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Abstract This paper significantly extends previous

studies to the transition regime by employing the second-

order slip boundary conditions. A simple analytical model

with second-order slip boundary conditions for a normal-

ized Poiseuille number is proposed. The model can be

applied to either rarefied gas flows or apparent liquid slip

flows. The developed simple models can be used to predict

the Poiseuille number, mass flow rate, tangential momen-

tum accommodation coefficient, pressure distribution of

gaseous flow in noncircular microchannels and nanochan-

nels by the research community for the practical engi-

neering design of microchannels and nanochannels. The

developed second-order models are preferable since the

difficulty and ‘‘investment’’ is negligible compared with

the cost of alternative methods such as molecular simula-

tions or solutions of Boltzmann equation. Navier–Stokes

equations with second-order slip models can be used to

predict quantities of engineering interest such as the

Poiseuille number, tangential momentum accommodation

coefficient, mass flow rate, pressure distribution, and

pressure drop beyond its typically acknowledged limit of

application. The appropriate or effective second-order slip

coefficients include the contribution of the Knudsen layers

in order to capture the complete solution of the Boltzmann

equation for the Poiseuille number, mass flow rate, and

pressure distribution. It could be reasonable that various

researchers proposed different second-order slip coeffi-

cients because the values are naturally different in different

Knudsen number regimes. It is analytically shown that the

Knudsen’s minimum can be predicted with the second-

order model and the Knudsen value of the occurrence of

Knudsen’s minimum depends on inlet and outlet pressure

ratio. The compressibility and rarefaction effects on mass

flow rate and the curvature of the pressure distribution by

employing first-order and second-order slip flow models

are analyzed and compared. The condition of linear pres-

sure distribution is given.

Keywords Transition regime � Slip flow � Second-order

model � Microchannels � Nanochannels � Pressure

distribution � Mass flow rate � Knudsen’s minimum

Nomenclature

A Flow area (m2)

A2 Second-order slip coefficient

a Major semi-axis of ellipse or rectangle (m)

a Base width of a trapezoidal, triangular,

double-trapezoidal, or rhombic duct (m)

b Minor semi-axis of ellipse or rectangle (m)

b Height of a trapezoidal, triangular,

double-trapezoidal, or rhombic duct (m)

c Short side of a trapezoidal or double-trapezoidal

duct (m)

D Pipe diameter (m)

Dh Hydraulic diameter ¼
ffiffiffi

A
p
ð4

ffiffiffi

A
p

=PÞ
f Fanning friction factor ¼ s

�

1
2
q�w2ð Þ

Kn Knudsen number ¼ k=Dh

Kn* Modified Knudsen number = Kn(2 - r)/r
L Channel length (m)

L Arbitrary length scale

_m Mass flow rate (kg/s)

m* Normalized mass flow rate

n Correlation parameter

P Total wetted perimeter (m)

Po Poiseuille number ¼ sL=l�w
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p Pressure ðN=m2Þ
R Specific gas constant J=kg Kð Þ
Re Reynolds number = �wL=m
r Dimensionless radius ratio = ri/ro

T Temperature (K)

�w Average velocity (m/s)

x, y Cartesian coordinates (m)

z Coordinate in flow direction (m)

Greek symbols

a1, a2 Parameters

dn Eigenvalues

e Effective aspect ratio

k Molecular mean free path (m)

l Dynamic viscosity ðN s=m2Þ
m Kinematic viscosity (m2/s)

r Tangential momentum accommodation coefficient

s Mean wall shear stress ðN=m2Þ
X Half angle of annular sector (rad)

Subscripts
ffiffiffi

A
p

Based upon the square root of flow area

Dh Based upon the hydraulic diameter

i Inlet

L Based upon the arbitrary length L
ns No-slip

o Outlet

1 Introduction

Microchannels and nanochannels are the fundamental part

of microfluidic and nanofluidic systems. Understanding the

flow characteristics of micro/nanoscale flows is very

important in determining pressure distribution, mass flow

rate, pressure drop, heat transfer, and transport properties

of the flow. The noncircular cross sections such as rect-

angular, isosceles triangular, trapezoidal, double-trapezoi-

dal, rhombic, semi-circular, and elliptic are common

channel shapes that may be produced by microfabrication.

These cross sections have wide practical applications

(Gad-el-Hak 2001; Nguyen and Wereley 2003; Karniadakis

et al. 2005; Kandlikar et al. 2006; Li 2008).

The Knudsen number (Kn) relates the molecular mean

free path of gas to a characteristic dimension of the duct. A

typical mean free path of gas is approximately 70 nm at

standard conditions. In the slip and transition regimes, the

no-slip boundary conditions are not valid, and a kinetic

boundary layer on the order of one mean free path

(Cercignani 1988; Karniadakis et al. 2005), known as the

ordinary Knudsen layer, starts to become dominant

between the bulk of the fluid and the wall surface. The

exact values for transition from one regime to another

depend on the problem under consideration and the choice

of length scale used to define the Knudsen number. In the

previous works, various characteristic length scales have

been employed (e.g. the radius or diameter for circular

tubes, the height/half-height or hydraulic diameter/radius

for annular, elliptical, rectangular, trapezoidal, double-

trapezoidal, rhombic, and triangular channels).

As a result of the agreement between most liquid flow

experimental data with characteristic dimensions larger

than tens of microns and traditional theories derived

assuming the no-slip boundary condition, today many

textbooks of fluid mechanics and heat transfer neglect to

mention that the no-slip and no-temperature-jump bound-

ary conditions are only an assumption and cannot be

derived from first principles. The common continuum flow

(no-slip flow) is only a special case (Kn ? 0) of the

present study.

Due to the lack of molecular-based theory of liquids, a

dimensionless number similar to the Knudsen number is not

commonly used for liquids. Thompson and Troian (1997)

provided molecular dynamics simulations to quantify the

liquid slip boundary condition dependence on the slip length

and shear rate. The Navier boundary condition was

employed to determine the degree of slip at a solid–liquid

interface as the interfacial parameters and the shear rate

change. When considering liquids, the molecular mean free

path may be replaced by the slip length. The slip lengths

reported experimentally span several orders of magnitude,

from molecular lengths up to hundreds of nanometers with

dependence on wetting conditions, surface roughness

structure (shape and distribution), dissolved gas, surface

charge, shear rate, and pressure. Recently, an investigation of

the effects of wall stiffness, particles mass, and surface

roughness on slip length was carried out by molecular

dynamics simulations (Asproulis and Drikakis 2010a, b,

2011; Kalweit and Drikakis 2008). These studies may pro-

vide a better insight into the hydrodynamic boundary slip

phenomena. If a nondimensional number similar to the

modified Knudsen number (Kn*) is defined for liquid slip

flow, i.e., the ratio of slip length to a characteristic dimension

of the flow field, the presently developed model for nor-

malized Poiseuille number can be utilized to predict

Poiseuille number, flow rate, and pressure drop (Chakraborty

et al. 2008). To look at it from a slightly more general

mathematical point of view, when no-slip condition on the

solid surfaces is partially relaxed, the molecular mean free

path and the term involving the accommodation coefficient

½k 2� rð Þ=r� and the slip length ksð Þ have the same mathe-

matical meaning. Thompson and Troian (1997) indicated

that there exists a nonlinear relationship between the amount

of slip and a local shear rate at a solid surface at relatively

higher shear rates. This suggests that the well-known linear

Navier boundary condition may break down and can be
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replaced by the general nonlinear second-order boundary

