-

hedral (Scardovelli and Zaleski 2000), triangular (Yang et al.

2006) and tetrahedral grids (Lv et al. 2010).

An early PLIC reconstruction algorithms for the VOF

method is that of Youngs (1982), see also Rudman (1997), in

which a finite-difference gradient approximation of the

volume fraction is used to compute the interface normal

vector by relation n̂þ ¼ rfþ= rfþj j. While the method of

Youngs is still widely used (e.g. in the FLUENT code) since

then a large number of different PLIC methods have been

proposed. For a historical perspective (with status up to

2002) on the vast literature on VOF reconstruction algo-

rithms we refer to Rudman (1997), Rider and Kothe (1998)

and Benson (2002). Still, there is an ever ongoing develop-

ment of new and improved methods, see e.g. Pilliod and

Puckett (2004) and Aulisa et al. (2007). A drawback of the

piecewise linear approach is that planar segments in

neighboring cut cells are (in general) not continuous so that

at the common face of two neighboring cut cells there is a

jump of the interface position, see sketch in Fig. 1. More

recently, piecewise parabolic interface calculation (PPIC)

schemes (Price et al. 1998; Renardy and Renardy 2002;

Diwakar et al. 2009) and piecewise cubic spline interface

reconstruction schemes (Ginzburg and Wittum 2001; López

et al. 2004) have been proposed; however, only the method of

Renardy and Renardy (2002) is formulated in 3D. In some of

these methods the interface is still discontinuous at the mesh

cell boundaries. Diwakar et al. (2009) developed a method

where the interfaces and their first derivative are continuous

at cell boundaries. In practice, however, this method as well

as spline-based methods tends to produce small interface

oscillations or wavy interfaces in some cases. So it is not

clear yet if these higher order methods are in practice really

superior to PLIC methods.

Due to the complexity of the interface reconstruction

step, the PLIC-VOF method is traditionally used on a fixed

rectangular (in 2D) or hexahedral (in 3D) Cartesian grid.

However, there are efforts to extend the method to non-

orthogonal curvilinear meshes (Jang et al. 2008). Also

interface reconstruction schemes for multimaterial flows

(i.e. for flows where more than two immiscible phases may

exist in one mesh cell) are under development for

generalized polyhedral meshes (Ahn and Shashkov 2007).

Once the interface is reconstructed, the advection step

can be performed, where the volume fluxes of phase ?

across all mesh cell faces are evaluated geometrically. We

illustrate this for the 2D case where the domain occupied

by each phase is a polygon. The flux of phase ? across one

mesh cell face within a time step Dt is then evaluated by

virtual movement of the corners of this polygon by a

distance DL ¼ u?Dt, where u? is the velocity component

normal to the mesh cell face. Advection schemes can be

classified in two different categories (Rider and Kothe

1998): operator split schemes, which consist of a sequence

of one-dimensional advection steps, and multidimensional

(unsplit) schemes. In a split method, the fluxes along one

coordinate direction are computed and the volume fractions

f n
þ (where the superscript n indicates the time step) are

updated to an intermediate level f �þ. The interface is then

reconstructed from the intermediate f �þ data and the fluxes

along the second direction are calculated, yielding the

intermediate data f ��þ . By a third reconstruction and

advection step (in three dimensions) finally the values

f nþ1
þ for the new discrete time level are obtained. In

contrast, in unsplit methods there is only one reconstruction

step and one advection step per time step (Pilliod and

Puckett 2004). While unsplit methods thus require less

CPU time per time step, they have the disadvantage that the

same liquid volume in a mesh cell may be fluxed twice or

three times (Rider and Kothe 1998). This can result in

mesh cells where the consistency property 0� f nþ1
þ � 1 is

not satisfied. While values f? \ 0 can simply be set to 0,

setting values f? [ 1 to 1 will yield a mass loss. As a

remedy, often the small surplus dfþ ¼ fþ � 1 [ 0 from

such mesh cells is redistributed (i.e. added) to a neighbor-

ing cut cell where 0\fþ\1� dfþ. For the two-dimen-

sional case, unsplit schemes for cell boundary flux

integration have been proposed that minimize the problem

or need no local redistribution algorithm at all (Harvie and

Fletcher 2000, 2001).

Microfluid Nanofluid (2012) 12:841–886 847

123



The problem of overfilling of cells is, however, more

severe for operator split methods. After the first one-

dimensional advection step volume fractions greater than

unity may result which create a problem in the second

advection step, as cells in the interior of the fluid may then

attain values less than unity. To overcome this problem

Rudman (1997) made allowance for the effective change in

volume of a cell during each one-dimensional advection

step. Also a stretching of the velocity field (which is not

divergence free in one dimension) can produce notable

overshoots in the intermediate volume fractions, see

Weymouth and Yue (2010). To fix this problem, the latter

authors developed an operator split advection scheme

which ensures complete mass conservation by accounting

in a proper way for the dilatation term. Also Aulisa et al.

(2007) proposed a split advection algorithm in three

dimensions which conserves mass exactly for a divergence

free velocity field, thus allowing computations to machine

precision. In spite of the recent improvements of split

methods, the general trend is toward unsplit methods

(López et al. 2004; Liovic et al. 2006; Cervone et al. 2009).

However, both split and unsplit methods for geometric flux

computation require sufficiently small time steps (Courant

numbers) in order to be stable and accurate.

A rather novel conceptual extension of the VOF method

is the moment-of-fluid (MOF) method (Ahn and Shashkov

2009). The MOF method can be thought of as a general-

ization of the IR-VOF method. In the MOF method, the

material volume (0th moment) as well as the centroid (ratio

of the 1st moment and the 0th moment) are advected and

the interface is reconstructed based on the updated moment

data (reference volume and reference centroid). In the

MOF method, the computed interface is chosen to match

the reference volume exactly and to provide the best

possible approximation to the reference centroid of the

material. Using the centroid information, the volume-

tracking with dynamic interfaces can be performed much

more accurately. Furthermore, the interface in a particular

mesh cell can be reconstructed independently from its

neighboring cells (Ahn and Shashkov 2009).

Level set (LS) method The level set (LS) method was

introduced by Osher and Sethian (1988) as a general tech-

nique to capture a moving interface. It has subsequently been

applied to two-phase flows (Sussman et al. 1994; Sethian and

Smereka 2003) as well as in many other fields (Osher and

Fedkiw 2003; Sethian 1999b). The basic idea of the LS

method is to represent the interface by the zero level set of a

smooth scalar function /ðxÞ : RD ! R; C ¼ x : /ðxÞf ¼
0g: Thus, the position of the interface is only known

implicitly through the nodal values of /. In order to extract

the position of the interface, an interpolation (e.g. first or

second order) of the / data on the grid points must be

performed. One often mentioned advantage of the LS

method is its ability to handle topological changes and

complex interfacial shapes in a simplified way.

In practice, the level set function / is initialized as the

signed distance from the interface. For description of the

interface evolution the phase indicator function in Eq. (4) is

replaced by /. This LS equation is solved with high-order

numerical discretization schemes in time and space, e.g.

third-order total variation diminishing (TVD) Runge–Kutta

schemes and third or fifth order Hamilton–Jacobi (HJ)

weighted essentially non-oscillatory (WENO) schemes.

Under evolution in time / does not retain the property of a

signed distance function and may develop steep and very

small gradients. This results not only in inaccurate

calculation of the interface normal vector and curvature

(see ‘‘Models for surface tension’’ in Sect. 2.3.2.3) but also

in severe errors regarding mass conservation. For improved

mass conservation of LS methods it is essential that / stays

a smooth function throughout the entire simulation. In

order to achieve this, a reinitialization step is introduced,

where the LS function is transformed into a scalar field that

satisfies the properties of a signed distance function and has

the same zero level set. This reinitialization of / is done in

regular time intervals, often after each time step, but less

frequent reinitializations (e.g. after every 10th time step)

are also common. For this reinitialization essentially two

different methods are used in literature. Fast marching

methods (Sethian 1996, 1999a) solve the Eikonal equation

r/j j ¼ 1 by computing the signed distance value for

points in the computational domain or in a narrow band

near the interface (Adalsteinsson and Sethian 1995). A

more efficient and popular approach is to use a partial

differential equation to reinitialize the LS function. Suss-

man et al. (1994, 1999) proposed to solve the following

transient problem to steady state

o/
os
¼ sgnð/0Þ 1� r/j jð Þ

/ðx; s ¼ 0Þ ¼ /0ðxÞ
ð8Þ

Here, s is the virtual time for reinitialization, /0 is the LS

function at any computational instant, and sgn(x) is a

smoothed signum function which Sussman et al. (1994)

approximated numerically as

sgnð/0Þ ¼
/0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

/2
0 þ L2

e

q ð9Þ

Here, Le is a small length scale to avoid dividing by zero,

usually chosen as the mesh size. Equation (8) has the for-

mal property that / remains unchanged at the interface and

converges to r/j j ¼ 1 (i.e. the actual distance function)

away from the interface. Russo and Smereka (2000)

showed that the discretized version of Eq. (8) can displace
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the zero level set and may lead to substantial errors due to

the reinitialization; as a remedy they proposed a fix for the

redistance step discretization of Sussman et al. (1994).

Recently, Hartmann et al. (2008, 2010a, b) presented two

new improved formulations of the methods of Sussman

et al. (1994) and Russo and Smereka (2000) for differential

equation-based constrained reinitialization of the LS

method. Different temporal discretization schemes for

solution of Eq. (8) were investigated by Min (2010).

However, even with a frequent reinitialization step the LS

method tends in long time simulations to shrink convex

iso-surfaces, i.e. it leads to mass loss. To correct this mass

loss, global (Chang et al. 1996; Lakehal et al. 2002;

Smolianski 2005; Spelt 2005; Yap et al. 2006; Groß et al.

2006; Son and Dhir 2007; Zhang et al. 2010) as well as

local (Ausas et al. 2011) mass correction steps have been

proposed to explicitly enforce mass conservation.

Front-tracking (FT) method In his immersed boundary

(IB) method for calculation of blood flow in the heart,

Peskin (1977, 2002) introduced the concept to explicitly

represent the boundary by a discrete data structure, which

is updated continuously to track its movement. The

immersed interface (II) method extends this concept to

moving interfaces. Unverdi and Tryggvason (1992) applied

this idea in their front-tracking (FT) method in order to

simulate the motion of bubbles in a surrounding fluid. In

the FT method, interfacial locations are tracked by a set of

Lagrangian marker points. A marker point lying on the

interface at position xp is advected by the flow according to

dxp

dt
¼ up ð10Þ

The velocity up at position xp is determined from the

velocity field on the Eulerian grid by interpolation. In order

to keep the interface adequately resolved throughout the

simulation a remeshing procedure is performed, where

marker points may be added or removed.

In Tryggvasons FT method, the interface is defined

explicitly by means of a set of logically connected marker

particles (Unverdi and Tryggvason 1992; Tryggvason et al.

2001). Consequently, multiple interfaces can easily be

represented in a single mesh cell and droplet or bubble

collision without coalescence is naturally simulated. How-

ever, the FT method cannot be used to handle topological

changes without explicit treatment of the connection and

splitting of the interface data structure. Thus, to merge

interfaces, special effort needs to be made. Nobari and

Tryggvason (1996) and Nobari et al. (1996) studied the

collision of two droplets and removed (at a prescribed time

when the droplets are close enough) interface elements that

are very close and nearly parallel, and reconnected the rest

of the elements to form a single interface. To simplify the

treatment of topological changes in 3D multiphase flows,

FT methods without logical connectivity of the interface

points have been proposed. Examples are the point-set

method (Torres and Brackbill 2000) and the level contour

reconstruction method (Shin and Juric 2002, 2009). As

compared with VOF and LS techniques, which are

ubiquitous in the multiphase CFD community, FT codes

have been developed only by a few groups so far, though

their number is increasing (de Sousa et al. 2004; Hao and

Prosperetti 2004; Muradoglu and Kayaalp 2006; Dijkhu-

izen et al. 2010).

2.3.1.2 Methods with finite interface thickness We now

discuss three methods where the interface thickness is

finite. In the color function VOF method and the conser-

vative level set method this finite thickness arises from

numerical reasons, whereas in the phase-field method

(which is a special kind of diffuse interface method) it

stems from physical modeling.

Color function volume-of-fluid (CF-VOF) method The

disadvantage of IR-VOF methods is the complexity of the

interface reconstruction, especially in 3D. For a simplified

computational treatment, VOF methods without interface

reconstruction have been developed. These rely on a

(smooth) color function C which can be considered as an

approximation for the volume fraction function in the

classical IR-VOF method. Accordingly, C takes a value of

one in one phase (here phase ?) and zero in the second

phase, while the interface location is associated with the

contour C = 0.5. Replacing the phase indicator function

X� in Eq. (4) by the color function C and taking into

account Eq. (5) yields

oC

ot
þr � ðuCÞ ¼ 0 ð11Þ

This equation is solved by difference schemes. The

essential problem is that upwind schemes are diffusive and

immediately smear out the interfaces, while downwind

schemes maintain a sharp interface but are unstable, and

central or higher-order schemes do not preserve the

monotonicity and boundedness of the solution. The chal-

lenge is thus to design a suitable combination of up- and

downwind fluxes that eliminates both the diffusiveness of

the upwind scheme and the instability of the downwind

scheme, so that the smearing is limited to an acceptable

amount and the interface has a constant and uniform

thickness regardless of the flow field.

Early versions of such schemes are the donor–acceptor

method of Hirt and Nichols (1981) and Rudman’s (1997)

scheme which is based on the multidimensional flux-

corrected transport (FCT) algorithm of Zalesak (1979). A

FCT scheme is also used by Bonometti and Magnaudet
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(2007) to solve in their JADIM code the color-function

equation in non-conservative form by three successive one-

dimensional steps. In regions of strong strain and shear,

they prevent the front from spreading in time by a specific

strategy in which the velocity at nodes crossed by the

interface is modified to keep the thickness of the transition

region constant (about three mesh cells). In addition the C

field is modified every 50 time steps to guarantee that the

global mass of each fluid is constant. Another CF-VOF

method is the high resolution interface capturing (HRIC)

scheme (Muzaferija and Peric 1999), which uses a

nonlinear blend of upwind and downwind cell-face values,

based on the spatial distribution of C, the local Courant

number, and the angle between the normal to the interface

and the cell-face surface vector. Bounded downwind

differencing schemes, such as the compressive interface-

capturing scheme for arbitrary meshes (CICSAM) (Ubbink

and Issa 1999), which switches between different high

resolution schemes, or THINC (tangent of hyperbola for

interface-capturing) (Xiao et al. 2005) achieve a suffi-

ciently sharp profile of C by introducing a controlled

amount of numerical dispersion in the vicinity of the

interface. In the method of Yabe et al. (2001) a tangent

function is used to transform the color function to a

smoothed profile. The latter is then advected using the

constrained interpolation profile (CIP) scheme; finally the

smoothed function is inverted to give a sharper profile.

Another strategy is adopted in the CF-VOF method of

OpenFOAM (Weller 2006). The code uses the MULES

(multidimensional universal limiter with explicit solution)

algorithm develop by OpenCFD Ltd. to solve the equation

oC

ot
þr � ðuCÞ þ r � Cð1� CÞUrð Þ ¼ 0 with

Ur ¼ cr uj j rC

rCj j
ð12Þ

Compared with Eq. (11), an artificial compression term is

added to counteract the effect of numerical diffusion. The

compression term acts only in the interfacial region. For

the constant cr a value in the range 1� cr� 4 is recom-

mended in order to ensure a sharp interface and limit the

color function field to values between 0 and 1.

Conservative level set (C-LS) method Olsson and Kreiss

(2005) developed a method which combines elements from

the CF-VOF and LS method and denoted it as conservative

level set method. Instead of the signed distance function

usually used to define the interface, this method uses a

regularized indicator function C. Similar to the CF-VOF

method, C takes the value of 0 in one fluid and the value 1

in the other fluid, while the 0.5 level defines the interface.

The method consists of two steps. In the first step, the

conservative Eq. (11) is solved with a high resolution

scheme. In the second (reinitialization) step, an equation

that acts as an artificial compression is solved until steady

state is reached

oC

os
þr � Cð1� CÞn̂þ½ 	 ¼ esr � ðrCÞ ð13Þ

where n̂þ ¼ rC= rCj j. The artificial compression flux

eliminates the numerical diffusion of the volume fraction,

which appears due to numerical discretization of the

advection term in Eq. (11). In Eq. (13), the small amount of

‘‘viscosity’’ es is added to avoid discontinuities. This value

is taken as low as possible to get the interface smeared over

a minimal number of mesh cells. A typical value is

es = Dx/2. Too small values of es compared with the grid

size Dx result in over- or undershoots of the volume frac-

tion. Since es is proportional to the grid size, the method

does not solve the same equation on different grids. In a

follow-up paper, the right hand side (RHS) of Eq. (13) is

replaced by a different formulation which restricts diffu-

sion in the reinitialization step in the direction normal to

the interface in order to achieve better convergence (Olsson

et al. 2007).

Strubelj et al. (2009) implemented this method in a two-

fluid model for free surface flows where a separate

momentum equation is solved for each phase and the

contribution of surface tension is split. They used a time

step Ds = Dx/32 and reported that one iteration is suffi-

cient to significantly reduce the numerical diffusion. While

the conservative LS method smears the interface over

several cells (typically 3–4), this amount of smearing

remains constant during the simulation and does not

depend on the number of mesh cells used for discretization

of the whole domain. A smaller grid size reduces the

thickness of the smeared interface and also improves the

volume conservation.

Phase-field (PF) method In diffuse interface (DI) meth-

ods, the infinitely thin boundary of separation between two

immiscible fluids in the sharp interface limit is replaced by

a transition region of small but finite width, across which

physical properties vary steeply but continuously. The DI

treatment can be motivated physically/thermodynamically

(e.g. to account for long range van der Walls-type forces)

or numerically as a regularization of the sharp interface

limit (Sun and Beckermann 2007). Anderson et al. (1998)

mention three main advantages of DI methods. First, from

a computational point of view, modeling of fluid interfaces

as having finite thickness greatly simplifies the handling of

topological changes of the interfaces, which can merge or

breakup while no extra coding is required. Second, the

composition field has physical meanings not only on the

interface but also in the bulk phase. Therefore, this method

can be applied to many physical states such as miscible,
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immiscible, and partially miscible ones. Third, the method

is able to simulate contact line motion as the contact-line

stress singularity in the immediate vicinity of the contact

line is removed (Seppecher 1996). The most significant

advantage in the present context is, however, that explicit

tracking of the interface is unnecessary and all governing

equations can be solved over the entire computational

domain without any a priori knowledge of the location of

the interfaces.

Phase-field (PF) models can be considered as a partic-

ular type of DI models that are based on fluid free energy.

In the present context, we are interested in PF methods for

the flow of two incompressible, immiscible phases with

different density (Lowengrub and Truskinovsky 1998;

Jacqmin 1999; Boyer 2002; Badalassi et al. 2003; Yue

et al. 2004; Takada et al. 2006) (for three phase flows see

Kim and Lowengrub (2005)). The basic idea is to introduce

a conserved order parameter or phase-field, u, to charac-

terize the two different phases. This order parameter

changes rapidly but smoothly in the thin interfacial region

and is mostly uniform in the bulk phases, where it takes

distinct values u? and u-, respectively. The interfacial

location is defined by the contour level ðuþ þ u�Þ=2. The

interface dynamics is modeled by an evolution equation for

u, the Cahn–Hilliard equation

ou
ot
þ ðu � rÞu ¼ r � Mrlu

� �
ð14Þ

Here, M(u) is a diffusion parameter, called the mobility.