condition in which DV ¼ ksdu=dyþ A2Lk
2
s du=dyð Þ2 where

DV is the velocity difference between the solid and adjacent

fluid and the liquid second-order slip coefficient A2L can be

obtained by comparing the model with numerical and

experimental data. Therefore, the proposed second-order

model provides a general picture of the momentum transport

that occurs at liquid/solid or gas/solid interfaces. Liquid slip

flow has emerged as an important research area. This has

been motivated by its potential wide applications. Liquid slip

is very important in nanofluidic devices with a superhydro-

phobic surface because it reduces the required pressure in

pressure-driven flows and may be used to save energy

(Tretheway and Meinhart 2002; Choi et al. 2003). The

velocity slip and reduced liquid–solid contact of the super-

hydrophobic surfaces may lead to the temperature jump

(DT � ksdT=dy: and therefore additional thermal resistance)

and reduction of the Nusselt number. However, the effects of

velocity slip may win out the opposite effects of the tem-

perature jump and thus improve the heat transfer rate for the

same pumping power. This could be promising for the liquid

cooling of microelectronic devices. The use of liquid slip is

also a promising way to increase efficiency for energy con-

version (e.g., the nanofluidic power generator).

In addition, Agrawal et al. (2009) and Rovenskaya and

Croce (2010), respectively, numerically investigated gas

flow in microchannels with a 90� bend and found that the

pressure distribution and mass flow rate between the bent and

straight long microchannels is nearly identical in the slip

regime, and the similarity increases with an increase in

Knudsen number. This indicates that the flow is less sensitive

to the presence of the bend due to rarefaction effects of the

gas and thus furnishes a desirable advantage in the design of

microdevices. For example, we can use impingement flow to

replace parallel flow in microchannel heat sinks to enhance

heat transfer because the thermal performance of micro-

channel heat sinks in impingement flow exceeds that of

similar heat sinks in parallel flow (this is attributed to the

synergistic enhancement of velocity field and temperature

field). Therefore, all the developed models (Poiseuille

number, pressure distribution, mass flow rate, and pressure

drop) for straight microchannels can be utilized for bent

microchannels within negligible difference. This could be

important because of a shortage of information for bent

circular and noncircular microchannels in the literature.

2 Literature review

The small length scales commonly encountered in micro-

fluidic devices suggest that rarefaction effects are impor-

tant. For example, experiments conducted by Pfahler et al.

(1990), Arkilic et al. (1994, 1997), Harley et al. (1995),

Choi et al. (1991), Pong et al. (1994), Araki et al. (2000),

Zohar et al. (2002), Jang and Wereley (2004), Hsieh et al.

(2004) on the transport of gases in microchannels confirm

that continuum analyses are unable to predict flow prop-

erties in micro-sized devices.

Arkilic et al. (1994, 1997) studied helium flow through

microchannels and found significant reduction in the

Poiseuille number. The reduction may be due to the slip

flow regime, as according to the flow regime classification

by Schaaf and Chambre (1958), the flows investigated by

Arkilic et al. are mostly within the slip flow regime, only

bordering the transition regime near the outlet.

Maurer et al. (2003) conducted experiments for helium

and nitrogen flow in 1.14 lm deep 200 lm wide shallow

microchannels. Flowrate and pressure drop measurements in

the slip and early transition regimes were performed for

averaged Knudsen numbers extending up to 0.8 for helium

and 0.6 for nitrogen. The authors also provided estimates for

second-order effects and found the upper limit of slip flow

regime as the averaged Knudsen number equals 0.3 ± 0.1.

Aubert and Colin (2001) studied slip flow in rectangular

microchannels using the second-order boundary conditions

proposed by Deissler (1964). In a later study, Colin et al.

(2004) presented experimental results for nitrogen and

helium flows in a series of silicon rectangular microchan-

nels. The authors proposed that the second-order slip flow

model is valid for Knudsen numbers up to about 0.25.

Ewart et al. (2006, 2007a) measured mass flow rate of

isothermal gaseous slip flow in microtubes. The principle

of their measurement is similar to that of Maurer et al.

(2003). The measured values were compared with analyt-

ical solutions and satisfactory results were obtained. The

authors show that the second-order effects could exist for

average Knudsen numbers larger than 0.1.

The analytical study of internal flows with slip previ-

ously has been confined to simple geometries (Kennard

1938; Ebert and Sparrow 1965; Sreekanth 1969; Mitsuya

1993), beginning with early efforts in the kinetic theory of

gases. In an effort to extend the range of applicability of

slip flow boundary conditions to the transition regime,

some researchers (Karniadakis et al. 2005; Xue and Fan

2000; Jie et al. 2000; Li et al. 2000; Hadjiconstantinou

2006; Reese and Zhang 2009; Cercignani and Lorenzani

2010; Pitakarnnop et al. 2010) have proposed some second-

order modifications and methods recently; to mention but a

few. However, there are large variations in the second-

order slip coefficient (Karniadakis et al. 2005; Barber and

Emerson 2006). The boundary conditions derived by

Deissler (1964), and the boundary conditions suggested by

Karniadakis et al. (2005) are the commonly applied sec-

ond-order slip boundary condition models, which also

provide temperature jump boundary conditions. Although
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many second-order models have been proposed, and some

have been demonstrated useful in increasing the range and

accuracy of the slip boundary condition representation of

rarefaction either experimentally or numerically, there is

insufficient experimental data to validate the use of any

particular second-order model over another at present.

It may be pointed out that most of the following state-

ments, formulas, and charts are valid only for long ducts.

The fluid flow behavior in the developing region differs

from that in the fully developed region. The parameter

L=ðDhReÞ is always a significant parameter in internal fluid

flows. The flow behaves differently and is dominated by

the different mechanisms as the parameter L=ðDhReÞ
changes. This effect of developing region is significant if

the microchannels are short. Details on slip flow in the

developing region can be found in Duan and Muzychka

(2010). Generally, the entrance region effects are less than

2% and can be neglected as L=ðDhReÞ� 1.

3 Second-order models

In the fluid flow and heat transfer literature the convention

is to use the hydraulic diameter. However, for noncircular

ducts, the question always arises of what to use as the

correct length scale. Although it is customary to use the

hydraulic diameter, this choice is widely believed to be

inappropriate. For noncircular geometries, it is desirable to

eliminate or reduce the effects of geometry such that the

general trends for all duct shapes may be easily modeled.