The chemical potential, lu, is the rate of change of free

energy (which consists of a bulk and an interface

contribution) with respect to u and is given by

lu ¼
dw
du
� e2

ur2u ð15Þ

For the bulk energy density w(u) different formulations are

used in the literature which depend on the choice for u�.

Commonly used forms are e.g. w ¼ u2ð1� u2Þ=4 for

uþ ¼ 1, u� ¼ 0 and w ¼ ðuþ 0:5Þ2ðu� 0:5Þ2 for u� ¼
�0:5 (Jacqmin 1999). With Eq. (15), the Cahn–Hilliard

Eq. (14) involves fourth-order derivatives with respect to

u. This makes its numerical treatment more complex as

compared to the NS equation which involves only second-

order derivatives. The parameter eu in Eq. (15) is a capil-

lary width indicative of the thickness of the diffuse

interface. The Cahn number Cn � eu=Lc relates eu to a

characteristic macroscopic length Lc.

An important issue in the PF method is the resolution of

the interface thickness. Jacqmin (1999) used u� ¼ �0:5 and

defined eu to be the distance from u ¼ �0:45 to u = 0.45

(90% of the variation of u). He and Kasagi (2008) claimed

that the PF method allows the accurate calculation of two-

phase flows on fixed grids with interfaces only two cells wide

when eu = Dx is used. Zhou et al. (2010) achieved grid

convergence when the grid size in the interfacial region is

less than or equal to eu. Yue et al. (2004, 2006), however,

reported an interface thickness of approximately 7.5eu so

that about 10 grid points are required to resolve it. Ding et al.

(2007) developed a DI method with the volume fraction as an

order parameter and applied it to several two-phase flow test

cases with large density ratio. The authors found that the

method can accurately conserve global mass but requires

rather many grid points to achieve a smooth variation of

dependent variables in a sufficient narrow interfacial region.

The issue of mass conservation of the PF method was

studied in detail by Yue et al. (2007) for the case of a single

drop in a quiescent fluid. While the phase-field variable

was globally conserved, the drop could shrink spontane-

ously as u shifted from its expected values in the bulk

phases. The mass loss of the drop was proportional to both,

the ratio between the domain and drop volume, and the

Cahn number Cn ¼ eu=R0, where R0 is the radius of the

drop. The mass loss became negligible if Cn was small

enough; recommended values are below 0.01. Furthermore,

it was found that there exists a critical drop radius Rc for a

given computational domain size and value of eu so that

drops smaller than Rc eventually disappear.

2.3.2 Momentum equation and interfacial phenomena

2.3.2.1 Navier–Stokes (NS) equation We consider the

flow of two immiscible incompressible Newtonian fluids in

a domain X 
 R
3 which is split by an interface C into two

distinct parts X? and X-. In each of the subdomains, the

density and viscosity are assumed to be piecewise constant

with values (q?, q-) and (l?, l-), respectively. The

conservation equations for mass and momentum valid in

each subdomain X� ¼ X�ðtÞ are

r � u� ¼ 0;
oq�u�

ot
þr � q�u� � u�ð Þ ¼ r � S� þ q�g

ð16Þ

The stress and deformation tensors are given by

S� ¼ �p�Iþ 2l�D�; D� ¼
1

2
ru� þ ðru�ÞT
� �

ð17Þ

where I denotes the identity tensor. At the interface

C = C(t) (which is assumed to have no mass and no

interfacial viscosity) the following jump conditions hold

(Drew 1983)

qðu� uCÞ½ 	½ 	C�n̂C ¼ 0;
qu� ðu� uCÞ � S½ 	½ 	C�n̂C ¼ rjn̂C þrCr

ð18Þ

Here, uC is the velocity of the interface, r is the coefficient

of interfacial tension, j ¼ �rC � n̂C is the signed interface
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curvature (twice the mean curvature), and rC ¼ ðI� n̂C �
n̂CÞ � r is the surface gradient operator. The symbol n̂C

denotes the unit normal vector to the interface with a fixed

but arbitrary orientation (e.g. pointing into X?). The

notation ½ 	½ 	C represents the jump of physical quantities

across the interface (in direction of n̂C). When there is

neither phase change nor tangential slip at the interface the

jump conditions simplify to the form

u½ 	½ 	C¼ 0; �S½ 	½ 	C�n̂C ¼ rjn̂C þrCr ð19Þ

The local Navier–Stokes equation in each phase and

the jump conditions at the interface can be combined into

the following single-field equations which are valid in the

entire computational domain

r � u ¼ 0;
oqu

ot
þr � qu� uð Þ

¼ �rpþr � l ruþ ðruÞT
� �

þ qgþ fr ð20Þ

Here, q ¼ qðx; tÞ and l ¼ lðx; tÞ are piecewise constant in

each phase but discontinuous at the interface. The surface

tension force is localized at the interface by means of a

Dirac delta function dC with support on C

fr ¼ rjn̂C þrCrð ÞdC ð21Þ

The solution of the single-field Navier–Stokes Eq. (20)

requires knowledge of the instantaneous phase distribution

which is provided by solving an interface evolution

equation by one of the methods discussed in Sect. 2.3.1.

The information about the phase distribution is needed to

determine the density and viscosity fields and to compute

the surface tension term according to Eq. (21); both issues

are discussed in the following sections. In Fig. 2, we

illustrate the intrinsic coupling between the single-field

momentum equation, the interface evolution equation, and

the instantaneous phase distribution graphically.

2.3.2.2 Treatment of fluid properties at the interface In

the single-field (or one-fluid) approach for two-phase flow,

the fluids in both phases are mathematically treated as one

single fluid with varying physical properties. In IR-VOF

methods the density and viscosity then depend on f?(x, t)

and are commonly computed by the relations

qm ¼ fþqþ þ f�q�; lm ¼ fþlþ þ f�l� ð22Þ

where f� � 1� fþ. For the viscosity instead of the

arithmetic mean also the harmonic mean

1

lh

¼ fþ
lþ
þ f�

l�
ð23Þ

is widely used. Thus, the fluid properties are computed as

averages suitably weighted by the volume fraction.

The fact that the volume fraction Eq. (6) is averaged

over the mesh cell volume Vmc while the NS Eq. (20) is

local, motivated Wörner et al. (2001) to derive the fol-

lowing consistent volume-averaged (VA) set of equations

ofþ
ot
þr � ðfþumÞ ¼ �r � fþf�

q�
qm

ur

	 

ð24Þ

r � um ¼ r � fþf�
qþ � q�

qm

ur

	 

ð25Þ

oqum

ot
þr � qmum � um þ Drð Þ

¼ �rpm þr � lm rum þ ðrumÞT
� �

þ Tr

h i

þ qmgþ fr

ð26Þ

The barycentric (or center-of-mass) velocity, um, and

the mean relative velocity of the phases within the

averaging volume, ur, are given by

um �
fþqþhuiþ þ f�q�hui�

qm

; ur � huiþ � hui� ð27Þ

Fig. 2 Illustration of the

intrinsic coupling between

single-field momentum

equation, interface evolution

equation and instantaneous

phase distribution. The arrows
indicate the transfer of

information
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where

hui� �
1

f�Vmc

ZZZ

Vmc

X�udV ð28Þ

The definitions of further terms, appearing in the volume

averaged NS Eq. (26) are

pm �
1

Vmc

ZZZ

Vmc

pdV ð29Þ

Dr � fþf�
qþq�
qm

ur � ur ð30Þ

Tr � fþlþ r
f�q�ur

qm

	 

þ r f�q�ur

qm

	 
� �T
( )

� f�l� r
fþqþur

qm

	 

þ r fþqþur

qm

	 
� �T
( )

ð31Þ

The terms on the RHS of Eqs. (24) and (25) as well as the

tensors Dr and Tr are non-zero only at the interface (where

0 \ f? \ 1) but vanish in both bulk phases. Furthermore,

all these terms depend on ur. Due to the continuity of the

velocity on both sides of the interface (cf. Eq. (19), the

relative velocity ur vanishes as the mesh cell volume Vmc

shrinks to zero. In this limit, all terms involving ur vanish

and the VA Eqs. (24)–(26) essentially reduce to the local

Eqs. (6) and (20). Though this set of VA VOF equations

has not been used in practical computations so far, it is

interesting to remark that the term on the RHS of Eq. (24)

serves as anti-diffusion and is very similar to the empiri-

cally motivated artificial compression term in OpenFOAM,

cf. Eq. (12), and to the term in the compression step of the

C-LS method, cf. Eq. (13).

For finite difference (FD) based methods the disconti-

nuity of the material properties at the interface can have a

substantial (unfavorable) effect on the stability of the

numerical scheme. To avoid a sudden jump in the material

properties, a common approach in LS methods is to define

a zone of thickness 2e/ in the vicinity of the interface and

to smooth the discontinuous density and viscosity over this

thickness (Sussman and Fatemi 1999; Tornberg and Eng-

quist 2000; van der Pijl et al. 2005). For this purpose, f? in

Eq. (22) is replaced by a smooth increasing function He

which approximates the Heaviside function as e/ goes to

zero. For He different formulations can be found in the

literature; widely-used is (Sussman et al. 1999)

Heð/Þ ¼
0 if /\� e/
/þe/

2e/
þ 1

2p sin p/
e/

� �
if /j j � e/

1 if / [ e/

8
><

>:
ð32Þ

Often, the ‘‘half-thickness’’ of the interface is taken as

e/ = 1.5Dx. We remark that in some recent LS methods

the viscosity is smoothed but not the density (Coyajee and

Boersma 2009; Gibou et al. 2007). Also there are methods

that do not perform a smoothing of the density and vis-

cosity at all but fully account for the discontinuous char-

acter of these properties at the interface (Marchandise and

Remacle 2006).

In the FT method (Unverdi and Tryggvason 1992;

Tryggvason et al. 2001), a material indicator function

I(x) is determined from the known position of the interface

by solution of a Poisson equation. This indicator function

serves as a smoothed Heaviside function and is used to

smooth the otherwise discontinuous fluid properties across

the interface in order to increase the numerical stability.

Fedkiw et al. (1999) introduced the ghost fluid (GF)

method to treat contact discontinuities in the case of mul-

tiphase compressible flows with no phase change and uti-

lized it for a wide range of applications. The underlying

idea is to extrapolate the values of discontinuous variables

across the fluid interface. This allows reducing smearing of

discontinuous variables such as density or other material

properties when solving the governing equations. For

interfacial flows, the GF method is often combined with the

LS method (e.g. Kang et al. (2000)) and less often with the

FT method (e.g. Terashima and Tryggvason (2009)).

The above discussion indicates that the zero-thickness

sharp interface of the IR-VOF, LS and FT method is usu-

ally not retained in the Navier–Stokes equation. Instead the

fluid properties are (either in the context of finite volume

discretization or for reasons of numerical stability)

smoothed in the vicinity of the interface which is effec-

tively smeared over typically 2–3 mesh cells. During the

approach of two interfaces, local phenomena such as film

draining are therefore not handled accurately when the

interfaces come closer than 1–2 mesh cells. In IR-VOF and

LS methods, the interfaces are often assumed to have

merged if the distance between them becomes less than one

grid spacing (Mukherjee and Dhir 2004), cf. Sect. 3.1.3.3.

Due to this and the smearing of the fluid properties in the

Navier–Stokes equations the IR-VOF and LS methods are

in some references (but not here) classified as belonging to

diffuse interface methods.

In methods with finite interface thickness, the smoothed

representation of the phase indicator function serves as

smoothed Heaviside function. Thus, in the CF-VOF

method and the C-LS method the fluid properties are

computed by replacing in Eq. (22) the volume-fraction f?
by the color function C. Accordingly, in the PF method a

suitable formulation of the order parameter is used so that

the correct values of the density and viscosity are recovered

in both bulk phases. In the case eu ! 0 (i.e. Cn! 0) the

PF method converges to the sharp interface limit and the

classical Navier–Stokes equations and pressure jump con-

ditions are recovered (Anderson et al. 1998; Jacqmin
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1999). Zhou et al. (2010) showed in their 3D computations

of the retraction of an elongated drop (of undeformed

radius R0) on a substrate that the PF model converges to the

sharp interface limit when Cn ¼ eu=R0� 0:05, whereas in

2D simulations the more stringent criterion Cn� 0:01 is

found (Yue et al. 2006). For the diffuse interface LB

method, Amaya-Bower and Lee (2010) report that Cn has

very little to no effect on both the terminal velocity and

shape of a single bubble rising due to buoyancy, as long as

the interface thickness is high enough to apply the tech-

nique of Lee (2009) to reduce the spurious currents.

2.3.2.3 Interfacial tension Accurate representation of

interfacial forces such as surface tension and contact lines

is a challenging problem, especially for methods with fixed

grid representation. In the following we give an overview

of different approaches for modeling of surface tension

forces, discuss the problem of spurious currents associated

with the numerical implementation of these models, con-

sider issues related to the variation of surface tension due to

the presence of surfactants (i.e. molecules which adsorb to

a fluid interface), and present models for contact lines and

wetting.

Models for surface tension Brackbill et al. (1992) trans-

formed in their continuum surface force (CSF) model the

surface force fr as given by Eq. (21) into a localized body

force which is distributed within a transition region of finite

thickness at the interface. For this purpose, the delta

function dC is replaced by a regularized delta function de.

In LS methods, the discrete Dirac delta function is given by

deð/Þ ¼
1
e/

feð/=e/Þ; /j j � e/

0; /j j[ e/



ð33Þ

Here, fe is a kernel function and e/ ¼ mDx, where m is a

positive number that determines the support of fe. For the

kernel function different formulations are used in literature,

which are of linear, cosine or polynomial type, see e.g.

Hysing (2006) and Raessi et al. (2009). A smeared delta

function consistent with the smeared Heaviside function of

Eq. (32) is Peskin’s (1977) delta function

deð/Þ ¼
dHeð/Þ

d/
¼

1
2e/
þ 1

2e/
cos p/

e/

� �
; /j j � e/

0; /j j[ e/

(

ð34Þ

In general, the choice of de and its discretization has a

significant impact on the results (Raessi et al. 2009). A

regularization often used in VOF methods, is to replace the

product dCn̂C by the gradient of a spatially smoothed or

unsmoothed volume fraction.

In the CSF model, the interface normal vector and

interface curvature are computed as

n̂ ¼ rc

rcj j ; j ¼ �r � n̂ ¼ �r � rc

rcj j

	 

ð35Þ

Here, the meaning of c depends on the method. In the LS

method, c is replaced by the distance function /. Since / is

smooth and continuous across the interface, its gradient can

be evaluated rather accurately by higher order finite dif-

ferences. However, for evaluating the curvature special

care has to be taken when two interfaces are in close

contact (Macklin and Lowengrub 2006). In CF-VOF

methods, c in Eq. (35) is the color function. For PLIC-VOF

methods the choice C = f? seems natural. However, the

discontinuous character of f? at the interface makes it

difficult to accurately evaluate the first and second deriv-

atives, which leads to inaccurate interface normal vectors

and curvatures. One possibility for improvement is to

smooth the f? field before computing its gradient. For

estimating the curvature from the f? field, various

approaches exist in PLIC-VOF methods which are based

on least-squares-fit, height functions, convolution tech-

niques or reconstructed distance functions, see e.g. (Pilliod

and Puckett 2004; Renardy and Renardy 2002; Cummins

et al. 2005; Francois et al. 2006) and references therein. In

recent publications, a trend to curvature estimates from

height functions can be observed because this method is

rather simple to implement and provides superior results

(Cummins et al. 2005; Francois and Swartz 2010; Lopez

and Hernandez 2010). However, any method for curvature

estimation relies on an adequate resolution of the interface

and problems occur when the curvature becomes compa-

rable with the mesh size. Raessi et al. (2007) showed that

the accuracy of curvatures calculated from the VOF func-

tion deteriorates with mesh refinement, and that there is a

constant error associated with curvatures calculated from

the LS function in a coupled LS and VOF method. The

authors proposed a new methodology for calculating

interface normal vectors and curvatures, in which the

normal vectors are advected along with the interface, and

the curvatures are calculated directly from the advected

normals (Raessi et al. 2007, 2010).

The CSF method is explicit, so that the time step size is

limited by a respective time step criterion to ensure

numerical stability (Brackbill et al. 1992; Galusinski and

Vigneaux 2008). To mitigate this time step restriction,

Hysing (2006) proposed a semi-implicit CSF model for

finite element (FE) simulations. Recently, this model was

modified for finite volume (FV) methods and it was found

that the time step restriction due to surface tension can be

exceeded by at least a factor of five, without destabilizing

the numerical solution (Raessi et al. 2009). Overall, the

CSF model is widely used especially in combination with

VOF and LS methods, but also finds occasional application
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in the LB (Wu et al. 2008a, b) and PF (He and Kasagi

2008) methods.

Lafaurie et al. (1994) proposed the continuous surface

stress (CSS) model where the surface tension force is

modeled as the divergence of a surface stress tensor which

acts tangential to the interface

fr ¼ r � ðI� n̂C � n̂CÞrde½ 	 ð36Þ

The advantage of the CSS model over the CSF model is its

conservative nature, which ensures that for closed inter-

faces the net surface tension force is zero. The CSS model

is used e.g. in Gueyffier et al. (1999), Renardy et al. (2001,

2002) and Bothe et al. (2009a; 2009b).

With a smoothed (continuous) viscosity and for

r = const. the stress jump condition in Eq. (19) reduces

to p½ 	½ 	 ¼ rj. Then, the GF method can be used to explicitly

implement this pressure jump in the discretization of the

pressure gradient in order to account in an implicit way for

the surface tension force (Liu et al. 2000).

In the volume-averaged VOF method (Wörner et al.

2001; Sabisch et al. 2001) surface tension is given by

fr ¼ rjain̂. Here, ai = Ai/Vmc is the local interfacial area

concentration, i.e. the ratio between the interfacial area Ai

within the mesh cell (which is in PLIC-VOF methods given

by the area of the planar polygon representing the

interface) and the mesh cell volume. This model restricts

the surface tension force to those mesh cells, that actually

contain a part of the interface. Essentially, it replaces dC by

the local interfacial area concentration ai, which can be

interpreted as a smoothed delta function, see also Gada and

Sharma (2009). Shepel and Smith (2009) performed

simulations with the LS method and compared the

performance of this interfacial area concentration surface

tension model and a modification of it with that of CSF

models based on a regularized Dirac delta function. The

authors found that the modified interfacial area concentra-

tion model gives superior results for film-like interfaces.

In the FT approach, the surface tension force is

calculated directly on the Lagrangian interface grid by

evaluation of line integrals (Unverdi and Tryggvason 1992;

Popinet and Zaleski 1999; Tryggvason et al. 2001; Shin

and Juric 2002). This force is then distributed onto the fixed

Eulerian grid using Peskin’s (1977, 2002) immersed

boundary method. In Tornberg and Engquist (2000) a

weak formulation of the 2D NS equation is presented

where the surface tension force is included through line

integrals along the interfaces, and where the segments of

the interface are defined from the LS function. This avoids

explicit discretization of the delta function.

For the numerical treatment of the surface tension force

in the weak formulation of FE methods, an approach

proposed by Dziuk (1991) and successfully applied by

Bänsch (2001) became very popular recently. The

curvature in the surface integral is replaced by the

Laplace–Beltrami operator so that integration by parts

allows reducing one order of differentiation associated with

the curvature. This formulation is used e.g. in Groß et al.