Muzychka and Yovanovich (2002), Duan and Muzychka

(2007a, 2010), and Duan and Yovanovich (2010) showed

that the square root of the cross-sectional area was a more

appropriate characteristic length scale than the hydraulic

diameter for non-dimensionalizing the laminar no-slip and

slip flow data. Recently, Duan (2012) reached the same

conclusion for turbulent flow. When
ffiffiffi

A
p

is used, the effect

of duct shape becomes minimized, and all of the data can be

predicted using a simple model based on the solution for

the rectangular duct. The definition of effective aspect ratio

is summarized in Table 1.

We may now briefly examine the first-order slip flow

solution for rectangular ducts. The friction factor and

Reynolds number product was presented by Ebert and

Sparrow (1965) and Duan and Muzychka (2007a):

The ratio of minor and major axes is e. The constant r
denotes tangential momentum accommodation coefficient,

which is usually between 0.87 and 1 (Rohsenow and Choi

1961). The eigenvalues, dn, can be obtained from

dn tan dn ¼ 1þ eð Þ= 4Kn�ð Þ. It can also be demonstrated

that Eq. 1 reduces to its no-slip flow limits as Kn* ? 0

(Duan and Muzychka 2007a):

fRe ffiffiffiA
p

� �

ns
¼ 12

ffiffi

e
p

1þ eð Þ 1� 6
P

1

n¼1

e
d5

n

tanh dn

e

� �

� 	 ð2Þ

Examination of the single-term solution reveals that the

single-term approximation is accurate enough for

engineering applications. The largest difference occurs

when e = 1, which is less than 0.7%. When greater

accuracy is desired, two terms are definitely enough due to

rapid convergence. Considering only the two terms of the

series, Eq. 2 gives:

fRe ffiffiffiA
p

� �

ns
¼ 12

ffiffi

e
p

1þ eð Þ 1� 192e
p5 tanh p

2e

� �

þ 1
243

tanh 3p
2e

� �� �
 �

ð2aÞ

The theory for continuum, slip, and free molecular

regimes is generally well developed (Kennard 1938;

Schaaf and Chambre 1958; Cercignani 1988; Gad-el-Hak

2001; Karniadakis et al. 2005; Kandlikar et al. 2006; Sone

2007; Li 2008). However, the theoretical basis and a

definitive picture of the transition regime is not very clear.

The transition regime is the most complicated domain for

modeling.

Analytical models derived using the first-order slip

boundary conditions have been widely shown to be rela-

tively accurate up to Knudsen numbers of approximately

0.1. For higher values of Knudsen number, the validity of

Navier–Stokes equations to rarefied gases can be improved

by using second-order slip boundary conditions and

appropriate selection of the slip coefficients. The results

fRe ffiffiffiA
p ¼

2 � A
P

dp
dz

� �

ffiffiffi

A
p

l�w

¼ 2

ffiffi

e
p

1þ eð Þ
P

1

n¼1

e sin2 dn

d4
n dnþsin dn cos dnð Þ

dn

e �
sin h dn

eð Þ
cos h dn

eð Þþ 4
1þeKn�dn sin h dn

eð Þ

� 	 :
ð1Þ
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reduce to first-order results upon neglecting the second-

order slip term as expected. In recent years, there has been

some success in the implementation of second-order slip

boundary conditions to extend the Navier–Stokes equations

into the transition regime. It is generally accepted that

second-order slip models can be used with considerable

success provided the appropriate (well-founded) second-

order slip coefficient is chosen (Hadjiconstantinou 2006;

Sone 2007; Cercignani and Lorenzani 2010; Lorenzani

2011; Karniadakis et al. 2005, to mention but a few).

The developed second-order slip models are preferable

since the difficulty and ‘‘investment’’ is completely negli-

gible compared with the cost of alternative methods such as

molecular simulations or solutions of Boltzmann equation,

which require great computational effort that is not justified

in practical calculations. Extending the range of applica-

bility of the Navier–Stokes equations beyond first-order

slip flow within acceptable error is desirable due to the

remarkable simplicity and significant computational effi-

ciency. For this reason, a variety of researchers have

attempted to develop high-order models which can be used

in the transition regime. Hadjiconstantinou (2006) verified

that when the Knudsen layers essentially cover the whole

physical domain, the second-order slip remains reasonably

accurate in predicting the stress field and bulk flow

velocity. It appears that the underlying Navier–Stokes

constitutive relation remains robust up to Kn & 0.4. Even

though the Kundsen layers penetrate to the middle of the

physical domain at higher Knudsen numbers, the second-

order slip model remains quantitatively accurate up to

Kn & 1.

In addition, there is no consensus as to whether the term

involving the accommodation coefficient (i.e., ð2� rÞ=r)

should be associated with both the first- and second-order

slip coefficients or whether it should only be associated

with the first-order term. This is of little concern for fully

diffusive boundaries but may result in significant discrep-

ancies in the case of incomplete momentum accommoda-

tion. It is assumed that the term involving the

accommodation coefficient ½ð2� rÞ=r� is associated with

both the first- and second-order slip coefficients for con-

venience in the present paper, which is consistent with

Karniadakis et al. (2005), Xue and Fan (2000), Jie et al.

(2000), and Cercignani and Lorenzani (2010).

Aubert and Colin (2001) completed an excellent work to

obtain the velocity distribution with Deissler second-order

slip boundary conditions in rectangular microchannels.

Aubert and Colin showed that the velocity distribution with

first-order slip boundary conditions, in the form of a single

Fourier series, does not converge with second-order

boundary conditions. Therefore, they proposed a new form

based on a double Fourier series (Carslaw and Jaeger

1959). As there is currently no sufficient experimental data

to validate the application of any particular second-order

model over another, the second-order slip boundary con-

ditions may be written in the following general form

(Aubert and Colin 2001):

wjy¼b¼� k
2� r

r
ow

oy

�

�

�

�

y¼b

� A2k
2 2� r

r

 �2
o2w

oy2

�

�

�

�

y¼b

þ1

2

o2w

ox2

�

�

�

�

y¼b

 !

ð3Þ

wjx¼a¼� k
2� r

r
ow

ox

�

�

�

�

x¼a

� A2k
2 2� r

r

 �2
o2w

ox2

�

�

�

�

x¼a

þ1

2

o2w

oy2

�

�

�

�

x¼a

 �

ð4Þ

The velocity distribution (Aubert and Colin 2001) and

average velocity are

wðx; yÞ ¼ � b2

l
dp

dz

X

1

i;j¼1

Aij cos ui

x

ae

� �

cos wj

y

b

� �

"

þ 2A2

4

1þ eð Þ2
Kn�2

#

ð5Þ

�wðx; yÞ ¼ � b2

l
dp

dz

X

1

i;j¼1

Aij

e sin
ui

e

� �

sin wj

uiwj

"

þ 2A2

4

1þ eð Þ2
Kn�2

#

ð6Þ

where ui and wj are eigenvalues and can be obtained from

the following equations, respectively (Aubert and Colin

2001):

4

1þ e
Kn�ui tan

ui

e
þ 2A2

4

1þ eð Þ2
Kn�2u2

i ¼ 1 ð7Þ

Table 1 Definitions of effective aspect ratio

Geometry Effective aspect ratio

Regular polygons e ¼ 1N� 4

Simple singly-connected e ¼ b
a

Trapezoid (including

approximate trapezoid) e ¼ 2b
aþc

� �n

þ aþc
2b

� �n
h i�1=n

n ¼ 1:7

Arbitrary triangle (including

approximate triangle)
e ¼ 2b

a

� �nþ 2a
b

� �n
 ��1=n
n ¼ 0:53

Double-trapezoid
e ¼ aþc

2b

� �nþ 1þc
a

2a
b

� �nh i�1=n
n ¼ 2:8

Rhombus e ¼ 2b
a

� �nþ 2a
b

� �n
 ��1=n
n ¼ 0:68

Annular sector e ¼ 1�r
X 1þrð Þ
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4

1þ e
Kn�wj tan wj þ 2A2

4

1þ eð Þ2
Kn�2w2

j ¼ 1 ð8Þ

and

The complete expression of the second-order velocity

distribution is complex and space consuming and the

analytical procedure will not be repeated here. Details can

be found in Aubert and Colin (2001). Upon obtaining the

second-order velocity distribution w(x, y) and mean

velocity �w, the friction factor and Reynolds number prod-

uct can be obtained

fRe ffiffiffiA
p ¼

2 � A
P

dp
dz

� �

ffiffiffi

A
p

l�w

¼ 4

ffiffi

e
p

1þ eð Þ
P

1

i;j¼1

Aij
e sin

ui
eð Þ sin wj

uiwj
þ 2A2

4

1þeð Þ2 Kn�2

" #

ð10Þ

The Poiseuille number reduction depends on the

geometry of the cross section and rarefaction. It is

convenient to express the Poiseuille number results by

the following relation:

PoL
PoLð Þns

¼ fReL
fReLð Þns

¼ 1

1þ a1Kn� þ A2a2Kn�2
ð11Þ

The relationship is applicable to arbitrary length scale

(e.g. Dh,
ffiffiffi

A
p

) because it cancels. One can use the

customary Dh if the value of fReDh
ð Þns is known. When

the second-order terms can be neglected, Eq. 11 reduces to

the first-order model (Duan and Muzychka 2007a):

PoL
PoLð Þns

¼ fReL
fReLð Þns

¼ 1

1þ a1Kn�
ð12Þ

The parameters a1 are a function of aspect ratio and an

accurate correlation was proposed (Duan 2011):

a1 ¼ 12� 10:598eþ 8:654e2 � 2:231e3 ð13Þ

For the simple duct shapes, a1 = 12 for the parallel

plates and a1 = 8 for the circular tubes.

We can solve for A2a2 given values of Kn* and Po/Pons

from Eq. 11. Thus

A2a2 ¼
Pons

Po � 1� a1Kn�

Kn�2
ð14Þ

The second-order slip coefficient A2 may be temporarily

assumed to have a value of unity for convenience in order

to obtain the analytical expression of parameter a2. The

same procedure is valid even if A2 = 1 since the product

of A2a2 is a constant for a specified geometry and

rarefaction (Kn*). It is clear that the accurate value of the

second-order slip coefficient A2 requires comparison with

precise experimental data, which do not currently exist for

various noncircular geometries. The early work by

Sreekanth (1969) on low pressure circular tube flow

demonstrated that the second-order slip coefficient A2 has

a value of 0.14 for nitrogen. The recent experimental work

by Maurer et al. (2003) on silicon microchannels

determined a value of 0.26 ± 0.1 for nitrogen and

0.23 ± 0.1 for helium. It is noted that the values of A2

are derived from mass flow rate measurements and not

from direct observations of slip velocity.

The parameters a2 are a function of aspect ratio and the

data points are fitted to a simple correlation as follows:

a2 ¼ 48� 112:7eþ 194:2e2 � 155:7e3 þ 42:66e4 ð15Þ

It is found that the maximum error caused by using these

values in Eq. 15 is less than 1.8%. Therefore, using the

simple expression Eq. 11, the Poiseuille number results can

be easily obtained to facilitate practical application for

almost all common circular and noncircular microchannels

and nanochannels as follows:

Aij ¼
1

u2
i þ w2

j

4 sin
ui

e

� �

sin wj

uiwj

þ 4A2

2

1þ e
Kn�

sin
ui

e

� �

cos wj

ui

þ
cos

ui

e

� �

sin wj

wj

" #( )

�
(

1

e
þ

sin
2ui

e

� �

2ui

2

4

3

5 1þ
sin 2wj

2wj

 !

þ 2A2

2

1þ e
Kn� cos2 wj

1

e
þ

sin
2ui

e

� �

2ui

2

4

3

5þ cos2 ui

e

� �

1þ
sin 2wj

2wj

 !!)�1

ð9Þ

0

@
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The maximum difference between the analytical solu-

tion of Eq. 10 and simple model of Eq. 16 is less than

1.2%.

The effects of slip are illustrated clearly by Fig. 1 which

plots the normalized Poiseuille number results as a function

of aspect ratio and the modified Knudsen number. It is

noted that there are large discrepancies on the value of the

second-order slip coefficient which is approximately

between -0.5 and 1.1 in the literature. The possible

explanation is the second-order slip coefficient is rarefac-

tion (Kn*) dependent and geometry-dependent. The present

choice A2 = 0.3 is only roughly consistent with experi-

mental results of Sreekanth (1969), Hsia and Domoto

(1983), Mitsuya (1993), Maurer et al. (2003), Ewart et al.

(2006, 2007a), and analytical results of Hadjiconstantinou

(2006) and Lockerby et al. (2004). It is seen that the nor-

malized Poiseuille number decreases with an increase in

the modified Knudsen number for all aspect ratios. The

normalized Poiseuille number decreases more significantly

for smaller aspect ratio possibly due to the larger average

wall velocity gradients. Figure 1 also illustrates that sec-

ond-order slip terms become gradually significant with an

increase in the modified Knudsen number and the Poiseu-

ille number is overestimated when the second-order terms

are not taken into account. This is consistent with the

experimental results of Sreekanth (1969), Maurer et al.

(2003), Colin et al. (2004), and Ewart et al. (2006, 2007a).

Rij et al. (2009) numerically investigated the frictional

and heat transfer characteristics of rarified flows in rect-

angular microchannels with the second-order slip boundary

conditions. The numerical results for the Poiseuille number

were calculated using a continuum-based CFD algorithm

modified with slip boundary conditions. The normalized

Poiseuille number results for the second-order Deissler slip

boundary conditions (A2 = 9/8) were presented for differ-

ent aspect ratios. Figure 2 demonstrates the comparison

between the proposed model and Rij et al. (2009) numer-

ical data for different aspect ratios rectangular micro-

channels. The model is in agreement with data from Van

Rij et al. within 1.5%.