(2006), Groß and Reusken (2007) and Ganesan and

Tobiska (2009a) and has also been combined with the

CSF method (Hysing 2006).

In diffuse interface methods for incompressible immis-

cible flows various formulations for the surface tension

force are used in the literature, see e.g. Kim (2005) and

references therein. In general, the surface tension force

depends on the chemical potential and is modeled either

with the proportionality fr / �urlu (Jacqmin 1999;

Jacqmin 2000; He and Kasagi 2008) or fr / luru
(Badalassi et al. 2003).

Spurious currents A common problem encountered by all

above surface tension models is the appearance of artificial

vortex-like flows in the neighborhood of the interface,

which are commonly referred to as spurious or artificial

currents or parasitic flow (Lafaurie et al. 1994). While

spurious currents also occur for flowing liquids, they are

best explained for the case of a static neutrally buoyant

spherical bubble or drop. Physically, both fluids are at rest

and the difference in pressure inside and outside the bub-

ble/drop is given by the Young–Laplace equation. The

numerical solution of the NS equations yields, however, in

general a velocity field where both fluids are not at rest.

Instead artificial velocities occur in the neighborhood of the

Fig. 3 Spurious currents for a static (neutrally buoyant) two-dimen-

sional bubble. Figure from Sabisch (2000)
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interface, see Fig. 3. The origin of this numerical artifact is

twofold: spurious currents occur when the implementations

of the surface tension and pressure gradient forces do not

balance on the discrete level (Renardy and Renardy 2002)

and/or when the curvature of the interface is not accurately

computed. The amplitude of spurious currents depends on

surface tension, viscosity, density ratio, and spatial and

temporal discretization; it increases with decreasing ratio

l/a � Ca, where Ca � lU=r is the capillary number based

on a characteristic velocity U. At worst, the spurious cur-

rents can be strong enough to dominate the solution.

There exist a large number of papers which deal with

spurious currents in the CSF and CSS method and how to

reduce them, see e.g. Popinet and Zaleski (1999), Renardy

and Renardy (2002), Aulisa et al. (2006), Harvie et al.

(2006b) and (for a historical perspective) Fuster et al.

(2009). Tong and Wang (2007) proposed a so-called

pressure boundary method which utilizes a capillary

pressure gradient term in the Navier–Stokes to account

for surface tension, see also Wang and Tong (2010).

Shirani et al. (2005) multiplied the surface tension force as

given by the CSF and CSS models by a factor that

represents the fraction of area of a cell face in contact with

the heavier fluid. Groß and Reusken (2007) proposed an

extended (discontinuous) pressure FE space which greatly

reduces spurious currents when combined with the

Laplace-Beltrami technique.

Spurious currents are, however, not only a problem in

sharp interface continuum methods (VOF, LS, FT), but

also exist in LB methods (Lishchuk et al. 2003; Dupin et al.

2006; Pooley and Furtado 2008; Lee 2009) where they can

be reduced e.g. by employing multiple relaxation time

algorithms (Pooley et al. 2008), and in the PF method (Kim

2005; De Menech 2006). Jamet et al. (2002) developed a

second-gradient method which is a special kind of DI

method where the fluids are compressible. Their method

can completely eliminate spurious currents; the essential

requirement to achieve this is energy conservation. He and

Kasagi (2008) performed PF computations of a stationary

axisymmetric gas bubble in quiescent water and compared

the performance of the CSF and a chemical potential model

where fr / �urlu. With the CSF method they obtained

significant spurious currents. Due to the exact conservation

of surface tension energy and kinetic energy, the chemical

potential formulation of surface tension in the frame of the

PF method can reduce the spurious currents to the level of

the truncation error. While the parasitic flow is thus very

small, the authors note, however, spurious oscillations in

the position of the interface. Namely, the interface moves

forward and backward with an oscillation amplitude of

about one-third of the mesh size.

An important step forward towards the elimination of

spurious currents for sharp interface models was the paper

by Francois et al. (2006). The authors devised an algorithm

based on the CSF model combined with the GF method for

a PLIC-VOF method which achieves a (to within round-

off) exact balance of surface tension and pressure gradient

forces when interfacial curvatures are known accurately.

Based on this work, the CSF variant implemented in the

Gerris code (http://gfs.sourceforge.net) of Popinet (2009) is

the first that demonstrated recovery of an exact equilibrium

solution for this simple test case up to machine accuracy.

Marangoni effects and surfactants Gradients in surface

tension commonly arise for one of two reasons: a non-

uniform temperature or a non-uniform distribution of a

surface active substance (SAS) or surfactant at the inter-

face. By Eq. (21) surface tension gradients enter in the

form of the Marangoni stress DCr into the NS equations

and so-called Marangoni flows may arise, which can

drastically change the interfacial and wetting behavior. To

relate r to the local interface temperature or surfactant

concentration a constitutive equation of state (EOS) is

required. Often, a linear relationship is assumed while for

surfactants a non-linear Langmuir equation of state is also

commonly used.

For thermal Marangoni flows, the local value of r at the

interface can be computed from the local temperature

which is obtained by solution of the energy equation. In

this sense, the computational treatment of thermal Ma-

rangoni flows is much simpler than of solutal ones. There,

surfactants may be accumulated and transported along the

interface which requires the implementation of a special

conservation law on the interface. In the following we

therefore concentrate on numerical methods for surfactant

induced Marangoni flows. For numerical investigations of

thermal Marangoni flows with a LS method the interested

reader is referred to Haj-Hariri et al. (1997) and Zhao et al.

(2010), with a FT method to Nas and Tryggvason (2003),

and with a VOF method to Ma and Bothe (2011).

Surfactants may be insoluble or soluble. In the former case

the surfactant exists only at the interface. Its transport along

the interface is described by an equation which accounts for

surface fluid velocity, surface diffusion and local stretching

or contraction of the interface (Stone 1990). For a soluble

surfactant in addition desorption and adsorption with the

bulk phases may occur. Their net effect is accounted for by a

source term in the surfactant interfacial transport equation. In

addition an advection–diffusion equation for the surfactant

concentration in one or both of the bulk phases is solved.

Surfactants may also be produced in situ by chemical

reactions in the interfacial region. An overview of experi-

mental, analytical and numerical studies on the effect of
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surfactants on fluidic interfaces can be found in Alke and

Bothe (2009).

In numerical studies of surfactant transport often the

boundary integral (BI) method is used and Stokes flow is

considered, see e.g. Booty and Siegel (2010) and Feigl

et al. (2007). The latter authors modified a 3D BI method

which calculates the deformation of drops with clean

interfaces to include the motion of insoluble surfactants on

the interface and studied its effect on droplet formation in

shear flow. A moving mesh FE method for computation of

free surface flows with insoluble surfactants was developed

by Ganesan and Tobiska (2009a).

Only few numerical methods have been proposed so far

which solve the full NS equations in both phases with

soluble or insoluble surfactant. Among them are PLIC-VOF

methods for an insoluble SAS with a linear EOS (Renardy

et al. 2002; Drumright-Clarke and Renardy 2004) and an

arbitrary EOS (James and Lowengrub 2004). In the latter

method the surfactant mass and interfacial area are com-

puted separately and the SAS concentration is obtained

from their ratio. Davidson and Harvie (2007) incorporated

the method of James and Lowengrub (2004) into the VOF

algorithm of Rudman (1998) and investigated transient axi-

symmetric deformations of a drop rising in a liquid. Alke

and Bothe (2009) developed a PLIC-VOF method where an

extended surface transport theorem is used for describing

the interfacial flux of a soluble surfactant and an iso-surface

of the VOF-variable is used as a connected approximation

of the interface. The method is implemented in FLUENT

and an air bubble rising in a quiescent surfactant solution is

studied. The first LS based method for computation of 2D

interfacial flows with insoluble surfactant is presented by

Xu et al. (2006). Recently, Lakshmanan and Ehrhardt

(2010) combined the C-LS method of Olsson and Kreiss

(2005) with a surface transport equation for the surfactant.

The resulting continuum SAS concentration is zero every-

where but on the interface, where it has a peak of width 2e in

agreement with the smoothing of the color function. To

avoid dispersion of this peak, an artificial compression step

(which is similar to the color function compression step) is

applied to the surfactant concentration field. Lee and

Pozrikidis (2006) developed a method which combines

the immerse interface (respectively FT) method for solution

of the 2D NS equation (by a FD scheme) with the solution

of the interface surfactant transport equation by a FV

scheme. Zhang et al. (2006) developed an axisymmetric FT

method for gas–liquid flows with insoluble or soluble

surfactant. For the soluble surfactant the sublayer is not

resolved but the adsorption scheme is designed such that the

total mass of the surfactant is well conserved. Muradoglu

and Tryggvason (2008) proposed a FT method for compu-

tation of interfacial flows with surfactants which is very

flexible in the sense that an almost arbitrary EOS for the

surfactant can be used while the SAS may be soluble in one

or two phases with different concentrations. Ceniceros

(2003) coupled the FT method with the LS method and

studied the effects of surfactants on capillary waves. Van

der Sman and van der Graaf (2006) developed a 2D free

energy LB model for surfactant adsorption on droplet

interfaces. The emulsion/surfactant system is described

with two order parameters, indicating the oil/water interface

and the surfactant volume fraction, respectively. The model

relies on three distribution functions (one for each order

parameter and one for the NS equation).

Moving contact lines Droplets and bubbles in contact

with a solid surface are ubiquitous in microfluidic devices.

Their motion is strongly affected by the wettability of the

substrates and the dynamics of the contact line. A review of

recent theoretical, experimental and numerical progress in

the description of moving contact line dynamics is given by

Bonn et al. (2009); it covers approaches based on the sharp

interface limit, DI methods and MD simulations. A review

of wetting phenomena in microfluidics is provided by

Ralston et al. (2008). Here we focus on concepts for

modeling contact lines in engineering applications.

The contact line (triple line) denotes the intersection of

the interface between two immiscible fluids with the solid

wall. The macroscopic angle at which the interface meets

the solid is called the contact angle. The static (equilib-

rium) contact angle hs is ideally a unique property of the

material system and its value is determined by the

microscopic interactions across the three interfaces. In

practice, a hysteresis often arises depending on how the

interface is formed. The advancing and receding angles hA

and hR are the largest and smallest contact angles

achievable before the wetting line begins to move in the

direction of the continuous and disperse phase, respec-

tively. The contact angle observed experimentally for a

contact line that is moving relative to the solid surface is

called the dynamic contact angle hd. Unlike the static

contact angle, the dynamic contact angle is not a material

property and many correlations relating it with the contact

line speed or the capillary number have been proposed in

the literature (Dussan 1979). For an overview see e.g. Saha

and Mitra (2009a), where eight different theoretical

dynamic contact line models are tested in CFD computa-

tions. In numerical computations the dynamic contact

angle is often set to vary linearly between the prescribed

receding and advancing angles if the instantaneous contact

line velocity ucl is within a given range �ucl;max. Beyond

this range, the contact angle is assigned by the value of hR

or hA, depending on the sign of the contact line velocity

(Francois and Shyy 2003; Huang et al. 2004; Chen et al.

2009a). For ucl;max ¼ 0 this model reduces to that of Fukai

et al. (1995).
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A classical problem in continuum hydrodynamics is the

incompatibility between the moving contact line and the

no-slip boundary condition, as the latter leads to a force

singularity at the contact line (Huh and Scriven 1971;

Dussan 1979; Cox 1986; Qian et al. 2006). The respective

non-physical divergent stress stems from the fact that

continuum fluid mechanics breaks down at molecular

distances from the contact line. A common remedy to the

problem is to replace the no-slip condition on the solid

surface by the Navier boundary condition

u ¼ LS

ou

on
ð37Þ

with a slip length LS, so that for LS [ 0 the contact line can

move. For LS = 0 and LS = � Eq. (37) reduces to the no-

slip and free-slip boundary condition, respectively. In most

applications, the physical slip length is much smaller than

any realistic mesh size for numerical simulation. Renardy

et al. (2001) introduced an artificial slip length with mag-

nitude in the order of the grid size. Slip leads to a decrease

of the viscous force which resists the motion of the contact

line so that its velocity speeds up. Finite volume codes

integrate over the mesh cell adjacent to the wall which

results in an apparent finite interface velocity at the wall

(Renardy et al. 2001; Rosengarten et al. 2006).

Methods which prescribe a static contact angle have

difficulties in describing flows dominated by capillary

forces. Typically such flows are driven by a deviation of

the contact angle from the static angle. A suitable

numerical procedure is therefore to use the mismatch

between the dynamic and static (equilibrium) contact angle

to obtain a movement of the contact line. This approach is

used in the VOF (Renardy et al. 2001) and the LS (Liu

et al. 2005; Naraynan and Lakehal 2006) context as well as

in ALE moving mesh methods (Ganesan and Tobiska

2009b). Renardy et al. (2001) reconstructed the interface

normal vector close to the contact line in such a way that

the contact angle takes the prescribed value. Recently,

Fang et al. (2008) proposed a 3D contact line hysteresis

model for the PLIC-VOF method. In their approach, the

local contact angle becomes a function of the local contact

line velocity. The latter is calculated from the displacement

of the contact line between consecutive time steps, while

no-slip boundary conditions are used at all walls. Dupont

and Legendre (2010) presented a CF-VOF method for

computation of static contact lines (including hysteresis)

and moving ones. The method is implemented in 2D and

relies on imposing the apparent contact angle by suitable

values of the color function in ghost cells at the wall.

CFD results are often mesh dependent when a no-slip or

Navier-slip condition is imposed along the solid boundary

and a fixed contact angle is imposed on the contact line.

Schönfeld and Hardt (2009) addressed this issue and

introduced a macroscopic slip range in combination with a

localized body force close to the contact line. The authors

considered the capillary rise between parallel plates and

demonstrated that their approach gives almost mesh

independent results; however, it requires the usage of a

fitted pre-factor. Afkhami et al. (2009) considered a mesh

dependent dynamic contact angle model and showed mesh

independent results for two cases, the withdrawal of a plate

and the spreading of a drop. Afkhami and Bussmann

(2009) presented a height function based method which

yields accurate estimates of curvature and surface tension

at a contact line and converges with mesh refinement.

Brackbill et al. (1992) described a method where the

contact angle is implemented in the code not as a boundary

condition, but within the surface tension model in the

solver. In cells adjacent to the walls they compute the

interface normal vector n̂ from the contact angle as

n̂ ¼ n̂w cos hþ t̂w sin h ð38Þ

Here, n̂w and t̂w are the unit vectors normal and tangential

to the wall. From this ‘‘rotated’’ interface normal vector

then the interface curvature near the wall is computed as

usual by relation j ¼ �r � n̂. A similar approach for

modeling moving contact lines in the VOF method is

presented in Sikalo et al. (2005), where the local dynamic

contact angle depends on the instantaneous advancing/

receding contact-line velocity.

For the LS method, different approaches have been

proposed to account for contact line motion (Spelt 2005;

Smith et al. 2005; Zahedi et al. 2009). Spelt (2005)

modified the LS method of Sussman et al. (1999) to

account for moving contact lines and contact line hyster-

esis. In his method the slip length is an input parameter and

reasonably accurate results are obtained when the grid

spacing is approximately equal to the slip length. The

contact line law is enforced by prescribing the value of the

LS function at ghost cells. Ding and Spelt (2007) used this

method to compute the spreading of an axisymmetric

droplet and obtained results in good agreement with those

of the DI method of Jacqmin (1999). Zahedi et al. (2009)

extended the C-LS method of Olsson and Kreiss (2005) to

describe contact line dynamics. The contact line movement

is driven by enforcing the equilibrium contact angle at the

solid boundary. A modified reinitialization procedure

provides a diffusive mechanism for contact line motion

without explicit reconstruction of the interface.

In the context of FT methods, we mention two

approaches for contact line motion. Huang et al. (2004)

modeled the moving contact line by a slip condition. The

value of the dynamic contact angle is determined by a

linear model and local forces are introduced at the moving

contact lines, which are based on a relationship between

the moving contact line angle and contact line speed.
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Muradoglu and Tasoglu (2010) developed a FT method for

computational modeling of impact and spreading of

droplets on a solid wall. In their method the contact angle

is specified dynamically and it is assumed that the drop

interface connects to the wall when the distance between

both gets shorter than a prescribed threshold value. The

authors found that this threshold distance has little

influence on the computational results as long as it is

equal or larger than two mesh cells. A method for

computing the FT material indicator function near the

contact line is given by Khenner (2004). Jacqmin (2000)

developed a PF method to compute contact line dynamics

where the interface can move either through convection or

through diffusion driven by chemical potential gradients.

When the angle of the interface differs from the static angle

the contact line moves by a diffusive process on a fast time

scale in a small region at the solid boundary so that the

contact angle is adjusted to the static value. The fact that

the interface can move by diffusive processes eliminates

the need for modeling fluid slip. The drawback of the

model is that the interface must be highly resolved to

achieve accuracy.

2.3.3 Heat and mass transfer across the interface

The transport equation for a solute chemical species with

molar concentration c� in subdomains X�ðtÞ is

oc�
ot
þ u� � rc� ¼ r � ðD�rc�Þ; x 2 X�ðtÞ ð39Þ

with the coupling conditions at the interface C(t)

Drc½ 	½ 	C�n̂C ¼ 0; cþ ¼ Hc� ð40Þ

Here D� are the diffusivities and H� 0 is the distribution

coefficient (i.e. the dimensionless Henry law constant or

Henry number). In case of chemically reacting flows, Eq.

(39) is extended by respective source and sink terms, see

e.g. Bothe (2009). The equations describing heat transfer

(without phase change) are obtained by replacing in Eqs.

(39) and (40) the concentration by the temperature and the

species diffusivity by the thermal diffusivity, and by setting

H = 1. In the case of mass transfer, the value of H is in

general different from one and can take very small or very

large values depending on the actual system. The respec-

tive discontinuity of the concentration at the interface

complicates computations of interfacial mass transfer as

compared with interfacial heat transfer.

The first numerical simulations of heat and mass transfer

from deforming rising drops and bubbles with the VOF

method were, therefore, restricted to H = 1 where the

concentration field is continuous (Ohta and Suzuki 1996;

Davidson and Rudman 2002). In the general case H 6¼ 1

the discontinuity of c± at the interface is difficult to treat

within a single-field approach. Petera and Weatherley

(2001) transformed, therefore, the discontinuous physical

concentrations field into a continuous numerical one. A

suitable transformation is e.g. ~c ¼ cþ in X? and ~c ¼ Hc�
in X-. For ~c then a single-field concentration equation can

be solved. However, the continuity of mass flux across the

interface, cf. Eq. (40), yields a source/sink term in the

transport equations for ~c � fþcþ þ ð1� fþÞHc� so that it is

not a conserved quantity (Onea et al. 2009). This trans-

formation technique has been combined with a moving

mesh FE method (Petera and Weatherley 2001), with the

PLIC-VOF method (Bothe et al. 2004; 2009b; Onea et al.

2009) and with the LS method (Yang and Mao 2005). This

approach is, however, only meaningful when H is a con-

stant which represents a significant limitation. In reality, H

depends on pressure and temperature and thus may vary

along the interface. Haroun et al. (2010b) did not transform

the concentration fields but derived a single-field transport

equation for c
_ � fþcþ þ ð1� fþÞc� which contains an

additional term that exists only close to the interface; the

concentration equation is solved in combination with a CF-

VOF method. Recently, Bothe et al. (2009a, 2011) devel-

oped a so-called two scalar method which solves Eq. (39)

in each phase separately. While the diffusive fluxes in each

bulk phase are computed by a standard central difference

scheme, the convective transport of the species is treated

by the PLIC algorithm, analogous to the convective

transport of f. Due to this, a very good conservation of the

species mass is achieved and the method is suited for

reactive mass transfer. Kenig et al. (2011) solved two

species equations in the entire computational domain (one

for each phase). They incorporated the interfacial coupling

conditions of Eq. (40) directly into the species equations by

representing them as source terms localized at the

interface.

2.3.4 Phase change

The numerical computation of interfacial flows with phase

change (i.e. evaporation, boiling or condensation) is com-

plicated by the fact that unlike in Eq. (19) the velocity on

both sides of the interface is not continuous. Instead, a

jump in normal velocity occurs which is related to the mass

flux due to phase change across the interface. This leads to

additional terms not only in the interfacial jump conditions

but also in the continuity, NS and energy equations. Here,

we do not list these modifications but refer to the references

below.

The first attempt toward the development of advanced

numerical method for flows with phase change can be

attributed to Welch (1995) who used a moving triangular
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grid for 2D simulations of film boiling. Later, Welch and

Wilson (2000) introduced a VOF approach for fluid

flows with phase change. Hardt and Wondra (2008)

proposed an evaporation model that relies on a contin-

uum-field representation of the source terms in the mass

conservation equation which allows implementing almost

arbitrary evaporation laws (instead of the common

assumption of an isothermal interface). The model is

largely independent of the specific interface tracking

scheme but is implemented and tested for the PLIC-VOF

method. In order to simulate evaporating droplets,

Schlottke and Weigand (2008) developed a PLIC-VOF

method which involves two VOF variables, one for the

liquid phase and one for the vapor phase. The vapor

phase is assumed to be insoluble inside the liquid phase

but there is diffusion in the gaseous phase.

Son and Dhir (1998) and Son et al. (1999) were among

the first who modified the LS method to account for phase

change. They assumed that the vapor phase is at saturation

temperature and solved the energy equation in temperature

formulation for the liquid phase. In the latter reference,

they considered the axisymmetric growth and departure of

a single vapor bubble during nucleate pool boiling, and

accounted in their model for the effect of microlayer

evaporation. LS methods for incompressible NS equations

with phase change are also presented by Tanguy et al.

(2007) and Gibou et al. (2007) and are applied to vapori-

zation of a water droplet moving in air and to film boiling,

respectively. In the latter study, depending on the grid size

either periodic bubble pinch off (coarse grid) or growing

mushroom-shaped structures are found (fine grid). Many

LS methods for boiling use the GF approach to impose the

jump conditions at the interface (Gibou et al. 2007; Tanguy

et al. 2007; Son and Dhir 2007). A coupled LS and VOF

method (see Sect. 2.4.1) for simulation of bubble growth in

film boiling was developed by Tomar et al. (2005). For

phase-change heat transfer in turbulent interfacial flows

Lakehal and Labois (2011) developed a large-eddy and

interface simulation methodology (LEIS) which is based

on the LS approach.

Juric and Tryggvason (1998) developed a FT method

for the simulation of boiling flows. Their approach is

based on the single-field formulation and relies on a

delta function formulation to impose interfacial source

terms. They apply the method to 2D studies of liquid–

vapor phase change in film boiling. In a follow-up paper

the scope is extended to 3D film boiling with multiple

interacting bubbles and merging and breakup of inter-

faces (Shin and Juric 2002). A diffuse interface method

for numerical simulation of liquid–vapor flows with

phase change and moving contact lines (denoted as

second gradient method) is presented by Jamet et al.

(2001).

2.3.5 Boundary conditions and wall roughness

The numerical solution of the governing equations requires

the specification of boundary conditions at the borders of

the computational domain. In microfluidics, inlet and outlet

conditions at the open boundaries of the domain do not

pose a severe problem, because the flow is in general

laminar. Therefore, at the inlet the laminar velocity profile

may be specified while at the outlet unsteady convective

conditions may be used for example (Ferziger and Peric

2002). We note that in microchannel flows the usual

homogeneous Neumann boundary condition of vanishing

directional derivative in the normal direction of velocity

(together with a prescribed pressure at the outlet) may

severely distort exiting vortices (Bothe 2009).

At solid walls the use of no-slip boundary conditions is

appropriate for Knudsen numbers below 0.001 (Gad-el-

Hak 1999). For larger values of Kn a first notable departure

from continuum behavior occurs with the creation of a slip

layer at the wall. In the slip regime (0:001\Kn\0:1), the

Knudsen layer is small, and the bulk of the flow can be

treated as a continuum fluid with a slip model, cf. Eq. (37),

accounting for the effect of the Knudsen layer (Aidun and

Clausen 2010). In contrast to gases, the slippage of liquids

over solid surfaces is still in a debate (Lauga et al. 2007).

Tabeling (2009, 2010) states that the estimate of slippage

for hydrophobic surfaces tends to reach a consensus among

the experimentalists but still the amplitude of the effect—

measured in terms of the slip length—lies one order of

magnitude above numerical estimates from atomistic sim-

ulations. Experiments with water indicate typical slip

length in the range between 10 and 30 nm for hydrophobic

walls while for hydrophilic walls the order of magnitude

for the slip length is of the order of a nanometer. The

impact of slip on systems with typical dimensions larger

than tens of microns will therefore likely be limited so that

the use of the no-slip boundary condition at the solid–liquid

interface seems appropriate (Lauga et al. 2007).

In classical fluid mechanics, the wall roughness is typ-

ically considered negligible for laminar flow. However,

with decreasing channel size and increasing relative

roughness, as it applies in microdevices, the wall roughness

increases in importance. A recent review on roughness

effects on single phase laminar internal flows in microde-

vices is provided by Kandlikar (2008). To the author’s

knowledge, there exist yet no investigations dealing with

roughness effects in two-fluid flow. Therefore, in the fol-

lowing paragraph some recent papers dealing numerically

with roughness effects in single-phase flow are discussed.

We remark that for accurate computation of such flows a

layer of mesh cells representing a structured grid are nec-

essary as unstructured grids are not suitable close to walls

(Hirsch 2007). In advanced general purpose CFD codes
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adequate meshes for capturing boundary layers can be

generated by so-called ‘‘mesh inflation’’.

Early numerical studies investigated the influence of

roughness elements on pressure drop and heat transfer in a

simplified way by modeling the roughness by a set of

randomly generated peaks and valleys of specified form

along the otherwise smooth surface (Croce and D’Agaro

2005). More realistic 3D surfaces with random roughness

can be obtained by a method recently proposed by Xiong

and Chung (2010). The importance of the wall roughness

for fluid friction was demonstrated by Silva et al. (2008).

The authors performed lPIV measurements for a single

phase laminar flow (Re� 50) in a microchannel (with

hydraulic diameter of 637 lm) that possessed rough walls

(roughness height equal to 1.6% of the hydraulic diameter)

and a very irregular cross-section shape. They compared

Poiseuille numbers obtained from experimental velocity

profiles against those obtained from CFD predictions for

the same operating conditions but with hydrodynamically

smooth walls. The results showed that the non-consider-

ation of the wall roughness in the CFD calculations yields

an underestimation of the friction factor of 11% for the

conditions under study. Herwig et al. (2010) investigated

the influence of wall roughness on friction in laminar single

phase pipe flow for different roughness elements. They

computed the entropy production in the flow and found an

appreciable influence of wall roughness. The authors

pointed out the need for a reasonable choice of the wall

location as well the roughness parameter. 3D numerical

investigation of laminar flow in a rectangular channel with

irregular roughness were performed by Chen et al. (2009b).

The authors used the Weierstrass–Mandelbrot function in

conjunction with fractal geometry to model and charac-

terize the multiscale self-affine roughness. They showed

that surfaces with the larger fractal dimensions (i.e. more

frequent variations in the surface profile) result in a sig-

nificant larger incremental pressure loss, even if the rela-

tive roughness is the same. Mohammadi et al. (2011)

studied stationary flows of second-order fluids in rough

microchannels by a spectral method. The algorithm models

irregular roughness geometry using the Fourier expansions

and enforces the flow boundary conditions on the rough

wall by means of the immersed boundary method.

2.4 Specific issues

2.4.1 Hybrid methods

In the literature, many hybrid methods are proposed which

aim to combine the advantages of different approaches

while avoiding their limitations. For sharp interface models

the coupling of LS and PLIC-VOF techniques into the

CLSVOF method became very popular (Sussman and

Puckett 2000; Son and Hur 2002; Sussman 2003; van der

Pijl et al. 2005; Yang et al. 2006; Tong and Wang 2007;

Sussman et al. 2007; Coyajee and Boersma 2009; Wang

et al. 2009a; Lv et al. 2010; Sun and Tao 2010). The main

motivation for this coupling is to combine the better mass

conservation properties of the VOF method with the more

accurate computation of interface normal vectors and

interface curvature of the LS method. Thus, after advection

of / and f? from time step n to n ? 1, the piecewise linear

interface is reconstructed from f nþ1
þ using the interface

normal vectors calculated from /n?1. Then /n?1 is reini-

tialized by calculating the distance between any cell center

and the PLIC-VOF interface.

Problematic in the LS method are regions where the

curvature of the interface is not well resolved by the grid.

When the LS function is advected, the sharp edges are

usually smoothed out and mass loss occurs. To circumvent

this problem Enright et al. (2002, 2005) proposed the

particle LS method, in which mass-less marker particles

seeded near the interface are used to correct (i.e. redis-

tance) the LS function in the underresolved regions. This

particle correction procedure takes place when a particle is

advected from one side to the other side of the interface,

see also Wang et al. (2009b). Another hybrid method is the

level contour reconstruction method (Shin and Juric 2002,

2009) which combines the characteristics of both the FT

and LS methods. Ceniceros (2003) described the evolution

of the interface by a FT method while a LS distance

function is used for smoothing the density and viscosity

close to the interface. Other hybrid methods combine ele-

ments from FT with marker particles and PLIC-VOF

(Aulisa et al. 2003; López et al. 2005).

There exist several approaches where the LB method is

coupled with the LS method. In these methods the LS

function is used to distinguish the components and a single

LB equation is solved. Mehravaran and Hannani (2008)

incorporated the surface tension term in the LB method as

source which is localized near the interface and zero

elsewhere. A different approach was made by Thömmes

et al. (2009). Their method uses special boundary condi-

tions at the interface between the two phases which realize

the macroscopic jump conditions on the kinetic level and

incorporate surface tension into the model. Lallemand et al.

(2007) combined the LB method with elements from the

FT approach. The latter is used to explicitly track the

interface by a set of marker particles. The interface cur-

vature is computed from adjacent markers and is then used

to determine the surface tension force and to distribute it to

nearby Eulerian grid points.

As final remark on hybrid methods we note that for

single phase flows hybrid continuum and molecular
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dynamics methods (Nie et al. 2004) as well as hybrid

atomistic-continuum methods (Werder et al. 2005) are

under development.

2.4.2 Refined and adaptive grids

For numerical simulation of fluid flow problems with

moving interfaces, in general high grid resolution is needed

for adequate computation of the interface curvature and

solution of the governing equations. However, there are

often also large portions of the domain where high levels of

refinement are not needed. Using a highly refined mesh in

these regions represents a waste of computational effort.

An efficient manner for such problems is the use of

adaptive methods which refine the mesh locally only where

needed. In this subsection we give a short overview on

adaptive grid refinement techniques and refer to Losasso

et al. (2006) and Compère et al. (2008) for a broader dis-

cussion (mainly in the context of the LS method). For

rectangular structured grids two options are widely used.

Block-structured grid methods allow increasing the reso-

lution with multiple levels of refinement on nested blocks

located near regions where the scales cannot be resolved by

the coarse grid. They are used in the VOF method (Ginz-

burg and Wittum 2001), the LS method (Sussman et al.

1999; Min and Gibou 2007), the CLSVOF method (Ka-

dioglu and Sussman 2008) and the PF method (Ceniceros

and Roma 2007; Ceniceros et al. 2010). The second class is

constituted by tree-based methods. They are more general

and more efficient than block-structured grids in that each

discretization element can be refined independently from

the others, so that additional mesh cells can be added only

where it is required. In tree-based methods, hierarchical

grids are generated by recursive subdivision of a simple

geometric shape. 2D rectangular and 3D hexahedral or

tetrahedral grids can be generated recursively by the

quadtree and octree algorithms, where a 2D/3D mesh cell

is subdivided in four/eight equal-sized subcells. Adaptive

multilevel quadtree/octree methods have been combined

with the LS method (Strain 1999; Groß et al. 2006) and the

VOF method (Greaves 2004; Popinet 2009). A disadvan-

tage of tree-methods is that complex data structures are

required.

Another possibility that has been realized in the LS

method is the use of an auxiliary refined Cartesian grid to

solve the LS and reinitialization equations in a narrow band

around the interface, while maintaining a coarse grid to

solve the mass and momentum conservation equations on a

structured (Gomez et al. 2005) or unstructured grid

(Herrmann 2008). An adaptively refined parallelized sharp

interface LS based Cartesian grid method for 3D moving

boundary problems is presented in Udaykumar et al.

(2009), and a 3D anisotropic adaptive LS FE method on

unstructured tetrahedral meshes in Compère et al. (2008).

For PLIC-VOF methods, Rudman (1998) introduced the

strategy to solve the volume fraction equation on a mesh

which is twice-as-fine as the mesh used for solution of the

NS equation. This procedure is also used in Hayashi et al.

(2006) and Liovic and Lakehal (2007). A PLIC-VOF

method with adaptive local grid refinement where the

refinement criteria is based on the interface curvature is

presented in Malik et al. (2007). A CF-VOF method based

on the CICSAM scheme with adaptive local grid refine-

ment around the interface can be found in Theodorakakos

and Bergeles (2004). Farhat et al. (2010) presented a color-

gradient multiphase LB method where a fine grid block

engulfs the fluid-fluid interface and migrates with it. Yu

and Fan (2009) developed an interaction potential-based

LB method with adaptive mesh refinement for two-phase

flow simulations. In order to keep the fluid viscosity

independent of the grid size, the relaxation factor has to be

adjusted with the grid spacing. For the PF method, the

interface must be thin enough to attain the sharp-interface

limit and yet be adequately resolved for the interfacial

forces to be computed accurately. Therefore, to achieve a

high numerical accuracy at moderate computational costs a

mesh with dense grids covering the interfacial region and

coarser grids in the bulk are required (Zhou et al. 2010).

Thus, for the efficient computation of moving interfaces

with the PF method adaptive meshing is of special rele-

vance. FE based PF methods with adaptive meshing are

presented in Villanueva and Amberg (2006), Yue et al.

(2006) and Zhou et al. (2010), a stencil adaptive FD

method in Ding et al. (2010) and a moving mesh spectral

method in Shen and Yang (2009).

2.4.3 Multiscale methods

With current computer power, direct numerical simulations

of multi-fluid flows offer the opportunity to capture scales

whose ratio spans over two orders of magnitude (Try-

ggvason et al. 2010). While this is by far insufficient to

resolve all scales in macroscopic multiphase flows, it may

be sufficient for some microfluidic applications. However,

also in microchannels multi-fluid flows can generate fea-

tures much smaller than the channel size, consisting for

example of very thin filaments (during droplet breakup),

very thin liquid films (at walls or between colliding bubbles

or droplets) and very thin concentration boundary layers (in

case of high Schmidt numbers). While local adaptive grid

refinement allows effectively resolving some of these small

scale phenomena in certain regions of interest, it also

increases the complexity of the computations significantly

and usually results in greatly increased CPU time. An

alternative are multiscale methods which allow for efficient

computations by combining the description and modeling
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of physical phenomena occurring at different scales by

distinct approaches in a thorough or approximate manner.

Examples for such multiscale methods are the study of

Davis et al. (1989) where a thin film model was coupled

with a boundary integral computation to investigate the

collision of drops and the micro-layer models for nucleate

boiling of Son et al. (1999) and Kunkelmann and Stephan

(2009), cf. Section 3.3. Recently Tomar et al. (2010)

coupled a PLIC-VOF algorithm with a two-way coupling

Lagrangian particle-tracking method and performed mul-

tiscale simulations of primary jet breakup and atomization.

Thomas et al. (2010) introduced a multiscale method to

account for thin films trapped between a drop and a solid

wall in FT simulations. The evolution of the film is

described by a semi-analytical model which is coupled

with the solution of the fully resolved flow in the rest of the

domain and allows capturing the evolution of films

thinner than the grid spacing reasonably well. Alke et al.

(2010) combined a PLIC-VOF-based approach for the

numerical simulation of mass transfer across deformable

fluidic interfaces with a subgrid-scale model for the

concentration boundary layer at the interface. Building

on a moving-frame-of-reference technique and a local

mesh refinement around the bubble they were able to

handle single bubbles under moderate Reynolds numbers

and Schmidt numbers on the order of 100. In a broader

sense, also the incorporation of microscale interactions in

VOF-based continuum simulations by Hardt (2005), cf.

Sect. 3.1.3.3, may be considered as a kind of multiscale

approach.

2.4.4 Discretization techniques

For spatial discretization of the NS equation different

methods can be used, which are based e.g. on finite dif-

ferences (FD), finite volumes (FV), finite elements (FE) or

spectral representations (Chung 2002). PLIC-VOF methods

are traditionally solved by FV codes. The LS method is

most often used in combination with a FD or FE discreti-

zation but is combined with a FV method in Chat-

zikyriakou et al. (2009). Marchandise et al. (2006) used a

discontinuous Galerkin method for the LS equation. The

FT method is traditionally used with a FD code but FV

(Muradoglu and Kayaalp 2006) and FE (Chung et al. 2008)

discretizations are also possible. For CF-VOF methods and

the C-LS method FD, FV and FE schemes are equally

suitable.

Also the LB method can be considered as a type of

discretization scheme. With a Chapman–Enskog expansion

the discrete LB system can be written in a continuous form.

With the proper lattice topology and collision rules the

partial differential equations emerging from the expansion

can be shown to resemble the compressible continuity and

NS equations. Actually, the LB equations are equivalent to

an explicit finite difference scheme of the NS equations

with second-order spatial accuracy and first-order temporal

accuracy with a non-zero or zero compressibility depend-

ing on the scaling (convective or diffusive) used in the

expansion (Luo and Girimaji 2003; Junk et al. 2005). In

this sense the free energy LB method approximates the

Cahn-Hilliard equation in combination with the incom-

pressible NS equation and can be considered as a discret-

ization of the PF method.

2.4.5 Computer codes

Various commercially available CFD and multiphysics

code packages have been developed and can be used to

compute single and multiphase flows in microfluidic devi-

ces. Codes widely used in the engineering community for

the computation of general single and multiphase flows are

FLUENT and CFX (both from ANSYS, http://www.

ansys.com), STAR-CD (from CD-adapco, http://www.cd-

adapco.com), and CFD-ACE? (from ESI Group,

http://www.esi-cfd.com). The CFD solver of all these

software packages is based on a FV discretization on a

structured/block-structured or unstructured grid. For inter-

face resolving two-fluid simulations variants of the CF-VOF

method are provided in CFX, FLUENT and STAR-

CD. A PLIC-VOF method is offered by FLUENT, CFD-

ACE? and FLOW3D (from Flow Science Inc., http://www.

flow3d.com). The latter is a commercial FD/FV CFD code

on a structured grid whose roots date back to Hirt and

Nichols (1981). Another commercial FV code with struc-

tured multi-block meshing is TransAT (from ASCOMP

GmbH, http://www.ascomp.ch); for interfacial flows it

provides a IR-VOF, a LS and a PF method. A commercial

FE based package for various applications including CFD is

COMSOL Multiphysics (from COMSOL, http://www.

comsol.com) which was formerly known as FEMLAB.