Wang (2003a) presented an exact solution for the slip flow

in an equilateral triangle. The slip condition invalidates

almost all conformal mapping techniques and the exact

solutions for other relatively complex noncircular geome-

tries do not exist. Semi-numerical methods were employed

for slip flow in other duct cross sections. Wang (2003b)

studied slip flow in several noncircular ducts by eigenfunc-

tion expansion and point match. The eigenfunction
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expansion and point match is a technique to obtain approx-

imate solutions to Dirichlet’s problem by fitting a linear

combination of a finite number of harmonic functions (each

harmonic function is a solution to Laplace’s equation) to the

specified boundary conditions. Zhu et al. (2006) used

eigenfunction and integration which is similar to a Ritz

method. These approaches are general, applicable to many

irregular configurations although the procedure is relatively

complex and lengthy. Hooman (2008) also proposed an

approximate superposition approach for several noncircular

microchannels.

Morini et al. (2005) numerically studied the velocity

distribution in microchannels with trapezoidal (with an

apex angle x = 54.74� imposed by the crystallographic

morphology of the\100[ silicon) and hexagonal (double-

trapezoidal obtained by gluing together two trapezoidal

channels) cross section typical of microchannels. For the

trapezoidal microchannels, the aspect ratio b/a cannot

exceed the value of tg xð Þ=2, corresponding to the degen-

eration of the isosceles triangular ducts. In the case of a

double-trapezoidal cross section, the aspect ratio b/a ranges

between 0 (parallel plates) and 1.414 (rhombic configura-

tion). The channel height was employed as the length scale

to define the Knudsen number. The corresponding value of

a for trapezoidal and double-trapezoidal microchannels

was numerically determined and reported for different

aspect ratios.

Niazmand et al. (2008) numerically investigated slip flow

and heat transfer in trapezoidal microchannels. A specified

range of channel aspect ratios and side angles (x = 30�, 45�,

60�, 90�) are considered. The fully developed values of the

friction coefficients as a function of Knudsen number are

reported for different side angles and aspect ratios.

Varoutis et al. (2009) performed a numerical and exper-

imental study of gas flows through long channels of rectan-

gular, equilateral triangular, trapezoidal cross sections in the

whole range of the Knudsen number from the free molecular,

through the transition and slip regimes up to the continuum

regime. The numerical approach is based on the solution of

the Bhatnagar–Gross–Krook kinetic equation subject to

Maxwell diffuse-specular boundary conditions.

Shams et al. (2009) numerically examined fully devel-

oped slip flow in rhombus microchannels for different

aspect ratio (0.15 \ b/a \ 1). The momentum and energy

equations were solved by a finite volume method. The

effects of Knudsen number and channel aspect ratio on

Poiseuille number were reported.

The simple model of Eq. 11 can be applied to other

common geometries with first-order slip boundary condi-

tions, which are available in the literature. Figure 3 pre-

sents the comparison between the proposed model of

Eq. 11 and the analytical solution of elliptic ducts (Duan

and Muzychka 2007b), rectangular and annular ducts

(Duan and Muzychka 2007a), equilateral triangular ducts

(Wang 2003a), the numerical data of isosceles triangular,

rhombic, trapezoidal, double-trapezoidal and hexagonal

ducts (Morini et al. 2005), numerical data of trapezoidal

ducts for different side angles and aspect ratios (Niazmand

et al. 2008), numerical data of rectangular, equilateral tri-

angular, trapezoidal ducts (Varoutis et al. 2009), and

numerical results of rhombus ducts (Shams et al. 2009).

The model predictions are in agreement with all the

available slip flow data within 3.0%.

4 Flow rate and pressure distribution

As it is quite difficult to solve the Navier–Stokes equations

to determine the actual velocity distribution of the com-

pressible rarefied gas flow in noncircular microchannels,

the flow is assumed to be locally fully developed and

approximately isothermal. Compressibility effects enter

through state equation and continuity equation. In the fol-

lowing analysis for the pressure distribution and mass flow

rate in microchannel flows, momentum changes are

neglected as the pressure force is mostly utilized to over-

come the friction force against the walls, very little is spent

in accelerating the flow. The effects of the momentum

changes due to gas acceleration along the channel will

become gradually important when Mach number is

increased. Therefore, when the outlet Mach number is

larger than 0.3, the momentum flux correction should be

taken into consideration. Details can be found in Duan

(2007) and Duan and Muzychka (2007c).

4.1 Mass flow rate

The mass flow rate in the microchannel is given by using

the equation of state p = qRT, and the developed simple

model of Eq. 11 (of course, one can also use other length
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scales such as customary Dh if the value of fReDh
ð Þns is

known). Combining these expressions yields:

_m ¼ q�wA ¼ qA
2 � A

P
dp
dz

� �

ffiffiffi

A
p

lfRe ffiffiffiA
p

¼ �
2 A

P A
ffiffiffi

A
p

lRT fRe ffiffiffiA
p

� �

ns

dp

dz
p 1þ a1Kn� þ A2a2Kn�2
� �

ð17Þ

We can use pKn = poKno from the kinetic theory of

gases since pKn is constant for isothermal flow. Integrating

Eq. 17 from z = 0 to local position z = z, we obtain

_m¼q�wA¼
p2

o
A5=2

P

lRTz fRe ffiffiffiA
p

� �

ns

� p2
i
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�
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þ2a1Kn�o
pi

po
�pz
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þ2A2a2Kn�2o ln
pi

pz

� 	

ð18Þ

Letting z = L gives:

_m ¼ q�wA ¼
p2

o
A5=2

P

lRTL fRe ffiffiffiA
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� �
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ð19Þ

It can be demonstrated that the limit of Eq. 19 for

e ? 0 corresponds to parallel plates channel

_m ¼ 2ab3p2
o

3lRTL

p2
i

p2
o

� 1þ 24Kn�o
pi

po
� 1

 �

þ 96A2Kn�2o ln
pi

po

� 	

ð20Þ

Also, the limit of Eq. 19 for e ? 1 approximately

reduces to circular tubes

_m¼ pD4p2
o

256lRTL

p2
i

p2
o

� 1þ 16Kn�o
pi

po
� 1

 �

þ 32A2Kn�2o ln
pi

po
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ð21Þ

It is convenient to define the dimensionless mass flow

rate as

m� ¼
_mlRTL fRe ffiffiffiA

p
� �

ns

p2
o

A5=2
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i
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� 1þ 2a1Kn�o
pi

po
� 1

 �

þ 2A2a2Kn�2o ln
pi

po

� 	

¼ 2Dp

po
1þ Dp

2po
þ aKn�o þ A2a2Kn�2o

ln 1þ Dp
po

� �

Dp
po

0

@

1

A

ð22Þ

When the parameter Dp=po 	 1, the effect of

compressibility is negligible. When Kn�o 	 1, then the

rarefaction effect is negligible. When both parameters are

sufficiently small, the general relation becomes

_m ¼ q�wA ¼ 2qA5=2Dp

lPL fRe ffiffiffiA
p

� �

ns

ð23Þ

which is the relation for flow of an incompressible fluid

without slip.