For computation of interfacial flows COMSOL provides

both, a LS and a PF method. A commercial code based on

the LB method which is, however, restricted to single phase

flow applications so far is PowerFLOW (from Exa Corpo-

ration, http://www.exa.com). A very powerful suite of

simulation tools (including a VOF method) that are pri-

marily intended for biochip design is CoventorWare (from

Coventor Inc., http://www.coventor.com). Beside these

commercial codes there exist also freely available open

source codes. Widely used is OpenFOAM (http://www.

openfoam.com, see also http://www.extend-project.de). A

freely available very advanced state-of the art adaptive 3D

PLIC-VOF code is the Gerris flow solver (http://www.gfs.

sourceforge.net) (Popinet 2009). Also a software package

for front tracking is freely available from the web (http://

frontier.ams.sunysb.edu/download).
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From the various applications that will be discussed in

the second part of this review, FLUENT is used in (Hardt

2005; Taha and Cui 2006a, b; Tanthapanichakoon et al.

2006; Abdallah et al. 2006; Hardt and Wondra 2008; Öz-

kan et al. 2007; Zhu et al. 2008; Liu and Wang 2008;

Urbant et al. 2008; Alke and Bothe 2009; Gupta et al.

2009b, 2010; Santos and Kawaji 2010), CFX in (Schönfeld

and Rensink 2003; Ndinisa et al. 2005; Özkan et al. 2007;

Shao et al. 2008; Shepel and Smith 2009; Xiong and Chung

2010), STAR-CD in (Özkan et al. 2007; Wegener et al.

2009), CFD-ACE? in (Kobayashi et al. 2004; Rosengarten

et al. 2006; Saha and Mitra 2009b; Lai et al. 2010),

TransAT in (Naraynan and Lakehal 2006; Lakehal et al.

2008; Narayanan and Lakehal 2008; Chatzikyriakou

et al. 2009; Gupta et al. 2010), COMSOL in (Zagnoni et al.

2010; Constantinou and Gavriilidis 2010; Chasanis et al.

2010; Kenig et al. 2011) and OpenFOAM in (Saha and

Mitra 2009a; Kunkelmann and Stephan 2009). Further

applications of various codes (mainly in the lab-on-a-chip

context) can be found in the review of Erickson (2005).

2.4.6 Comparison of methods and codes

There exist a number of papers in which different methods or

codes are compared for certain applications. The interested

reader is referred to Gerlach et al. (2006) for a comparison of

various VOF methods with the CLSVOF method and to

Zacharioudaki et al. (2007) for a comparison of a VOF and

FT method. Glatzel et al. (2008) evaluated the performance

of four commercial FV CFD codes (CFD-ACE?, CFX,

FLOW-3D and FLUENT) for typical microfluidic engi-

neering problems and compared the results with experi-

mental data. As examples for surface tension dominated

flows, bubble dynamics in a microchannel and micro droplet

generation were considered. While all four codes are based

on variants of the VOF method, large differences in the

interfacial shape computed by the different codes were

observed, and only the CFD-ACE? and FLUENT codes are

recommended for simulations of interfacial flows involving

capillary forces. Özkan et al. (2007) compared the perfor-

mance of the VOF method in three commercial and one in-

house code for bubble train flow in a square mini-channel.

They found that the results of the two PLIC-VOF codes

(FLUENT and the in-house code) were in good agreement

and clearly superior to results obtained with CF-VOF

methods (CFX and STAR-CD). Gupta et al. (2010) com-

pared the PLIC-VOF method in FLUENT with the LS

method in TransAT, see also Sect. 3.2.1.

Hysing et al. (2009) proposed two benchmark configu-

rations with a 2D bubble rising in a liquid column for

quantitative validation and comparison of interfacial flow

codes. The results of three independent groups (two

employing a FE LS and one an ALE moving grid method)

were in good agreement up to the point of break-up, after

which all three codes predicted different bubble shapes.

The authors highlighted the need to establish reference

benchmark solutions for interfacial flows with break-up

and coalescence.

Cheng et al. (2010) performed 3D simulations of multiple

bubbles rising under buoyancy in a quiescent viscous

incompressible liquid. They extended the LB method of

Zheng et al. (2006) to density ratios up to 1000 and evaluated

the computational efficiency by comparison of single bubble

computations with the VOF and FT method. For serial

computing on a single CPU the LB method took about 4.5

and 6.2 times more CPU time than the FT and VOF method,

respectively. Also Zheng et al. (2005) reported that their LB

method required more CPU time than the LS and VOF

methods. To reduce the computational effort, recently a 3D

LB method has been proposed which uses only seven lattice

velocities instead of the commonly adopted number of (at

least) 15 (Zheng et al. 2008).

2.4.7 Recommendations and guidelines

Any numerical simulation inevitably involves some errors

and uncertainties. An overview on the various error sources

existing in CFD methods is given in Casey and Winter-

gerste (2000). Beside round-off and convergence errors,

these are mainly related to numerical discretization tech-

niques, to grid resolution and design, to boundary and inlet

condition treatment, and last but not least to physical

modeling. The ERCOFTAC ‘‘Best Practice Guidelines’’

provide a practical guide giving the best practice advice for

achieving high-quality CFD simulations for single phase

flow computations with the Reynolds averaged Navier–

Stokes (RANS) equations (Casey and Wintergerste 2000)

and for disperse two-phase flows (Sommerfeld et al. 2008)

(with focus mainly on the Euler-Euler and Euler-Lagrange

methods).

It is well-known that the numerical solution of interfa-

cial flow is very much dependent on the quality of the grid.

Orthogonality, skewness and aspect ratio of the grid

directly affect the numerical accuracy of many methods. In

general structured grids are favorable. Any numerical

investigation should be accompanied by a grid refinement

study in order to demonstrate that the results based on the

final grid system are independent of the mesh size. Bothe

and Warnecke (2007) strikingly illustrated the critical

influence of grid resolution by considering the mixing of

two streams of the same liquid (one of them carrying a

passive tracer substance) in a T-junction microchannel, see

also the book chapter of Bothe (2009) on evaluation and

validation of CFD simulations in microchemical applica-

tions. Here, we cite and emphasize one important state-

ment. Namely, while a CFD result is rather easy to obtain
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(especially with commercial codes), it is the duty of the

user to check whether this result gives an appropriate

approximation of the physical solution.

This completes the first part of the present review, which

gave an overview on various numerical methods and

related models that are available for computation of

interfacial two-fluid flows, including their mathematical

foundation and physical assumptions. In this sense it may

be helpful for selecting for a given application an appro-

priate method and model and thus to avoid errors related to

physical modeling.

3 Two-phase microfluidic applications

In the second part of this article we review various appli-

cations where the different numerical methods and models

discussed above are used for investigation of two-fluid

flows in mini- and microchannels or microdevices and

microreactors, respectively. We begin by studies devoted

to hydrodynamic aspects (such as separated and segmented

flow, bubble and drop formation, breakup and coalescence)

and then turn to applications related to heat transfer, mix-

ing and dispersion, mass transfer and chemical reactions,

Marangoni flows and surfactants, and boiling.

3.1 Flow hydrodynamics

While there exist various possibilities for contacting of gas

and liquid or immiscible liquids in micro-structured devi-

ces most often one of two principles is used (Hessel et al.

2005). The first principle is continuous phase contacting

where both phases flow continuously but separately side by

side. The flow can be gravity-driven such as in falling film

microreactors or pressure-driven. In the latter case the flow

may be annular, stratified or parallel (e.g. in overlapping

channels). The second possibility is dispersed-phase con-

tacting where one of the phases is immersed in a second

continuous phase such as in micro bubble columns. The

respective flow pattern is often denoted as segmented flow,

slug flow, bubble train flow or Taylor flow.

3.1.1 Separated and parallel flow

A review of separated (or parallel) multiphase microflows

with focus on fundamental physics, stabilization methods

for the interface, and applications for liquid–liquid

extraction is given by Aota et al. (2009). An advantage of

parallel flow as compared with segmented flow is that it

permits counter-current flow of the phases which is of

interest for some applications. Essential for parallel mul-

tiphase microflows is the stabilization of the interface

under varying flow rates. This can be achieved by partial

modification of the solid surface. A pinned interface

between immiscible liquids (e.g. an aqueous and an organic

phase) can be created by selective surface patterning

(hydrophilic and hydrophobic) of a microchannel (Atencia

and Beebe 2005). However, it is difficult to form parallel

multiphase microflows when the interfacial tension (and

thus the Laplace pressure) is low or when the pressure loss

along the channel is high (Aota et al. 2009). Options for

stabilizing the interface under such conditions provide so-

called mesh microreactors.

The description of separated interfacial flows poses no

special difficulty for the continuum methods covered in this

review. The same is, however, not true for LB methods.

Rannou (2008) evaluated the effectiveness of various two-

phase LB models in maintaining the continuity of shear

stress and velocity at the interface for a fully developed

two-phase Poiseuille flow in a 2D channel and found that

the performance of each model strongly depended on the

density and viscosity ratio, see also Aidun and Clausen

(2010). When the fluids had different densities, none of the

tested approaches satisfied the continuity of velocity at the

interface. For fluids with different viscosity, all methods

had problems when the viscosity ratio was larger than

about 100.

3.1.2 Segmented flow

The flow of immiscible fluids in mini- and microchannels

often occurs in the form of segmented flow, where a dis-

perse phase flowing in the center of the channel segments a

continuous liquid phase into distinct slugs. Often, the

continuous phase is perfectly wetting so that the disperse

elements are not in contact with the wall but fully sur-

rounded by a liquid film. When the bubbles or drops are

sufficiently large (typically several hydraulic diameters)

they are of elongated bullet-type shape and almost fill the

entire channel cross-section. This flow pattern is known as

Taylor flow. Taylor flow is attractive for multiphase

monolith reactors (Kreutzer et al. 2005b) and micro bubble

columns (Haverkamp et al. 2006) because high gas/liquid

and gas/liquid/solid mass transfer rates are combined with

reduced axial dispersion.

In the following, we review only numerical investiga-

tions of segmented flow and Taylor flow in narrow chan-

nels where the bubble/drop shape is not prescribed but part

of the solution and where the flow within both phases is

resolved. For a more general review we refer to Angeli and

Gavriilidis (2008). Even with this restriction, there exist a

large number of numerical investigations of segmented

flow in circular channels where usually axisymmetry is

assumed. Various methods have been used, e.g. PLIC-VOF

(Taha and Cui 2006a; Gupta et al. 2009b, 2010), LS (Fu-

kagata et al. 2007; Lakehal et al. 2008; Narayanan and

Microfluid Nanofluid (2012) 12:841–886 865

123



Lakehal 2008), PF (He et al. 2010) and LB (Yu et al. 2007).

Gupta et al. (2009b) give practical guidelines for modeling

Taylor flow with FLUENT. Ndinisa et al. (2005) computed

a single Taylor bubble in a tube (diameter 19 mm) with the

CFX code, both with the CF-VOF and the Euler-Euler

method. For the CL-VOF method, they found an excessive

mixing due to numerical diffusion in the wake region of the

Taylor bubble which leads to unrealistic results. For the

E–E method, the results depended very much on the pre-

scribed interfacial length scale which is required to model

the drag force. A sufficiently sharp interface could only be

obtained by an ad-hoc adaption of this length scale with

different values close and far from the interface. Since

these results were obtained for laminar flow, one may

expect that the findings apply to Taylor flow in mini- and

micro-channels as well.

There exist only a few numerical studies on segmented

flow in non-circular channels. Taha and Cui (2006b)

investigated the flow of a single Taylor bubble rising in a

square vertical channel (side length 2 mm) for a wide range

of capillary numbers using the PLIC-VOF method in

FLUENT. Liu and Wang (2008) extended this study to

vertical square and equilateral triangular channels with

1 mm hydraulic diameter. Wörner and coworkers per-

formed comprehensive numerical simulations of concur-

rent upward and downward Taylor flow in millimeter sized

square vertical channels with an in-house PLIC-VOF code

(Ghidersa et al. 2004; Wörner et al. 2005; Wörner et al.

2007; Öztaskin et al. 2009; Keskin et al. 2010). The use of

periodic boundary conditions in the axial direction allowed

restriction of the computational domain to a single flow

unit cell (which consists of one bubble and one liquid slug).

The computed bubble shapes were compared with experi-

mental flow visualizations and good agreement was

obtained (Keskin et al. 2010). In Öztaskin et al. (2009) the

interaction of equal sized Taylor bubbles separated by

liquid slugs of different length was studied.

Sarrazin et al. (2006, 2008) performed simulations of

water-in-oil droplet hydrodynamics in a 60 9 50 lm

rectangular microchannel by a CF-VOF method and

reported good agreement of the computed droplet shape

and flow field with experiments. Liu et al. (2009a, b)

investigated the motion of water droplet immersed in an oil

flow through an array of microfluidic ratchets by a LS

method, see Fig. 4, and found that the droplet moved faster

in the diffuser direction than in the nozzle direction (in

agreement with experiments).

3.1.3 Topological changes

3.1.3.1 Droplet formation and breakup Microfluidic drop

formation is not only important for the generation of highly

mono-disperse emulsions (e.g. to prepare highly functional

particles), but micron-sized droplets can also be used to

deliver substances in well-defined amounts, or as tiny chem-

ical reactors involving only picoliters of reagents, where the

kinetics can be monitored and controlled very precisely

(Bringer et al. 2004). Such droplets are typically generated in

continuous-flow systems using either T-junctions, Y-junc-

tions, cross-junctions or flow focusing methods (Gu et al.

2011). In microfluidic T-junctions and Y-junctions the con-

tinuous and disperse phases are injected from two inlets,

which are orthogonal or inclined. The formation of droplets or

bubbles occurs as a result of shear and interfacial tension

forces at the fluid-fluid interface (Garstecki et al. 2006). In

cross-junctions and flow focusing methods three inlets are

used; the fluid forming the continuous phase is introduced via

two orthogonal channels while the fluid forming the disperse

phase is injected through a central channel.

Simulations of microfluidic droplet formation with the

LB method have been performed for flow-focusing devices

Fig. 4 Numerical simulation of the motion of a droplet through

microfluidic ratchets by a level set method. a Device schematic for

investigation of microdroplets in diffuser/nozzle structures. The test

section contains ten diffuser/nozzle structures; b numerical model and

dimensions of the ratchet; c deformation of a droplet passing through

the ratchet; d simulated deformation of a droplet under the same

conditions as of the experiment shown in (c). Reprinted with

permission from Liu et al. (2009b). Copyright 2009 by the American

Physical Society
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(Dupin et al. 2006), T-junctions (van der Graaf et al. 2006;

Gupta et al. 2009a) and cross-junctions (Wu et al. 2008a, b).

In Wu et al. (2008b), the computed 3D drop shapes and drop

lengths were in very good agreement with experiments for

various flow conditions. Hao and Cheng (2009) used the

multiphase free-energy LB method to study the formation of

a water droplet emerging through a micro-pore on the

hydrophobic surface in a proton exchange membrane fuel

cell (PEMFC) and its subsequent movement on the surface

under the action of gas shear. Hagedorn et al. (2004) inves-

tigated the influence of geometrical confinement on the

breakup of long fluid threads in the absence of imposed flow

by a LB model. They found that confinement can substan-

tially alter the thread breakup process as compared with the

unconfined case.

The group of Davidson considered a cylinder containing

a 4:1 contraction of diameter and investigated the axi-

symmetric drop formation by flow focusing (Davidson

et al. 2005) and the drop deformation for Newtonian

(Harvie et al. 2006a) and shear-thinning (Harvie et al.

2007) liquids in an immiscible liquid stream by a PLIC-

VOF method. Harvie et al. (2008) performed 2D simula-

tions of a viscoelastic drop passing through a microfluidic

contraction in good agreement with experimental results.

Kobayashi et al. (2004) performed 3D PLIC-VOF simu-

lations of the droplet formation in microchannels with

circular and elliptic cross-sections with CFD-ACE?. They

verified the CFD results by experiments and concluded that

the CFD approach can help to design suitable channel

structures. Zhu et al. (2008) investigated the dynamic

behavior of a water droplet emerging from a single lateral

pore into a microchannel gas stream for typical PEMFC

conditions by 2D VOF-PLIC simulations with the FLU-

ENT code. Lai et al. (2010) studied the influence of liquid

hydrophobicity and nozzle passage curvature in a drop

ejection process with an oscillating nozzle plate with CFD-

ACE? and reported good agreement with experimental

data. Fang et al. (2008) performed 3D PLIC-VOF simu-

lations of liquid slugs which are formed by the inflow of

water through a slit in the bottom of a rectangular micro-

channel (with a main air flow). They noted that for good

agreement with the experiments it was essential to take into

account contact line hysteresis, which is responsible for the

slug elongation and the post-detachment instability.

Muradoglu’s group used a FT method to study the

buoyancy-driven motion, deformation and breakup in

constricted sinusoidal channels, both for the 2D planar

(Muradoglu and Gokaltun 2004) and axisymmetric case

(Muradoglu and Kayaalp 2006; Olgac et al. 2006). Chung

et al. (2008) investigated the effect of viscoelasticity on

drop deformation and dynamics in a 5:1:5 contraction/

expansion microchannel by a finite element FT method.

The authors considered an Oldroyd-B model and studied a

wide range of capillary and Deborah numbers; in a follow-

up paper they extended the investigations to drop breakup

(Chung et al. 2009).

Zhou et al. (2006) used a FE-based PF method with

adaptive mesh refinement to simulate the breakup of simple

and compound jets in flow focusing microfluidic devices

and explored the flow regimes (dripping and jetting) that

prevail in different parameter ranges. The authors addres-

sed the influence of viscoelasticity and identified a narrow

window of flow rate and viscosity ratio in which compound

drops (double emulsions) can be achieved. De Menech

(2006) used the PF method to investigate the droplet

breakup in a microfluidic T-junction and reported that the

critical value of the capillary number for droplet breakup

depends on the viscosity ratio, see also De Menech et al.

(2008) where the transition between different droplet for-

mation mechanism was studied. Carlson et al. (2010) per-

formed 3D PF simulations of droplet dynamics in a

bifurcating channel and identified two distinct regimes

(splitting and non-splitting) as the droplets interacted with

the junction, see Fig. 5.

Zagnoni et al. (2010) showed experimentally and by 2D

LS simulations with COMSOL that oil-water multiphase

flow in a hydrophilic microfluidic T-junction has hystere-

sis. Namely, different flow patterns in the form of seg-

mented flow and co-flowing phases could be obtained,

depending on Ca, the volumetric flow rate ratio of the

phases, and the history of the applied phase flow rates.

Also, the transition mechanisms between the two states

were analyzed. Yap et al. (2009) used the LS method and

studied in 2D the influence of a temperature field (via

Fig. 5 Phase-field simulations of droplet dynamics in a square

bifurcating channel in the splitting regime for four instants in time.

Reprinted from Carlson et al. (2010) with permission from Elsevier
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variable interfacial tension and phase viscosities) on

droplet dynamics and breakup at a bifurcation.