The mass flow rate model of Eq. 22 has been examined

using experimental data of Arkilic et al. (1997). Figure 4

presents the normalized mass flow rate of Eq. 22 as a

function of the pressure ratio. It is found that the predic-

tions agree with experimental data by Arkilic et al. within

7.8%. The maximum deviation occurs for small pressure

ratios, which may be due to experimental errors. An

excellent agreement between the second-order model and

experimental results is obtained by choosing the second-

order slip coefficient A2 = 0.3. Furthermore, the choice

A2 = 0.3 is approximately consistent with experimental

results of Sreekanth (1969), Hsia and Domoto (1983),

Mitsuya (1993), Maurer et al. (2003), and Ewart et al.

(2006, 2007a). For comparative purposes the theoretical

curve for Kn = 0 is shown. It is seen from this figure that

there is a significant mass flow rate increase due to rare-

faction effects. The experimental data and model predic-

tions are in good agreement.

The no-slip mass flow rate is given from Eq. 19

_mns ¼ q�wA ¼
p2

o
A5=2

P

lRTL fRe ffiffiffiA
p

� �

ns

p2
i

p2
o

� 1

 �

ð24Þ

The effect of rarefaction may be illustrated clearly by

dividing the mass flow rate of Eq. 19 by the no-slip mass

flow rate of Eq. 24
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Um ¼
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¼ 1þ 2a1Kn�o
pi

po
þ 1

þ
2A2a2Kn�2o ln pi

po

p2
i

p2
o
� 1
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Figure 5 shows the mass flow rate ratio as a function of

the inlet and outlet pressure ratio. The outlet modified

Knudsen number Kn�o is equal to 0.1, and two typical

values of the aspect ratio are considered (e = 0.025 is close

to parallel plates). Figure 5 demonstrates that the mass flow

rate is underpredicted when the second-order terms are not

taken into account. This result is in agreement with

precious studies for rarefied gas flows by Sreekanth (1969),

Mitsuya (1993), Maurer et al. (2003), Colin et al. (2004),

Ewart et al. (2006, 2007a). It is seen that the rarefaction

increases the mass flow rate.

4.2 Pressure distribution

The local pressure ratio can be related to the inlet and

outlet pressure ratio and the local relative position. Com-

bining Eqs. 18 and 19 and solving for pz=po, we obtain the

implicit expression for pressure distribution in noncircular

microchannels:
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i

p2
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o

þ 2a1Kn�o
pi

po
� pz

po

 �
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po

� 	
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Upon obtaining the pressure distribution pz=po, the

deviations of the nonlinear pressure distribution from the

linear distribution is given by:

pz � plinear

po
¼ pz

po
� pi

po
� pi

po
� 1

 �

z

L

� 	

ð27Þ

Taking the derivative of Eq. 27 and setting it equal to

zero, the location of the maximum deviation from linearity

can be obtained. The typical location of maximum

deviation from linearity is between 0.5 and 0.6 for

practical applications (moderate inlet and outlet pressure

ratios) (Duan 2007).

When the second-order terms can be neglected, Eq. 26

reduces to the following explicit form for pressure distri-

bution (Duan and Muzychka 2007a):

pz
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pi

po
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z

L

s

ð28Þ

It is seen from Eq. 28 that the pressure distribution is

insensitive and nearly independent of various geometries at

the same inlet and outlet pressure ratio. Figure 6 presents

the pressure distribution for different slip boundary

conditions. The analytical pressure distribution with the

second-order slip boundary conditions has lower values

than those from first-order case. The pressure distribution is

overestimated if only first-order terms are considered.

However, the difference between the first-order and

second-order is not very significant. The difference

increases with an increase in the Knudsen number.

The pressure distribution applies to circular and non-

circular microchannels through the dimensionless param-

eters a, Kn�o, pi=po. The pressure distribution exhibits a

nonlinear behavior due to the compressibility effect. The

deviations of the pressure distribution from the linear dis-

tribution decrease with an increase in the Knudsen number.

The nonlinearity increases as the pressure ratio increases.

The nonlinearity decreases if the second-order terms are
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taken into account. The effects of compressibility and

rarefaction are opposite as Karniadakis et al. (2005) and

Kandlikar et al. (2006) demonstrated. When the pressure

ratio is very small, the pressure distribution is nearly linear,

which is close to an incompressible flow.

Karniadakis et al. (2005) simulated nitrogen flow in a

long microchannel which is 1.25 lm high and 40 lm wide.

Figure 7 shows the deviation from linear pressure distri-

bution comparison between the proposed second-order

model of Eq. 27 and numerical simulation results by

Karniadakis et al. Eq. 27 agrees with simulation results by

Karniadakis et al. (2005) very well.

It is well known that the curvature of the pressure dis-

tribution is convex. Nevertheless, it is noteworthy from

second-order model of Eq. 26 that the curvature of the

pressure distribution gradually changes from widely known

convex to concave with an increase in the Knudsen num-

ber. This phenomenon has also been observed in the lat-

tice-Boltzmann simulations of fluid flows in MEMS by Nie

et al. (2002). This peculiar phenomenon requires further

experimental validation. Taking the derivative of Eq. 26

twice with respect to z and setting d2pz=dz2 equal to zero,

the condition of zero curvature (linear) of the pressure

distribution can be obtained as

p2
z

p2
o

� A2a2Kn�2o ¼ 0 ð29Þ

It is seen that the curvature is always convex by using

the first-order model since Eq. 29 pz=po ¼ 0ð Þ cannot be

satisfied. Equation 26 also clearly theoretically explains the

reason why the pressure distribution exhibits a nonlinear

behavior due to the compressibility effect and the pressure

distribution (pz=po) approaches the linear asymptote with a

decrease in the pressure ratio but cannot be really linear by

using the first-order model. It is well known that at higher

Knudsen number the curvature in the pressure distribution

is much smaller, with linear pressure distribution observed

as Kn [ 10 (Knudsen 1909; Kennard 1938; Karniadakis

et al. 2005). Therefore, Eq. 29 further indicates that at very

large Knudsen number the second-order slip coefficient A2

should gradually decrease with an increase of the Kundsen

number.