3.1.3.2 Bubble formation Cubaud et al. (2005) investi-

gated bubble formation by flow focusing in a 100 lm

square channel experimentally and by 3D LS simulations.

The numerical results for the bubble size were within the

experimental scatter. Shao et al. (2008) studied the mech-

anism of Taylor bubble formation at the inlet of a 1 mm

circular microchannel and the ensuing bubble size for very

low superficial gas velocities using the CF-VOF method in

CFX 4.3. They considered an axisymmetric co-flowing

inlet configuration and investigated the influence of gas and

liquid inlet velocities, liquid properties, contact angle, gas

nozzle size and nozzle wall thickness. Simulated bubble

sizes compared favorably with experimental data in a

similar system. The authors reported that the geometry of

the inlet had a significant influence on the size of the

formed bubbles and slugs. A similar conclusion is drawn in

Chen et al. (2009a), where the formation of Taylor bubbles

in a nozzle/tube co-flow arrangement was investigated by a

LS method. The authors reported that even under the

same liquid and gas superficial velocities, the change of

nozzle geometry alone could drastically change the size

of Taylor bubbles and the pressure drop behavior inside

the capillary.

For bubble formation in a T-junction, simulations with

the VOF method in FLUENT became very popular since

Qian and Lawal (2006) studied this problem for planar 2D

minichannels, and are quite standard now both in 2D (Guo

and Chen 2009) and in 3D (Dai et al. 2009). Also Santos

and Kawaji (2010) used FLUENT to investigate the gas–

liquid slug formation in a T-junction with nearly square

microchannels of 113 lm hydraulic diameter. By com-

parison of the numerical results with experiments it is

concluded that the code accurately captures the breakup

physics while improvements need to be made in modeling

the contact angle and contact line slip. These results,

however, need a remark not made in that paper. The sim-

ulations are performed with a mesh spacing of 5.67 lm.

For the range of capillary numbers simulated, this mesh

size is much larger than the lateral thickness of the thin

liquid film in Taylor flow, which is thus not resolved by the

grid. Therefore, some mesh cells closest to the walls are not

pure liquid cells but contain portions of both phases. As a

consequence in these mesh cells a contact line was mod-

eled numerically, whereas physically the wall is likely to

be completely wetted. Chen et al. (2009a) used a LS

method to investigate the formation of bubbles on an ori-

fice plate with two kinds of moving contact line models.

They found that the results obtained with a contact line

velocity dependent model greatly depended on the pre-

scribed maximum contact line velocity, whereas with the

stick-slip model a parameter-independent prediction could

be obtained provided the mesh was sufficiently fine.

In many of the applications mentioned so far, the

computed bubble or drop shapes are in qualitative agree-

ment with experiments. However, for many codes (espe-

cially commercial ones) a detailed quantitative validation

by experimental data with respect to both the bubble/drop

shape and the local flow field is still lacking. Recently, very

detailed lPIV experiments on the bubble formation in a

micro T-junction became available which show that the

bubble pinch-off is triggered by a flow reversal (van Steijn

et al. 2007, 2009). These data pose a good opportunity for

detailed qualitative validation of numerical methods and

computer codes.

3.1.3.3 Coalescence Topological changes such as

breakup and coalescence are the result of the complex

interplay of viscous, inertial, capillary, Marangoni, elec-

trostatic and van der Waals forces (Cristini and Tan 2004).

The timescales for coalescence and interface breakup are

highly variable from fluid system to fluid system,

depending not only on viscous drainage times but on both

long-range (micro-scale) and short-range (nano-scale)

electrostatic and molecular interactions. Coalescence is

generally depicted as consisting of three consecutive steps:

approach, drainage, and rupture. Coalescence of liquid

droplets dispersed in an immiscible liquid matrix plays an

important role in many industrial processes such as liquid–

liquid extraction, emulsification, and polymer blending.

Since coalescence involves droplet/bubble interactions, it is

a more complex process than single droplet/bubble

breakup, and hence more difficult to study both numeri-

cally and experimentally.

Both the standard PLIC-VOF and LS methods are not

capable of representing multiple interfaces in a single

computational mesh cell. When the interfaces of different

drops/bubbles collide, they merge automatically, resulting

in so-called numerical coalescence. In PLIC-VOF methods

numerical coalescence occurs when the film thickness of

approaching interfaces is smaller than the mesh size. Thus,

there exists an artificial reconnection length (usually the

mesh spacing) which is imposed by the grid. In methods

where the interface has a small but finite thickness such as

in the LB, CF-VOF, C-LS and PF method the interfaces of

approaching drops overlap for a sufficient time during the

collision so that the drops coalesce more easily than real

drops. Jia et al. (2008) remarked that also LB simulations

of drop collisions at low Reynolds numbers with the free

energy and Shan–Chen model predicted coalescence at

capillary numbers for which it has not been observed in

experiments.

The front tracking method with its detailed control of

the interface topology does not involve an artificial
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reconnection length. Instead, it allows merging of the

interfaces at prescribed film rupture time or film thickness

(Nobari and Tryggvason 1996; Nobari et al. 1996). A

transfer of this concept to the VOF method was presented

by Nikolopoulos et al. (2009) who considered two VOF

indicator functions in conjunction with adaptive local grid

refinement in order to preserve the identity of each droplet

until a prescribed coalescence time. Hardt (2005) imple-

mented short-range interaction potentials between fluid

interfaces in the VOF method in order to account for

intermolecular forces. He considered two approaching

micro droplets and demonstrated by 2D simulations with

adaptive grid refinement that with this method quite dif-

ferent scenarios can be reproduced.

In order to prevent numerical coalescence without

excessive local grid refinement, Coyajee and Boersma

(2009) developed a multiple marker front-capturing

CLSVOF method. In their method separate volumes of the

same fluid are represented by a separate scalar marker

function so that for the simulation of N drops, N different

LS or VOF functions are used. Thus, the computational

effort increases with the number of drops which actually

limits the method to simulations of dispersions with a

rather low number of fluid particles. While the results

obtained with this method for test problems are very

promising, the author is not aware of any detailed and

experimentally validated numerical simulations of interfa-

cial flows with colliding interfaces in microfluidic

applications.

3.1.4 Contact lines and geometrically or chemically

patterned surfaces

An attractive means to control the flow within micro-

channels is chemical or geometrical patterning of a surface

(Zhao et al. 2001). Rapid developments in this area have

led to a need to consider the capillary-driven flow of liquid

within narrow channels or tubes that have varying cross

sections or heterogeneous walls, which are chemically and/

or topographically patterned. A chemically patterned wall

not only leads to variations in the value of the static contact

angle, but also changes the value of the slip coefficient in a

slip boundary condition at the capillary wall. Experiments

showed that the wetting properties of immiscible liquids

crucially determine whether the flow pattern in the mi-

crochannel is regular or not and whether the drops move

continuously with the main stream or intermittently adhere

to the channel walls (Dreyfus et al. 2003).

Erickson et al. (2002) studied the wetting behavior of

converging-diverging and diverging-converging capillaries

numerically by an in-house FE code which uses an inter-

face tracking procedure that is based on the predicted

change in the total liquid volume to update the interface

location. They found that the surface tension-driven flow is

fastest in straight capillaries and any deviation in the

capillary diameter along its length will slow down the

wetting speed. Rosengarten et al. (2006) used the VOF

method in CFD-ACE? to study the effect of contact angle

on droplet shape as it moves through a 4:1 contraction.

They used a static contact angle in the range from 30� to

150� along with a method where the contact angle is

treated within the surface tension model in the solver. The

authors showed that under certain conditions contact forces

will affect the shape and breakup of a droplet passing

through a contraction. Low contact angles can induce

droplet breakup while higher contact angles can form slugs

with contact angle dependent shape.

Saha and Mitra (2009a) performed a 3D numerical (and

experimental) study of the capillary filling of narrow mi-

crofluidics channel with integrated pillars. They used the

VOF method in OpenFOAM and tested eight different

models for the dynamic contact angle. While the dynamic

contact angle models modified the transient response of the

meniscus displacement, the different models had only a

very small effect on the meniscus profile, so that the use of

the static contact angle approach seems to be adequate for

this application. In another paper, the same authors studied

the capillary flow in a 100 lm high 2D microchannel with

alternate hydrophilic-hydrophobic bottom wall using CFD-

ACE? (Saha and Mitra 2009b). Naraynan and Lakehal

(2006) studied the filling of a microfluidic device with a LS

method whereas Huang et al. (2006) used a PLIC-VOF

method and considered capillary filling flows inside sur-

face-patterned microchannels.

Villanueva and Amberg (2006) used the PF method of

Jacqmin (2000) to investigate some basic wetting phe-

nomena dominated by capillary forces. Kuksenok et al.

(2003) studied the droplet formation in chemically pat-

terned microchannels by a PF method. Di and Wang (2009)

used the PF model in combination with a generalized Na-

vier boundary conditions and a multi-mesh adaptive FE

method and investigated wetting dynamics with focus on

the development of the precursor film and the dissipation

therein in the early stage of spreading.

There also exists a number of studies where the LB

method is used to study wetting of droplets on a flat surface

with heterogeneous wetting conditions (Dupuis and Yeo-

mans 2004; Chang and Alexander 2006; Yan and Zu 2007;

Huang et al. 2008) or the capillary rise between parallel

plates (Wolf et al. 2010). In some references, the codes are

validated by applying them to test problems with known

analytical solution. Sbragaglia et al. (2006) investigated the

wetting-dewetting transition of fluids in the presence of

nanoscopic groves by a LB method. Mognetti and Yeo-

mans (2009, 2010) used a free energy (diffuse interface)

LB method to perform advanced simulations of the

Microfluid Nanofluid (2012) 12:841–886 869

123



capillary filling in microchannels patterned by square posts,

and of receding contact lines on super-hydrophobic sur-

faces, see Fig. 6. It is shown that pinning on the edges of

the posts can suppress and even halt capillary filling. As the

contact angle of a fluid within a microchannel can rather

easily be varied by applying an electrowetting potential,

this opens the possibility of controlling fluid motion.

3.2 Heat and mass transfer and related issues

An obvious effect of shrinking a system to the millimeter

scale and below is the large increase in surface area relative

to volume, often by several orders of magnitude. For gas–

liquid and liquid–liquid systems this allows for more effi-

cient heat and mass transfer in microsystems since rela-

tively more interfacial area is available for transfer to

occur. Especially attractive is segmented two-phase flow

because it enhances radial mixing in both phases while

reducing axial dispersion in the continuous phase. Fur-

thermore, multiphase microsystems enable highly exo-

thermic gas–liquid or gas–liquid–solid reactions under well

defined isothermal conditions.

3.2.1 Heat transfer without phase change

Gas–liquid two-phase flows without phase change are an

interesting option for heat transfer enhancement in compact

heat exchangers. The presence of gas bubbles separating

neighboring liquid slugs causes a recirculation inside the

liquid phase so that the overall wall heat transfer is

enhanced with only moderate penalty of the pressure drop.

Furthermore, such gas–liquid flows are rather stable due to

an absence of explosive boiling.

Systematic numerical studies of the (axisymmetric)

convective heat transfer of gas-liquid flows in circular

micro tubes were performed by Kasagi and coworkers

(Fukagata et al. 2007; He et al. 2010). Temperature was

treated as passive scalar and a single flow unit cell with

axially periodic boundary conditions was considered. In

the first paper, the LS method was used to investigate

the heat transfer in a 20 lm inner diameter pipe for

constant wall heat flux boundary conditions, whereas in

the second paper the PF method was used and the pipe

diameter was 600 lm. The authors varied the Peclet

number and the length of the liquid slug and found that

the highest temperature was located at the rear of the gas

bubble. The Nusselt number strongly depended on the

flow pattern and was up to 2.4 times higher than that of

a comparable single-phase laminar flow. The authors also

investigated the influence of the number of grid nodes in

the film region on the thickness of the liquid film. In

the simulations the liquid film was resolved by at least

six mesh cells and doubling the number of radial grid

cells caused only a 2% change in the liquid film

thickness.

Lakehal and coworkers (Lakehal et al. 2008; Narayanan

and Lakehal 2008) studied the convective heat transfer in

slug flow in 1 and 1.5 mm diameter pipes for a constant

wall temperature boundary condition with a LS method.

They found that the presence of gas bubbles increased the

heat transfer three to four times above that for liquid flow

only. Gupta et al. (2010) investigated the flow and heat

transfer in gas–liquid Taylor flow within a 0.5 mm pipe by

2D axisymmetric simulations for constant wall heat flux

and constant wall temperature boundary conditions. They

compared results obtained with the PLIC-VOF method in

FLUENT with those of LS computations with TransAT.

Though the timing of break-off in the bubble formation

process was slightly different, the final bubble sizes and

shapes were similar. While the results of the TransAT code

were considered to be more accurate, its simulations were

also vastly more expensive. In agreement with other studies

the computed Nusselt numbers were about 2.5 times higher

than for liquid-only flow.

Urbant et al. (2008) used FLUENT to investigate droplet

motion and forced heat transport in a droplet-laden laminar

flow in a circular 1 mm pipe. In their 2D axisymmetric

investigation they considered a train of equally spaced

droplets of given size (diameter 400–700 lm) moving on

the channel centerline. They found that the presence of

drops considerably augmented the heat transfer and short-

ened the thermal entrance length as compared with single

phase Poiseuille flow. This effect is attributed to the dis-

tortion of the uni-directional Poiseuille flow of the carrier

Fig. 6 Numerical simulation of the de-pinning of a receding contact

line on a super-hydrophobic surface patterned by a regular array of

posts with a free-energy LB method. Reprinted with permission from

Mognetti and Yeomans (2010). Copyright 2010 by the American

Chemical Society
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fluid (oil) by the translating water drops and the internal

circulation within the drops.

3.2.2 Mixing and dispersion

For droplet based microfluidics and lab-on-chip systems in

biological and chemical applications the efficiency of these

devices to quickly achieve mixing within the drop is of

great importance (Bringer et al. 2004). Also continuous

phase mixing is of relevance for enhanced heat and mass

transfer, homogenizations and chemical reactions. How-

ever, at small scales efficient mixing is more difficult to

achieve because the familiar use of turbulence is unavail-

able. Aubin et al. (2010) presented a review of current

experimental methods for characterizing mixing in single

and two-phase flows in microchannels. It is stressed that

the majority of the experimental techniques available for

two-phase flows employ optical methods, which require

that the micro device is transparent or has a transparent

window. In the process industries, however, transparent

construction materials may not be entirely adapted for the

harsh environment of the chemical and physical processes

encountered and these characterization methods may not be

applicable, so that non-intrusive sensors that do not require

optical access to the flow are required. While some

development in this area has been started, as an alternative

to experimental methods CFD simulations are attractive for

characterizing mixing in two-phase flows in microdevices.

In order to numerically investigate the mixing inside

disperse elements or the dispersion within the continuous

phase, often the time evolution of passive Lagrangian tra-

cer particles immersed within the respective phase is

studied. Another possibility is to initialize a part of the

phase by a passive tracer for which then an Eulerian con-

vection equation or convection-diffusion equation is

solved, see e.g. Sarrazin et al. (2006) and Tanthapani-

chakoon et al. (2006), respectively. Both approaches allow

to quantify axial dispersion or to identify regions where

mixing inside the disperse phase is poor. Schönfeld and

Rensink (2003) used the Eulerian approach to investigate

the internal flow pattern and fluid distribution during multi-

fluid droplet formation of aqueous solutions at a mixing

nozzle by the CF-VOF method in CFX 4.4. Depending on

the geometry and flow rates, complex patterns inside the

drop were found. In spite of the fine grids used, the authors

remark that the results still suffer from numerical diffusion.

Several numerical investigations show that in straight

circular channels recirculation regions may be present at

the front and back of drops (Sarrazin et al. 2006; Blanch-

ette 2009). These regions also exist inside bubbles in

square channels for certain conditions (Ghidersa et al.

2004). Inside Taylor bubbles or drops these are the regions

where mixing is poor and is mainly by diffusion (Sarrazin

et al. 2006). Galusinski and Vigneaux (2008) used a LS

method to study the mixing dynamics inside a confined

bubble in a straight 2D channel by analyzing the streamline

patterns in bubbles of various sizes. Tanthapanichakoon

et al. (2006) investigated the mixing of reactants due to the

recirculating flow inside an elongated drop of prescribed

shape. They showed that axially arranged reactants give

much faster mixing rates than radially arranged reactants,

in agreement with experiments.

When a drop moves through a straight channel under

laminar conditions, the flow within the drop is axisym-

metric. To enhance mixing, meandering channels with

constant cross-sectional area or channels with periodic

variation of the cross-section area in the axial direction are

often used so that the disperse element is subjected to a

time-dependent shear. When the channel is curved, the

symmetry is broken and the mixing within the droplet

becomes chaotic. Muradoglu and Stone (2005) investigated

the mixing in a drop moving through a serpentine channel

by a 2D FT method. They found that the best mixing is

obtained when the drop size is comparable with the channel

width and when the viscosity of the drop phase fluid is

small compared with that of the ambient phase. Blanchette

(2009) showed by 2D planar simulations that in a sinu-

soidal channel cross-stream mixing in the drop is efficient,

while streamwise mixing is hindered by the front and back

recirculation regions. While such 2D studies can provide an

insight in mixing phenomena, it is unclear in how far they

reflect the mixing in real non-circular microchannels where

the flow field is usually three-dimensional.

While mixing in the disperse phase is usually a desired

effect, mixing in the continuous phase is sometimes

unwanted since it can lead to axial dispersion. This is

especially important for applications involving chemical

reactions such as in tubular reactors where backmixing

should be avoided. In segmented flow at low values of the

capillary number a recirculation pattern exists in the liquid

slug (Taylor 1961; Thulasidas et al. 1997; Abiev 2009)

which results in good mixing, while axial dispersion is low

because of the segmentation (Günther et al. 2004). Mura-

doglu et al. (2007) studied axial dispersion in the contin-

uous phase in gas–liquid segmented flow within a straight

narrow 2D channel by a FT method. The tracer was sim-

ulated by a large number of Lagrangian particles inserted in

the liquid slug and molecular diffusion was modeled by the

random walk of the tracer particles. The authors identified

three characteristic dispersion regimes, depending on the

Peclet number. In a follow-up paper, Muradoglu (2010)

investigated the effects of alternating channel curvature

and found that the axial dispersion in a serpentine channel

is enhanced as compared with a straight one. Wörner et al.

(2007) evaluated the diffusion-free liquid phase residence

time distribution in Taylor flow through a square mini-
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channel from 3D PLIC-VOF computations. The method

relied on the uniform introduction of virtual tracer particles

into the liquid phase, and the statistical evaluation of the

time needed by any particle to travel a certain axial

distance.

3.2.3 Mass transfer across the interface

Phases separated by a pinned interface and flowing either in

concurrent or countercurrent laminar flow allow for highly

efficient separation or solvent extraction (Aota et al. 2007).

Also microfluidic droplet-based liquid–liquid extraction/

purification processes are orders of magnitude faster than in

non-miniaturized techniques (Mary et al. 2008). A literature

survey on numerical investigations of mass transfer in two-

fluid systems by interface resolving methods can be found

in Onea et al. (2009). Here, we restrict ourselves to

microfluidic applications. Constantinou and Gavriilidis

(2010) investigated the CO2 absorption in a microstructured

mesh reactor with COMSOL. Their 2D reactor model was

divided in three zones: the gas phase, the mesh, and the

liquid phase. Chasanis et al. (2010) also used COMSOL but

investigated the CO2 absorption in a falling-film micro-

contactor. In their 2D approach they proceeded in two steps.

First, the steady position of the gas–liquid interface was

identified by means of a LS method. Afterwards, the com-

putational domain was subdivided into a gas-phase and a

liquid-phase part, whereas the interface was fixed at the

position determined previously. In each phase then the

steady species transport equation was solved. At the inter-

face, thermodynamical equilibrium and continuity of the

component flux were assumed. Mary et al. (2008) solved the

advection–diffusion equation within a circular droplet by a

FE method for the case of a prescribed velocity field inside

the drop (Hills vortex) and appropriate boundary conditions

at the interface.

When both phases are in relative motion (such as in

Taylor flow) concentration boundary layers develop close

to the interface. In aqueous systems the Schmidt number

Sc � l=qD has typically a value of 1000 or higher. Though

the Reynolds number is low this results in very high values

of the Peclet number. Then there is a narrow transition

layer adjacent to the interface across which the species

concentration varies rapidly. Without adaptive or very fine

meshes near the moving interface, applications of numer-

ical methods are limited to artificial small values of Sc in

order to avoid the separation of spatial scales in the narrow

transition layer and the need to accurately resolve them.

Raimondi et al. (2008) presented 2D simulations of mass

transfer in liquid–liquid slug flow with a CF-VOF method.

The Henry number was H = 1 and the values of Sc in the

continuous and disperse phase were 1000 and 2000,

respectively. The authors stated that even for the finest grid

used in their study the numerical diffusion was in the same

range as the molecular diffusion. This is an obvious con-

sequence of the unresolved concentration boundary layers

for these high values of Sc. Full 3D simulations of gas–

liquid mass transfer in Taylor flow within square and

rectangular microchannels with a PLIC-VOF method were

presented in Onea et al. (2009) and Kececi et al. (2009), see

Fig. 7. To adequately resolve the concentration boundary

layer the authors used a value of Sc = 0.8 for the contin-

uous phase and investigated the influence of the unit cell

length, the liquid slug length, and the channel aspect ratio

on mass transfer for two different values of H, namely 0.03

and 3.

3.2.4 Chemical reactions

For microfluidic applications, numerical investigations of

multiphase mass transfer processes accompanied by

chemical reactions are in general not very advanced and

often rely on simplifying assumptions. When the interface

is planar and its position in space is fixed the reaction-

diffusion equations can be solved by standard single phase

methods within each phase with appropriate coupling

conditions at the interface. This approach has been adopted

Fig. 7 PLIC-VOF computation of the gas–liquid mass transfer of a

passive species in co-current upward Taylor flow within a square

mini-channel. The figure shows the instantaneous velocity (vectors)

and concentration (isolines) fields in certain axial cross-sections with

half of bubble shape. Results from Onea et al. (2009)
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e.g. for a T-shaped microreactor (Baroud et al. 2003) and

for a membrane microreactor (Schuster et al. 2003). CFD

computations of mass transfer accompanied by a very fast

catalytic chemical reaction (hydrogenation of a-methyls-

terol) in a mesh microreactor were presented by Abdallah

et al. (2006). Instead accounting for the mesh, which serves

to stabilize the position of the gas–liquid interface, in the

computation a continuous and flat interface was assumed.

The species concentration at the interface was specified and

only the concentration field in the liquid phase was com-

puted. The numerical conversion rates were significantly

lower than the measured ones. Haroun et al. (2010a, b)

performed 2D CF-VOF simulations of non-reactive and

reactive mass transfer in a falling film and of reactive

absorption in gas–liquid flow on a structured zig-zag

shaped packing. For the structured packing, mass transfer

was increased as compared with that for a flat film.

Of special interest for certain chemical reactions is

segmented gas–liquid flow. For synthesis of quantum dots,

the reactants are dissolved in the continuous liquid phase

and the gas bubbles serve to segment the liquid into plugs

(Yen et al. 2005; Wang et al. 2010). Another example are

multiphase monolithic reactors where the walls are coated

by a catalytic washcoat (Kreutzer et al. 2005a). Such

reactors operated in segmented flow are e.g. of interest for

Fischer–Tropsch synthesis (Guettel et al. 2008). Onea et al.

(2009) considered in their qualitative study on mass

transfer in square channel Taylor flow (see above) also

cases where the mass transfer is accompanied by a first-

order homogeneous or heterogeneous chemical reaction.

For a given gas holdup in the unit cell they found that short

unit cells were more efficient for both, mass transfer with

homogenous chemical reaction and without reaction. This

is because for the conditions considered, the liquid film

became quickly saturated so that the mass transfer occurred

mainly through the bubble front and rear. For a fast het-

erogeneous reaction, it was instead found that long unit

cells were more efficient since a sustained large concen-

tration gradient persisted in the thin liquid film which

separated the bubble and the catalytic wall.

3.2.5 Marangoni effects and surfactants

Surfactants influence the mobility of fluid interfaces and

the magnitude of the hydrodynamic force that affects the

probability of the film between the bubbles or drops to

reach a critical thickness for rupture. They are therefore

essential for the stabilization of emulsions produced e.g. by

microfluidic devices. In the literature, there exist a large

number of experimental, theoretical and numerical studies

on drops covered by surfactants in extensional or shear

flows, see e.g. Booty and Siegel (2010) and Feigl et al.

(2007). However, only very few studies consider the effect

of confinement, which is of relevance in microfluidics.

Johnson and Borhan (2003) investigated the effects of

surfactant solubility on pressure-driven drop motion

through cylindrical capillaries in the Stokes flow regime by

a BI method. Grotberg and coworkers solved the NS

equations for the liquid phase with free-surface boundary

conditions and the surfactant transport equation using a FV

scheme in combination with a moving mesh, and per-

formed detailed numerical studies of the steady propaga-

tion of a surfactant-laden liquid plug in a 2D narrow

channel (Fujioka and Grotberg 2005; Zheng et al. 2007).

Zhang et al. (2006) investigated a deformable intravas-

cular bubble in a tube with a soluble or insoluble surfac-

tant. It is shown that the bubble motion in Poiseuille flow

may be significantly slowed down due to the presence of a

soluble surfactant in the bulk medium. For identical initial

surface concentrations of the surfactant, the bubble motion

was more retarded in the presence of a soluble than an

insoluble surfactant. In the former case, the Marangoni

induced motion was in a direction opposite to that driven

by the bulk pressure. Lee and Pozrikidis (2006) studied the

effects on insoluble surfactants on the deformation of drops

and bubbles in a 2D channel and demonstrated the possi-

bility of interface immobilization due to Marangoni trac-

tions even for mild variations in the surfactant

concentration (cf. the studies of Alke and Bothe (2009) and

Lakshmanan and Ehrhard (2010) for freely rising bubbles).

Blanchette (2010) used a FT like front marker algorithm

to perform numerical simulations of drops surrounded by a

fluid of equal density and viscosity in an axisymmetric

cylindrical tube. He investigated the mixing within drops

due to surface tension variations and found that these may

result in faster mixing than mixing due to geometric con-

finement. Though not directly related to microfluidics we

refer to an interesting numerical study by Wegener et al.

(2009) with STAR-CD, where full 3D simulations of

interfacial mass transfer accompanied by Marangoni con-

vection were performed for a single spherical droplet rising

in a quiescent liquid. The computed time-dependent solute

concentration in the drop compared well with experiments.

The numerical results suggest that even for very low initial

concentrations Marangoni convection generates complex

convective flow patterns which enhance mass transfer

significantly. The simulations furthermore revealed a

sophisticated nonlinear interaction of concentration and

velocity field due to Marangoni convection.

A major issue in direct methanol fuel cells is the

removal of CO2 bubbles at the anode side, which are

generated there on oxidation of methanol. Together with

the liquid methanol–water solution a two-phase flow forms

which exhibits a slug/intermittent flow pattern for most

current densities of interest. Fei et al. (2006) and Fei and

Hong (2007) investigated the bubble transport in a micron-
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sized channel by a 2D LB method. In a follow-up paper,

they studied heat transfer including Marangoni effects due

to a temperature dependent surface tension and found that

bubbles moved more rapidly in a divergent microchannel

than in a straight or convergent channel (Fei et al. 2008).

3.3 Phase change (boiling)

For flow boiling in microchannels significant experimental

and theoretical progress has been made in recent years

(Thome 2004; Kandlikar 2010). From the numerical side,

however, there exist only a small number of interfacial

simulation studies devoted to phase change phenomena in

microchannels. All these concern boiling and the author is

not aware of any such study concerning condensation.

Mukherjee and Kandlikar (2005, 2009) studied the growth

of a single vapor bubble during flow boiling of water in a

square 200 lm wide channel by a LS method. The

numerical bubble growth patterns were similar to experi-

mental observations. However, the bubble growth rate

(which increases with the incoming liquid superheat but

decreases with Reynolds number) was quite different from

the experimental data. In a more recent paper, Mukherjee

(2009) investigated the influence of the dynamic contact

angle for this configuration. Lee and Son (2008) employed

the LS method of Son et al. (1999) and studied the effects

of channel size, contact angle and wall superheat on the

bubble growth and heat transfer from a bottom-heated

rectangular microchannel. The wall heat flux was found to

be negligible in the dry regions and maximum near the

contact line, where the microlayer forms.

Kunkelmann and Stephan (2009) implemented the phase

change model of Hardt and Wondra (2008) in the CF-VOF

solver of OpenFOAM and simulated the growth and

detachment of a single vapor bubble from a heated steel

foil. The macroscopic CFD simulation was coupled with a

microscopic model for the contact line evaporation via two

variables, the local wall superheat (which is the input for

the micro region model and is taken from the CFD simu-

lations) and the heat transferred in the near contact line

region (which is a boundary condition for the CFD simu-

lation and is taken from the micro region model).

3.4 Beyond single channels

Applications of droplet-based microfluidics (digital mi-

crofluidics, Fair (2007)) involve the generation of sequen-

ces of mono-disperse droplets flowing in complex

hydrodynamic networks, which consist of junctions con-

nected by capillaries. The viscous dissipation introduced by

the droplets alters the distribution of pressure in the cap-

illary network and the path undertaken by any droplet

depends on the positions of all other droplets in the

network. As this process is nonlinear, even a simple system

consisting of a channel that splits in two arms and subse-

quently recombines exhibits complex patterns of flow

(Jousse et al. 2006). For applications such as lab-on-a-chip

and high-throughput screening it is essential to predict and

control the path of each droplet. This is the motivation for

experimental, numerical, and theoretical investigations

with the ultimate goal to develop simplified models to

describe the ‘‘traffic’’ in the entire hydrodynamic network

(Sessoms et al. 2009). In this context, Gleichmann et al.

(2008) developed a toolkit for computational fluidic sim-

ulation and interactive parameterization of fluid networks

with segmented flow. The computational toolkit is based on

a network of fluidic nodes, which are interconnected by

virtual fluid pipes for the transfer of segment streams. The

particular behavior of a functional node may be given by

user definable rules, which may be derived from experi-

mental data and parameter studies of CFD simulations of

the functional element.

A conceptually quite different approach for simulation

of flow and heat transfer in complex microdevices is to

consider the entire structure as a porous body. As the

individual channels are not resolved by the grid, compu-

tations for devices consisting of hundreds or thousands of

channels become feasible with limited amount of CPU

time. However, the porous body approach fully relies on

suitable empirical correlations to describe fluid friction and

heat transfer. Imke (2004) used conventional pipe flow

closure relations and investigated single and two-phase

flow (boiling) in cross-flow and counter-flow micro heat

exchangers. The predicted outlet temperatures and pressure

drops were in rather good agreement with measurements

for a wide range of flow rates.

4 Conclusions

From the various numerical methods presented in the first

part of this review each has its own advantages and dis-

advantages. The volume-of-fluid method with interface

reconstruction is attractive because of its ability to strictly

conserve mass. However, piecewise linear interface cal-

culation algorithms and geometric flux advection schemes

are quite complex in three dimensions. Level set methods

avoid explicit interface reconstruction but require special

measures to reduce mass conservation errors to an

acceptable value. Also level set methods are very flexible

in treating topological changes without requiring manual or

algorithmic intervention, an advantage that is shared to

some extend by volume-of-fluid methods as well. How-

ever, both methods are at least in their standard versions

not able to describe multiple interfaces within one mesh

cell and thus impose an artificial reconnection length (with
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size of one mesh cell). Front-tracking methods accurately

describe the motion of multiple interfaces without imposing

artificial coalescence but involve special complexity in its

handling and that of breakup. In contrast to the aforemen-

tioned sharp interface methods, the interface thickness in the

color function volume-of-fluid method and the conservative

level set method is finite for numerical reasons. Special

measures are required to maintain the interface thickness

constant and uniform throughout the simulation. On the other

hand these methods are attractive because they are rather

easy to implement. Phase-field methods introduce a physi-

cally motivated amount of diffusion and allow for effective

control of the interface thickness. Unlike the other methods

mentioned above, the interface evolution is not governed by

an advection equation but by the Cahn–Hilliard equation.

This allows the simulation of flows with moving contact lines

without difficulty. However, for accurate results the diffuse

interface region must be well resolved. Lattice Boltzmann

methods are mesoscopic in nature but can be considered as

simple explicit discretization schemes for the Navier–Stokes

equations. In recent years, various hybrid approached have

been proposed. Widely used among them are only methods

which combine the level set method with the interface

reconstructing volume-of-fluid method.

Modeling of surface tension has reached a mature status

in many methods. Spurious currents are, however, still an

issue in many codes and methods though it is clear now,

how numerical discretization schemes have to be designed

to avoid them in combination with accurate curvature

estimation algorithms. There, the trend is toward height

function based methods, at least in the volume-of-fluid

context. For modeling, the motion of moving contact lines

no consensus is reached in many methods. This statement

applies especially to sharp interface methods, where many

ad-hoc solutions are proposed but none of them is generally

accepted and widely used. The only exceptions are the

phase-field and lattice Boltzmann approach which allow in

a natural way for the inclusion of microscopic interactions.

Both approaches have proved to be well suited for capil-

lary-driven flow on chemically or geometrically patterned

heterogeneous surfaces.

The formation of bubbles and drops can be described

rather well by many methods. Since the underlying pro-

cesses depend to large extend on the geometrical configu-

ration of the inlet, CFD simulations constitute already a

valuable and reliable tool to perform engineering design

studies. Modeling of coalescence is much more subtle. In

the Navier–Stokes equations the discontinuous density and

viscosity fields are usually smoothed close to the interface

over a distance of 2–3 mesh cells. Hence, local phenomena

are not handled accurately when the interfaces come closer

than 1–2 mesh cells and numerical coalescence often

occurs.

Segmented flow with a perfectly wetting continuous

phase can well be described by many methods. A consid-

erable number of axisymmetric studies are already per-

formed for channels with circular cross-section; many of

them include convective heat transfer (without phase

change). However, in microfluidic devices channels have

often a square or rectangular cross-section so that three-

dimensional computations are required. Though these are

very CPU time intense some studies have already been

performed and further are under way.

The modeling of surfactants and related Marangoni

flows is an actual field of research and the status of

numerical methods is advancing. Computations of soluble

surfactants suffer from a separation of scales, as for real-

istic Schmidt and Peclet numbers the concentration

boundary layer at a moving interface is much thinner than

the viscous one. The same holds for species mass transfer

across moving interfaces. There, the conjugate problem is

even more complicated since the equilibrium distribution

coefficient is often far from unity. The treatment of the

discontinuous concentration field is a numerical challenge

though promising modeling concepts are now emerging in

the literature. Mixing and dispersion phenomena within

one phase can well be studied numerically by inserting

virtual tracers in a Lagrangian or Eulerian manner.

Applications of interface resolving methods for two-fluid

flows involving chemical reactions in microchannels or

microreactors are in their infancy. The same holds for

numerical studies on boiling in small channels, which are

mostly qualitative in nature.

Overall, considerable progress has been made in the last

decade in the development and improvement of different

numerical methods for interfacial flow simulations. As an

example we mention the PLIC-VOF method with bal-

anced-force surface tension and quad/octree adaptive mesh

refinement which makes the open source code Gerris

(http://gfs.sourceforge.net) a powerful tool for numerical

investigation of two-phase flows even when it undergoes

large topological changes. It is very likely that the devel-

opment of ever improved numerical methods will continue.

While the proposal and testing of various variants and

modifications of methods may be fruitful from an academic

point of view, it partly hinders the advancement of engi-

neering applications. These often rely on commercial

computer codes where only widely accepted quasi-standard

methods and models are implemented with a considerable

lag in time. As a consequence many groups from academia

use very advanced numerical methods and codes to study

very fundamental applications, while engineering compu-

tations for complex technical problems are attacked by far

less advanced and appropriate methods and codes. Also, it

became a standard in academia to demonstrate the per-

formance of any new method for artificial test problems
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such as Zalesak’s circle or similar exercises. While these

numerical tests are of certain academic value, actually

reference solutions to problems involving break-up and

coalescence are required and there is a strong need for

additional more physical test cases. Suitable detailed

experimental data bases which allow for a sound physical

validation of methods and models are missing and would

be highly welcome.

A special focus should also be put on the development

of multiscale methods which combine models valid at

different length scales and account for the interaction

between them. Here, the challenge lies in the development

of methods that involve an appropriate level of detail, are

computationally efficient and are at the same time robust in

the sense that varying the mesh size (at least in a certain

range) yields the same and correct grid-independent

asymptotic solution. Such multiscale methods are espe-

cially required to account for very thin filaments, films and

concentration boundary layers, moving contact lines and

phenomena associated with the transport of surfactants on

fluid interfaces.

In conclusion, understanding transport phenomena is

essential for the successful development of microfluidic

devices and microreactors. Various numerical methods for

detailed simulations of interfacial two-phase flows are

available and yield already valuable contributions. As their

capabilities will be extended in the future, their role will

further increase and may lead to highly integrated

advanced multiphysics simulation tools for virtual devel-

opment and prototyping of microfluidic devices and

microreactors.
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Bothe D, Kröger M, Alke A, Warnecke HJ (2009b) VOF-based

simulation of reactive mass transfer across deformable inter-

faces. Prog Comput Fluid Dyn 9(6–7):325–331
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gas–liquid–solid microstructured reactors: contacting principles

and applications. Ind Eng Chem Res 44(25):9750–9769

Hessel V, Renken A, Schouten JC, Yoshida J (2009) Micro process

engineering: a comprehensive handbook. Wiley, Weinheim

Heyes DM, Baxter J, Tuzun U, Qin RS (2004) Discrete-element

method simulations: from micro to macro scales. Philos T Roy

Soc A 362(1822):1853–1865

Hirsch C (2007) Numerical computation of internal and external

flows: fundamentals of computational fluid dynamics, 2nd edn.

Butterworth-Heinemann, Amsterdam

Hirt CW, Nichols BD (1981) Volume of fluid (VOF) method for the

dynamics of free boundaries. J Comput Phys 39(1):201–

225

Hirt CW, Amsden AA, Cook JL (1974) Arbitrary Lagrangian–

Eulerian computing method for all flow speeds. J Comput Phys

14(3):227–253

Hu HH, Patankar NA, Zhu MY (2001) Direct numerical simulations

of fluid–solid systems using the arbitrary Lagrangian–Eulerian

technique. J Comput Phys 169(2):427–462

Huang W, Russell RD (2011) Adaptive moving mesh methods.

Springer, New York

Huang H, Liang D, Wetton B (2004) Computation of a moving drop/

bubble on a solid surface using a front-tracking method.