It is also widely known from experiments in the transition

regime by Knudsen (1909) that there is a minimum in the

flow rate in channel flows at Kn & 0.5. Note that the

hydraulic diameter is employed as the characteristic length

scale used to define the Knudsen number in the present

study. If the channel height is used as the characteristic

length scale to define the Knudsen number, Kn & 1. This

peculiar behavior has been studied by many researchers both

theoretically and experimentally (Cercignani and Daneri

1963; Tison 1993; Karniadakis et al. 2005; Hadjiconstanti-

nou 2006; Ewart et al. 2007b; Marino 2009; Pitakarnnop

et al. 2010; Perrier et al. 2011). The volumetric flow rate is

presented at the Knudsen number in the channel (corre-

sponding to the pressure p). The dimensionless volumetric

flow rate for arbitrary Knudsen numbers is obtained as:

�Q ¼
_Qp

� dp
dz 2bð Þ2

ffiffiffiffiffi

RT
2

q ¼ �w2bp

� dp
dz 2bð Þ2

ffiffiffiffiffi

RT
2

q ¼ �wp

� dp
dz 2b

ffiffiffiffiffi

RT
2

q ð30Þ

where _Q is the volumetric flow rate per unit width of the

channel. After substitution for �w and using Eq. 11 we

obtain the following relation:

�Q ¼ p

� dp
dz 2b

ffiffiffiffiffi

RT
2
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2 � A
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dp
dz
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lfReDh
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2

q

2 A
P Dh

l fReDh
ð Þns
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Multiplying by Kn�=Kn�, we obtain

�Q ¼ pKn�

2b
ffiffiffiffiffi
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2

q

2 A
P Dh

l fReDh
ð Þns

1þ a1Kn� þ A2a2Kn�2

Kn�

¼ C
1

Kn�
þ a1 þ A2a2Kn�

 �

ð32Þ

Because the dimensionless volumetric flow rate �Q ¼
�Q Knð Þ in the transition regime varies slowly about its

minimum value at Kn & 0.5 as seen from experimental data

of Dong (Cercignani and Daneri 1963), Tison (1993), Ewart

et al. (2007b), Marino (2009), and Perrier et al. (2011), the

Knudsen’s minimum is not very sensitive to the choice of

second-order slip coefficient A2. It is seen that the Knudsen’s

minimum can be predicted with the second-order model by

choosing the appropriate second-order slip coefficient

(A2 ffi 0:083 for parallel plates by differentiating Eq. 32

with respect to Kn* and letting it equal to zero. As mentioned
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above, since the Knudsen’s minimum is insensitive to the

selection of second-order slip coefficient, A2 ffi 0:05� 0:3).

Furthermore, it is worth noting from Knudsen’s experiment

that the nondimensionalized volumetric flow rate data are

presented at the mean pressure between the inlet and outlet in

the channel (corresponding to the average Knudsen number).

Therefore, the Knudsen value of the occurrence of

Knudsen’s minimum is really approximately equal to 1 and

should depend on the pressure ratio and the effective aspect

ratio. The Knudsen number of the occurrence of Knudsen’s

minimum decreases with a decrease in the pressure ratio.

Equation 32 analytically indicates that the Knudsen’s

discovery can be captured by the Navier–Stokes equations

with second-order slip boundary conditions. This is

consistent with the conclusion of Karniadakis et al. (2005),

Hadjiconstantinou (2006), and Dongari et al. (2007) for

parallel plates. Navier–Stokes equations with second-order

slip model can be used to simulate a relatively large range of

Knudsen number. It is also noticed from Eq. 32 that if the

first-order slip model is used, the dimensionless volumetric

flow rate decreases monotonically with an increase of the

Knudsen number. Therefore, the Knudsen’s minimum

cannot be captured by employing the first-order slip model.

Knudsen found that the dimensionless volumetric flow

rate �Q approached to a constant value in the free molecular

flow regime (Knudsen 1909; Kennard 1938; Karniadakis

et al. 2005). This means by examining Eq. 32 that the value

of A2Kn� asymptotically approaches a constant value in the

free molecular flow regime. Therefore, Eq. 32 once again

indicates that the second-order slip coefficient A2 should

gradually decrease with an increase of the Kundsen number

at very large Knudsen numbers.

In the transition regime, the available experimental data

are quite insufficient. Moreover, there is uncertainty about

the exactitude of the available data from limited different

sources. A simple model based on the available experi-

mental data (Sreekanth 1969; Maurer et al. 2003; Colin

et al. 2004; Ewart et al. 2006, 2007a, b; Varoutis et al.

2009; Pitakarnnop et al. 2010; Perrier et al. 2011; Fissell

et al. 2011), the Boltzmann solution (Ohwada et al. 1989),

the solution of the BGK model kinetic equation (Loyalka

1975; Loyalka et al. 1976; Sharipov and Seleznev 1998;

Sharipov 1999), and DSMC simulation results (Karniada-

kis et al. 2005) for gas flows through long circular, parallel

plates, rectangular, triangular, trapezoidal, elliptical chan-

nels in the literature is proposed as a quite accurate

approximation of A2 in the transition regime:

A2 ¼ 0:185� 0:127 ln Kn�ð Þ
þ 0:0388 ln Kn�ð Þð Þ2�0:00435 ln Kn�ð Þð Þ3 ð33Þ

For example, Fig. 8 shows the dimensionless flow

rate comparison between the proposed second-order

model for parallel plates, �Q ¼
ffiffi

p
p

24
1

Knþ 12þ 48A2Kn
� �

h i

and the solution of the linearized Boltzmann equation for a

hard-sphere gas (Ohwada et al. 1989), experimental data

from Ewart et al. (2007b) (the aspect ratio is 0.019), the

numerical solution of the BGK model associated with a

Maxwell diffuse-specular reflection law (Loyalka 1975),

and the numerical solution of the BGK model equation in

the rectangular channel with an aspect ratio of 0.01

(Sharipov 1999), where the rarefaction parameter d is

inversely proportional to the Knudsen number. The second-

order model performs quite well in the transition regime

even further bordering the free molecular regime. As

shown in Fig. 8, the dimensionless flow rate in the

transition regime varies slowly about its minimum value.

Very few measurements on rarefied gas flow through

rectangular channels have been made. Rarefied gas flow
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Fig. 9 Nondimensional flow rate as a function of the Knudsen

number in a square channel
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Fig. 8 Nondimensional flow rate as a function of the Knudsen

number
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through a long square channel are computed using the BGK

model of the Boltzmann equation and diffuse scattering from

the walls (Loyalka et al. 1976; Sharipov 1999). The proposed

second-order model for a square channel, �Q ¼
ffiffi

p
p

2�14:227

h

1
Knþ 7:83þ 16:46A2Kn
� �

� is compared with the available

numerical data as shown in Fig. 9. It is seen that the Knudsen

minimum exists in the transition regime at any aspect ratio.

The present work provides a simple and accurate way to

compute rarefied gas flow in a channel.