Commun Math Sci 2(4):535–552

Huang WF, Liu QS, Li Y (2006) Capillary filling flows inside

patterned-surface microchannels. Chem Eng Technol

29(6):716–723

Huang JJ, Shu C, Chew YT (2008) Numerical investigation of

transporting droplets by spatiotemporally controlling substrate

wettability. J Colloid Interf Sci 328(1):124–133

Huebner A, Sharma S, Srisa-Art M, Hollfelder F, Edel JB, deMello

AJ (2008) Microdroplets: a sea of applications? Lab Chip

8(8):1244–1254

Huh C, Scriven LE (1971) Hydrodynamic model of steady movement

of a solid/liquid/fluid contact line. J Colloid Interf Sci

35(1):85–101

Hysing S (2006) A new implicit surface tension implementation for

interfacial flows. Int J Numer Methods Fluids 51(6):659–672

Hysing S, Turek S, Kuzmin D, Parolini N, Burman E, Ganesan S,

Tobiska L (2009) Quantitative benchmark computations of two-

dimensional bubble dynamics. Int J Numer Methods Fluids

60(11):1259–1288

Imke U (2004) Porous media simplified simulation of single- and two-

phase flow heat transfer in micro-channel heat exchangers. Chem

Eng J 101(1–3):295–302

Inamuro T, Ogata T, Tajima S, Konishi N (2004) A lattice Boltzmann

method for incompressible two-phase flows with large density

differences. J Comput Phys 198(2):628–644

Ishii M (1975) Thermo-fluid dynamic theory of two-phase flow.

Eyrolles, Paris

Ishii M, Hibiki T (2006) Thermo-fluid dynamics of two-phase flow.

Springer, New York

Jacqmin D (1999) Calculation of two-phase Navier–Stokes flows

using phase-field modeling. J Comput Phys 155(1):96–127

Jacqmin D (2000) Contact-line dynamics of a diffuse fluid interface.

J Fluid Mech 402:57–88

James AJ, Lowengrub J (2004) A surfactant-conserving volume-of-

fluid method for interfacial flows with insoluble surfactant.

J Comput Phys 201(2):685–722

Jamet D, Lebaigue O, Coutris N, Delhaye JM (2001) The second

gradient method for the direct numerical simulation of liquid–

vapor flows with phase change. J Comput Phys 169(2):624–651

Jamet D, Torres D, Brackbill JU (2002) On the theory and

computation of surface tension: the elimination of parasitic

currents through energy conservation in the second-gradient

method. J Comput Phys 182(1):262–276

Jang W, Jilesen J, Lien FS, Ji H (2008) A study on the extension of a

VOF/PLIC based method to a curvilinear co-ordinate system. Int

J Comput Fluid Dyn 22(4):241–257

Jia XL, McLaughlin JB, Kontomaris K (2008) Lattice Boltzmann

simulations of flows with fluid–fluid interfaces. Asia-Pac J Chem

Eng 3(2):124–143

Johnson RA, Borhan A (2003) Pressure-driven motion of surfactant-

laden drops through cylindrical capillaries: effect of surfactant

solubility. J Colloid Interf Sci 261(2):529–541

Jousse F, Farr R, Link DR, Fuerstman MJ, Garstecki P (2006)

Bifurcation of droplet flows within capillaries. Phys Rev E

74(3):036311

Junk M, Klar A, Luo L-S (2005) Asymptotic analysis of the lattice

Boltzmann equation. J Comput Phys 210(2):676–704

Juric D, Tryggvason G (1998) Computations of boiling flows. Int J

Multiph Flow 24(3):387–410

880 Microfluid Nanofluid (2012) 12:841–886

123



Kadau K, Barber JL, Germann TC, Holian BL, Alder BJ (2010)

Atomistic methods in fluid simulation. Philos T R Soc A

368(1916):1547–1560

Kadioglu SY, Sussman M (2008) Adaptive solution techniques for

simulating underwater explosions and implosions. J Comput

Phys 227(3):2083–2104

Kandlikar SG (2008) Exploring roughness effect on laminar internal

flow-are we ready for change? Nanosc Microsc Therm Eng

12(1):61–82

Kandlikar SG (2010) Scale effects on flow boiling heat transfer in

microchannels: a fundamental perspective. Int J Therm Sci

49(7):1073–1085

Kang M, Fedkiw RP, Liu X-D (2000) A boundary condition capturing

method for multiphase incompressible flow. J Sci Comput

15(3):323–360

Karniadakis G, Beskok A, Aluru NR (2005) Microflows and

nanoflows: fundamentals and simulation. Springer, New York

Kashid MN, Kiwi-Minsker L (2009) Microstructured reactors for

multiphase reactions: state of the art. Ind Eng Chem Res

48(14):6465–6485

Kececi S, Wörner M, Onea A, Soyhan HS (2009) Recirculation time

and liquid slug mass transfer in co-current upward and down-

ward Taylor flow. Catal Today 147(Supplement 1):S125–

S131

Kenig EY, Ganguli AA, Atmakidis T, Chasanis P (2011) A novel

method to capture mass transfer phenomena at free fluid–fluid

interfaces. Chem Eng Process 50(1):68–76

Keskin O, Wörner M, Soyhan HS, Bauer T, Deutschmann O, Lange R

(2010) Viscous co-current downward Taylor flow in a square

mini-channel. AIChE J 56(7):1693–1702

Khenner M (2004) Computation of the material indicator function

near the contact line (in Tryggvason’s method). J Comput Phys

200(1):1–7

Kim J (2005) A continuous surface tension force formulation for

diffuse-interface models. J Comput Phys 204(2):784–804

Kim J, Lowengrub J (2005) Phase field modeling and simulation of

three-phase flows. Interface Free Bound 7(4):435–466

Kobayashi I, Mukataka S, Nakajima M (2004) CFD simulation and

analysis of emulsion droplet formation from straight-through

microchannels. Langmuir 20(22):9868–9877

Kockmann N (2008) Transport phenomena in micro process

engineering. Springer, Berlin

Kreutzer MT, Bakker JJW, Kapteijn F, Moulijn JA, Verheijen PJT

(2005a) Scaling-up multiphase monolith reactors: linking resi-

dence time distribution and feed maldistribution. Ind Eng Chem

Res 44(14):4898–4913

Kreutzer MT, Kapteijn F, Moulijn JA, Heiszwolf JJ (2005b)

Multiphase monolith reactors: chemical reaction engineering of

segmented flow in microchannels. Chem Eng Sci

60(22):5895–5916

Kuksenok O, Jasnow D, Yeomans J, Balazs AC (2003) Periodic

droplet formation in chemically patterned microchannels. Phys

Rev Lett 91(10):108303

Kunkelmann C, Stephan P (2009) CFD simulation of boiling flows

using the volume-of-fluid method within OpenFOAM. Numer

Heat Tr A-Appl 56(8):631–646

Lafaurie B, Nardone C, Scardovelli R, Zaleski S, Zanetti G (1994)

Modelling merging and fragmentation in multiphase flows with

SURFER. J Comput Phys 113(1):134–147

Lai JM, Huang CY, Chen CH, Kung LL, Lin JD (2010) Influence of

liquid hydrophobicity and nozzle passage curvature on micro-

fluidic dynamics in a drop ejection process. J Micromech

Microeng 20(1):015033

Lakehal D (2002) On the modelling of multiphase turbulent flows for

environmental and hydrodynamic applications. Int J Multiphase

Flow 28(5):823–863

Lakehal D, Labois M (2011) A new modelling strategy for phase-

change heat transfer in turbulent interfacial two-phase flow. Int J

Multiphase Flow 37(6):627–639

Lakehal D, Meier M, Fulgosi M (2002) Interface tracking towards the

direct simulation of heat and mass transfer in multiphase flows.

Int J Heat Fluid Flow 23(3):242–257

Lakehal D, Larrignon G, Narayanan C (2008) Computational heat

transfer and two-phase flow topology in miniature tubes.

Microfluid Nanofluid 4(4):261–271

Lakshmanan P, Ehrhard P (2010) Marangoni effects caused by

contaminants adsorbed on bubble surfaces. J Fluid Mech

647:143–161

Lallemand P, Luo L-S, Peng Y (2007) A lattice Boltzmann front-

tracking method for interface dynamics with surface tension in

two dimensions. J Comput Phys 226(2):1367–1384

Lauga E, Brenner MP, Stone HA (2007) Microfluidics: the no-slip

boundary condition. In: Tropea C, Yarin A, Foss JF (eds)

Handbook of experimental fluid dynamics. Springer, New York,

pp 1219–1240

Lee T (2009) Effects of incompressibility on the elimination of

parasitic currents in the lattice Boltzmann equation method for

binary fluids. Comput Math Appl 58(5):987–994

Lee T, Lin C-L (2005) A stable discretization of the lattice Boltzmann

equation for simulation of incompressible two-phase flows at

high density ratio. J Comput Phys 206(1):16–47

Lee J, Pozrikidis C (2006) Effect of surfactants on the deformation of

drops and bubbles in Navier–Stokes flow. Comput Fluids

35(1):43–60

Lee W, Son G (2008) Bubble dynamics and heat transfer during

nucleate boiling in a microchannel. Numer Heat Tr A-Appl

53(10):1074–1090

Lion N, Rossier JS, Girault HH (2006) Microfluidic applications in

biology: from technologies to systems biology. Wiley,

Weinheim

Liovic P, Lakehal D (2007) Multi-physics treatment in the vicinity of

arbitrarily deformable gas–liquid interfaces. J Comput Phys

222(2):504–535

Liovic P, Rudman M, Liow JL, Lakehal D, Kothe D (2006) A 3D

unsplit-advection volume tracking algorithm with planarity-

preserving interface reconstruction. Comput Fluids

35(10):1011–1032

Lishchuk SV, Care CM, Halliday I (2003) Lattice Boltzmann

algorithm for surface tension with greatly reduced microcurrents.

Phys Rev E 67(3):036701

Liu DS, Wang SD (2008) Hydrodynamics of Taylor flow in

noncircular capillaries. Chem Eng Process 47(12):2098–2106

Liu X-D, Fedkiw RP, Kang M (2000) A boundary condition capturing

method for Poisson’s equation on irregular domains. J Comput

Phys 160(1):151–178

Liu H, Krishnan S, Marella S, Udaykumar HS (2005) Sharp interface

Cartesian grid method II: a technique for simulating droplet

interactions with surfaces of arbitrary shape. J Comput Phys

210(1):32–54

Liu J, Yap YF, Nguyen NT (2009a) Behavior of microdroplets in

diffuser/nozzle structures. Microfluid Nanofluid 6(6):835–846

Liu J, Yap YF, Nguyen NT (2009b) Motion of a droplet through

microfluidic ratchets. Phys Rev E 80(4):046319

Lopez J, Hernandez J (2010) On reducing interface curvature

computation errors in the height function technique. J Comput

Phys 229(13):4855–4868
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WörnerM, Sabisch W, Grötzbach G, Cacuci DG (2001) Volume-averaged

conservation equations for volume-of-fluid interface tracking. In:

Proceedings of the 4th International Conference on Multiphase Flow,

New Orleans, Louisiana, USA, May 27–June 1 2001

Wörner M, Ghidersa BE, Ilic M, Cacuci DG (2005) Volume-of-fluid

method based numerical simulations of gas–liquid two-phase

flow in confined geometries. Houille Blanche 6:91–104

Microfluid Nanofluid (2012) 12:841–886 885

123



Wörner M, Ghidersa B, Onea A (2007) A model for the residence

time distribution of bubble-train flow in a square mini-channel

based on direct numerical simulation results. Int J Heat Fluid

Flow 28(1):83–94

Wu L, Tsutahara M, Kim L, Ha M (2008a) Numerical simulations of

droplet formation in a cross-junction microchannel by the lattice

Boltzmann method. Int J Numer Methods Fluids 57(6):793–810

Wu L, Tsutahara M, Kim LS, Ha M (2008b) Three-dimensional

lattice Boltzmann simulations of droplet formation in a cross-

junction microchannel. Int J Multiphase Flow 34(9):852–864

Xiao F, Honma Y, Kono T (2005) A simple algebraic interface

capturing scheme using hyperbolic tangent function. Int J Numer

Methods Fluids 48(9):1023–1040

Xiong RQ, Chung JN (2010) A new model for three-dimensional

random roughness effect on friction factor and heat transfer in

microtubes. Int J Heat Mass Transfer 53(15–16):3284–3291

Xu J-J, Li Z, Lowengrub J, Zhao H (2006) A level-set method for

interfacial flows with surfactant. J Comput Phys 212(2):590–616

Yabe T, Xiao F, Utsumi T (2001) The constrained interpolation

profile method for multiphase analysis. J Comput Phys

169(2):556–593

Yan YY, Zu YQ (2007) A lattice Boltzmann method for incom-

pressible two-phase flows on partial wetting surface with large

density ratio. J Comput Phys 227(1):763–775

Yang C, Li DQ (1996) A method of determining the thickness of

liquid–liquid interfaces. Colloid Surf A 113(1–2):51–59

Yang C, Mao Z-S (2005) Numerical simulation of interphase mass

transfer with the level set approach. Chem Eng Sci

60(10):2643–2660

Yang X, James AJ, Lowengrub J, Zheng X, Cristini V (2006) An

adaptive coupled level-set/volume-of-fluid interface capturing

method for unstructured triangular grids. J Comput Phys

217(2):364–394

Yap YF, Chai JC, Wong TN, Toh KC, Zhang HY (2006) A global

mass correction scheme for the level-set method. Numer Heat Tr

B-Fund 50(5):455–472

Yap YF, Tan SH, Nguyen NT, Murshed SMS, Wong TN, Yobas L

(2009) Thermally mediated control of liquid microdroplets at a

bifurcation. J Phys D Appl Phys 42(6):065503

Yen BKH, Günther A, Schmidt MA, Jensen KF, Bawendi MG (2005)

A microfabricated gas–liquid segmented flow reactor for high-

temperature synthesis: the case of CdSe quantum dots. Angew

Chem Int Edit 44(34):5447–5451

Yokoi K (2007) Efficient implementation of THINC scheme: a simple

and practical smoothed VOF algorithm. J Comput Phys

226(2):1985–2002

Youngs DL (1982) Time-dependent multi-material flow with large

fluid distortion. In: Morton KW, Baines MJ (eds) Numerical

methods for fluid dynamics, vol 24. Academic Press, New York,

pp 273–285

Yu Z, Fan L-S (2009) An interaction potential based lattice

Boltzmann method with adaptive mesh refinement (AMR) for

two-phase flow simulation. J Comput Phys 228(17):6456–6478

Yu Z, Hemminger O, Fan L-S (2007) Experiment and lattice

Boltzmann simulation of two-phase gas–liquid flows in micro-

channels. Chem Eng Sci 62(24):7172–7183

Yue PT, Feng JJ, Liu C, Shen J (2004) A diffuse-interface method for

simulating two-phase flows of complex fluids. J Fluid Mech

515:293–317

Yue P, Zhou C, Feng JJ, Ollivier-Gooch CF, Hu HH (2006) Phase-

field simulations of interfacial dynamics in viscoelastic fluids

using finite elements with adaptive meshing. J Comput Phys

219(1):47–67

Yue P, Zhou C, Feng JJ (2007) Spontaneous shrinkage of drops and

mass conservation in phase-field simulations. J Comput Phys

223(1):1–9

Zacharioudaki M, Kouris C, Dimakopoulos Y, Tsamopoulos J (2007)

A direct comparison between volume and surface tracking

methods with a boundary-fitted coordinate transformation and

third-order upwinding. J Comput Phys 227(2):1428–1469

Zagnoni M, Anderson J, Cooper JM (2010) Hysteresis in multiphase

microfluidics at a T-Junction. Langmuir 26(12):9416–9422

Zahedi S, Gustavsson K, Kreiss G (2009) A conservative level set

method for contact line dynamics. J Comput Phys

228(17):6361–6375

Zalesak ST (1979) Fully multidimensional flux-corrected transport

algorithms for fluids. J Comput Phys 31(3):335–362

Zhang J, Eckmann DM, Ayyaswamy PS (2006) A front tracking

method for a deformable intravascular bubble in a tube with

soluble surfactant transport. J Comput Phys 214(1):366–396

Zhang YL, Zou QP, Greaves D (2010) Numerical simulation of free-

surface flow using the level-set method with global mass

correction. Int J Numer Methods Fluids 63(6):651–680

Zhao CX, Middelberg APJ (2011) Two-phase microfluidic flows.

Chem Eng Sci 66(7):1394–1411

Zhao B, Moore JS, Beebe DJ (2001) Surface-directed liquid flow

inside microchannels. Science 291(5506):1023–1026

Zhao J-F, Li Z-D, Li H-X, Li J (2010) Thermocapillary migration of

deformable bubbles at moderate to large Marangoni number in

microgravity. Microgravity Sci Tec 22(3):295–303

Zheng HW, Shu C, Chew YT (2005) Lattice Boltzmann interface

capturing method for incompressible flows. Phys Rev E

72(5):056705

Zheng HW, Shu C, Chew YT (2006) A lattice Boltzmann model for

multiphase flows with large density ratio. J Comput Phys

218(1):353–371

Zheng Y, Fujioka H, Grotberg JB (2007) Effects of gravity, inertia,

and surfactant on steady plug propagation in a two-dimensional

channel. Phys Fluids 19(8):082107

Zheng HW, Shu C, Chew YT, Sun JH (2008) Three-dimensional

lattice Boltzmann interface capturing method for incompressible

flows. Int J Numer Methods Fluids 56(9):1653–1671

Zhou CF, Yue PT, Feng JJ (2006) Formation of simple and compound

drops in microfluidic devices. Phys Fluids 18(9):092105

Zhou C, Yue P, Feng JJ, Ollivier-Gooch CF, Hu HH (2010) 3D phase-

field simulations of interfacial dynamics in Newtonian and

viscoelastic fluids. J Comput Phys 229(2):498–511

Zhu X, Sui PC, Djilali N (2008) Numerical simulation of emergence

of a water droplet from a pore into a microchannel gas stream.

Microfluid Nanofluid 4(6):543–555

886 Microfluid Nanofluid (2012) 12:841–886

123


	Numerical modeling of multiphase flows in microfluidics and micro process engineering: a review of methods and applications
	Abstract
	Introduction
	Microfluidics and micro process engineering
	Classification of methods for two-phase flows
	Scope and outline of this review

	Methods and models
	Atomistic methods
	Lattice Boltzmann (LB) method
	Continuum methods
	Description of the interface evolution
	Methods with zero interface thickness (sharp interface methods)
	Methods with finite interface thickness

	Momentum equation and interfacial phenomena
	Navier--Stokes (NS) equation
	Treatment of fluid properties at the interface
	Interfacial tension

	Heat and mass transfer across the interface
	Phase change
	Boundary conditions and wall roughness

	Specific issues
	Hybrid methods
	Refined and adaptive grids
	Multiscale methods
	Discretization techniques
	Computer codes
	Comparison of methods and codes
	Recommendations and guidelines


	Two-phase microfluidic applications
	Flow hydrodynamics
	Separated and parallel flow
	Segmented flow
	Topological changes
	Droplet formation and breakup
	Bubble formation
	Coalescence

	Contact lines and geometrically or chemically patterned surfaces

	Heat and mass transfer and related issues
	Heat transfer without phase change
	Mixing and dispersion
	Mass transfer across the interface
	Chemical reactions
	Marangoni effects and surfactants

	Phase change (boiling)
	Beyond single channels

	Conclusions
	Acknowledgments
	References