5 Conclusion

This paper investigated gaseous flow in noncircular mi-

crochannels. It extended previous studies to the transition

regime by employing the second-order slip boundary

conditions for gaseous flows in microchannels. A simple

model for the normalized Poiseuille number was devel-

oped. The accuracy of the developed model for the nor-

malized Poiseuille number was found to be within 3% for

all common duct shapes which are available in the litera-

ture. As in slip and transition regimes no solutions or

tabulated data exist for most geometries, this developed

model fills this void. This developed model can be used to

easily predict the Poiseuille number, mass flow rate, tan-

gential momentum accommodation coefficient, pressure

distribution, and pressure drop (Duan 2011) of gaseous

flow in circular and noncircular microchannels such as

rectangular, trapezoidal, double-trapezoidal, triangular,

rhombic, hexagonal, octagonal, elliptical, semielliptical,

parabolic, circular sector, circular segment, annular sector,

rectangular duct with unilateral elliptical or circular end,

annular, and even comparatively complex bent microducts

and nanoducts. The model for normalized Poiseuille

number can also be utilized to predict Poiseuille number,

flow rate, and pressure drop for liquid slip flow in nano-

channels. The shape dependence has been minimized and

can be nearly neglected for the practical engineering

design. This weak shape dependence is valuable because

perfect channels are rarely achieved in engineering prac-

tice. The similar method can be applied to associated

gaseous flow heat transfer problem in the future work. It is

noteworthy that the developed model for the normalized

Poiseuille number is independent of the characteristic

length scale used to define the Reynolds number.

It has been shown that the Poiseuille number is over-

estimated and the mass flow rate is underpredicted when

the second-order terms are not taken into account. The

Knudsen’s minimum can be predicted with the second-

order model and cannot be captured by only employing the

first-order slip model. The Knudsen number of the occur-

rence of Knudsen’s minimum decreases with a decrease in

the inlet and outlet pressure ratio. The compressibility and

rarefaction effects on mass flow rate and the curvature of

the pressure distribution by employing first-order and

second-order slip flow models are analyzed and compared.

The reason why the pressure distribution exhibits a non-

linear behavior is theoretically explained. The condition of

linear pressure distribution is given. The developed second-

order slip flow models can be reduced to the first-order

models by neglecting the second-order terms.

It is noted that there are large divergences on the value

of the second-order slip coefficient which is typically

approximately between 0.1 and 1.1. It is reasonable that the

second-order slip coefficient is positive because the

Knudsen’s minimum cannot be captured by Eq. 32 if

A2 B 0. It is apparent that there is a need for precise

experimental data in a wider range of the Knudsen number

to address the measurement of the velocity profile within

the Knudsen layer. Experimental velocity data in the wall

adjacent layer would be invaluable in helping choose

appropriate second-order slip coefficients. Also, there is a

clear need for experimental investigations in order to

determine whether the second-order slip coefficient is

Knudsen number (rarefaction) dependent and geometry-

dependent. These experimental results will help explain the

reason why there are large differences on the value of the

second-order slip coefficient. It should be reasonable (not

strange) that various researchers proposed different second-

order slip coefficients because the values are naturally

different in different Knudsen number regimes. The sec-

ond-order slip coefficient A2 should smoothly vary

(increase) from widely known nearly zero in the slip

regime to an appropriate value (approximately 0.3–0.5

based on limited experimental data (Sreekanth 1969;

Maurer et al. 2003; Colin et al. 2004; Ewart et al. 2006,

2007a, b; Varoutis et al. 2009; Perrier et al. 2011; Fissell

et al. 2011 and most theoretical results) in the transition

regime, and then gradually decrease and approach zero

with an increase of the Kundsen number as indicated from

Eqs. 29 and 32. In other words, maybe there is a maximum

in second-order slip coefficient A2 near the boundaries

between slip and transition regime. It could be rational

since the transition regime is a varying mixture of different

transport mechanisms and the mixed degree relies on the

magnitude of the Knudsen number.

Extending the range of applicability of the Navier–

Stokes equations beyond the first-order slip flow is desir-

able due to the simplicity and significant computational

efficiency. Navier–Stokes equations with second-order slip

models can be used to predict quantities of engineering

interest such as Poiseuille number, flow rates, pressure

distribution, and pressure drop for a large range of Knudsen

number. The appropriate or effective second-order slip

coefficients include the contribution of the Knudsen layers
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in order to capture the complete solution of the Boltzmann

equation for the mass flow rate (Hadjiconstantinou 2006;

Sone 2007; Cercignani and Lorenzani 2010; Lorenzani

2011; Karniadakis et al. 2005). The appropriate or effective

second-order slip coefficients can provide accurate average

velocity and capture many nonequilibrium effects in the

transition regime as shown in Figs. 8 and 9. To conve-

niently bridge kinetic theory and conventional fluid

dynamics in the transition regime is completely possible.

The extension of the second order in the high Knudsen

number regime is a scientific speculation without strictly

theoretical proof since theoretical verification is an extre-

mely hard task. However, the well-founded second-order

slip coefficient A2 is not constant and gradually decreases

and approach zero with an increase of the Kundsen num-

ber. The appropriate or effective second-order slip coeffi-

cients can be obtained by comparing the second-order

models with experimental data, the Boltzmann solution,

DSMC calculation results, BGK simulation results, and

other existing theories. The excellent agreement for the

mass flow rate can be obtained with experimental data,

DSMC calculation results, the Boltzmann solution, BGK

simulation results, other theoretical approaches (Sreekanth

1969; Maurer et al. 2003; Colin et al. 2004; Ewart et al.

2006, 2007a, b; Varoutis et al. 2009; Pitakarnnop et al.

2010; Perrier et al. 2011; Fissell et al. 2011; Loyalka 1975;

Loyalka et al. 1976; Ohwada et al. 1989; Sharipov and

Seleznev 1998; Sharipov 1999; Karniadakis et al. 2005;

Hadjiconstantinou 2006; Cercignani and Lorenzani 2010)

without involving any kind of complexities. Undoubtedly,

the great advantages of the second-order models are

remarkable simplicity and distinct computational effi-

ciency. To extend the applicability of the continuum

description is significantly more efficient compared to

molecular-based approaches.

The theoretical basis and a definitive picture of the

transition regime is not very clear. Therefore, the transition

regime is the most challenging to model. The experimental

study and molecular-based simulation previously have

been confined to simple geometries such as circular tubes

and parallel plates mainly due to the rarefaction effects,

which make this particular gas flow problem even more

complicated. A survey of the literature indicates a shortage

of information for most noncircular geometries. There

currently is no published model for noncircular geometries

which can be utilized by the research and design commu-

nities. Further experimental verification of the models is

strongly required. More realistic models (more appropriate

second-order slip coefficients) should be developed in

future work if the present models are found to be

insufficient.

The developed models are useful for the following

reasons: (1) an indication of the effect of various

independent parameters such as the tangential momentum

accommodation coefficient, the second-order slip coeffi-

cient, Knudsen number, pressure ratio, pressure drop, and

geometries; (2) a weak function of the duct shape; (3) an

indication of trends expected from related numerical data

and future experiments; (4) very simple and easy to utilize

by the research and design communities (a core objective

in engineering practice); and (5) a demonstration that with

some relatively simple ideas from knowledge, observation,

and intuition, one can predict some fairly complex flows

(making the complex simple without losing the essence).
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