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Abstract Particle tracking has become an increasingly

useful tool in microfluidics and biophysics, allowing mea-

surement of microrheology, local structure, and flow. We

introduce a novel, automated approach to analyze single-

particle trajectories with transient elements, based on

image-processing approaches and physical analysis of

probe motion. In many physical and active biological sys-

tems, such as living cells, probe particles experience ther-

mally mediated Brownian motion combined with active

transport processes that can lead to transient-trajectories of

local diffusion and trapping, punctuated by segments of

active transport. Analyzing such a trajectory as a single unit

masks the intermittent nature of the motion. Moreover,

directly applying the generalized Stokes–Einstein relation

in out-of-equilibrium systems is incorrect and returns

inaccurate rheological parameters. We present an auto-

mated image-processing-based method to identify and

segment transient trap-escape trajectories, allowing quan-

titative analysis of each segment. We define and discuss

effects of controlling parameters, such as particle size and

camera frame rate. Our algorithm provides a general and

automated method to segment and analyze transient ele-

ments in trajectories of single particles, which can be

applied to many different experiments. Our image-based

approach allows identification of trapping segments, unbi-

ased by specific step sizes within those traps or the mech-

anism driving those steps. As an example, we successfully

apply this method to experiments of laser tweezers trapped

particles and show that trajectory segmentation allows us to

calculate both trap and fluid parameters. We accurately

identify a round trap, calculate the trap stiffness at

3.1 pN/lm, and find that significant local heating reduces

fluid viscosity.

Keywords Single particle tracking � Trajectories with

transient elements � Microrheology � Cell mechanics

1 Introduction

Particle tracking is utilized in several fields, such as single-

molecule mechanics, live-cell mechanics, and drug deliv-

ery. Particle motion can reveal interactions with the

microenvironment, transport mechanisms, and local fluid

mechanics and rheology. The mean-square displacement

(MSD) (Mason and Weitz 1995; Weihs et al. 2006) is a

typical indicator for particle dynamics. However, the MSD

may be misleading: in many experiments transient-trajec-

tories occur, where particles change mode-of-motion dur-

ing the observation time. Transients of local diffusion in

cages punctuated by segments of active transport were

observed in complex materials (Weeks et al. 2000), within

yeast cells (Golding and Cox 2006; Weber et al. 2010; Jeon

et al. 2011), within living mammalian cells (Suh et al.

2004; Bronstein et al. 2009), or on mammalian cells

(Bursac et al. 2005). Analyzing an entire trajectory that

exhibits transient elements, i.e., by time-averaging the

steps, masks the motion’s intermittent nature and can lead

to artifacts and misinterpretation (Weihs et al. 2007).

Moreover, trajectories with similar MSD may in fact result

from different transport mechanisms, and are not suitable

for ensemble averaging or grouped analysis. Hence,

approaches to reliably analyze transient single-particle

trajectories are crucial, where transient elements can be

segmented. Those will reveal mechanisms driving particles
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transport and structural features of the fluid. Here, we

provide an automated approach to identify and segment

transient-trapping trajectories. We successfully apply this

approach to experiments using laser tweezers.

In complex fluids, the MSD is typically proportional to

the observation time: h|r(t ? s) - r(t)|2i * sa with an

MSD scaling exponent, a, that indicates the mode-of-

motion, which is in general referred to as anomalous dif-

fusion (Saxton and Jacobson 1997; Metzler and Klafter

2000; Weihs et al. 2006). For free diffusion in a non-active

system, the exponent is unity, while for hindered, sub-

diffusive motion or super-diffusive active transport it is

0 B a\ 1 and 1 \ a B 2, respectively. However, the

MSD cannot distinguish the underlying transport mecha-

nisms leading to the observed exponents (He et al. 2008;

Burov et al. 2011). Moreover, the MSD does not always

accurately reflect the mode-of-motion or existence of

concurrent transport mechanisms. For example, diffusive-

like motion with a = 1 has been observed in active

microtubule-fluctuations in myosin-driven actin networks

(Brangwynne et al. 2008). In addition, transient-trapping

trajectories erroneously exhibit an a = 1, while each seg-

ment accurately depicts caging (Weihs et al. 2007). We

have recently shown that displacement-moments other than

the second can reveal concurrent, same time-scale transport

mechanisms (Gal and Weihs 2010), however, segmentation

is still missing. In some cases, mechanistic origin of caging

can be analytically described (Powles et al. 1992) and

caging identified (Fujiwara et al. 2002; Reuveni et al.

2010). However, that approach is not generally applicable,

for example in living cells, where a variety of (undeter-

mined) forces may drive particle motion simultaneously. A

noteworthy approach for detecting active- and passive-

transients in intracellular particle motion has recently been

provided (Arcizet et al. 2008), however, that does not apply

universally (Gal and Weihs 2010) and typically requires

user intervention.

Here, we present an automated analysis technique for

transient-trapping trajectories, where the algorithm identi-

fies and segments trajectory steps in traps from those of

escape from the traps. We employ image-processing

techniques to identify trapping. Our approach eliminates

the need to predefine time-dependent step sizes and

directionality within the trap, only requiring available

experimental parameters alongside a lower limit for trap-

to-particle ratio and time-in-trap. Our image-based

approach allows identification of trapping segments,

unbiased by specific step sizes within those traps or the

mechanism driving those steps. Following trajectory seg-

mentation by image-processing, we analyze escape and

trapping trajectory step-segments separately to obtain

controlling parameters; those include: sample viscosity,

trap stiffness, and cage size, while other parameters can be

added as required. Our method is generally applicable,

requiring minimal user input and intervention. We apply

the algorithm to experiments, accurately detecting a cir-

cular laser tweezers trap and calculating the trap stiffness

and surrounding fluid viscosity from the segmented tra-

jectory. Such segmentation could, for example, greatly

enhance the recent important experiment on diffusion of

stiff filaments (Fakhri et al. 2010) allowing more accurate

measurement of reptation and disengagement times.

2 Methods

We develop an algorithm for automated single-particle

analysis, separating transient regimes of local particle-

trapping and regimes of escape from those traps. We use

simulated trajectories where trap locations are known and

can thus accurately determine trap step-density for differ-

ent conditions. We portray each trajectory as an image of

the travelled locations and determine the density of steps in

a trap relative to a non-trap location; regional ‘‘hot-spots’’,

where there are many steps, are likely candidates for traps.

We then employ image-processing techniques to identify

the regions of trapping using a cutoff threshold, optimally

determined for each trajectory in a wide-range of system

and experiment conditions. Following that we determine

the functional dependence of this threshold on system and

experimental parameters. It is important to note that by

analyzing the trajectories as images we disregard the time-

dependence of the step locations; those are reintroduced at

the end. The simulations, algorithm, and analysis were all

developed and optimized in the MATLAB 2010a envi-

ronment (Mathworks, Natick, MA).

To develop and optimize our algorithm, we generate

trajectories with transients of diffusion in hard-edged cages

and escape from those cages by diffusion combined with

convection. The problem may also be mathematically

formulated by combining the Langevin equations of

motion that describe particle dynamics (Mason and Weitz

1995) with a trap potential and convective forcing term.

However, in the general case, the trap potential is unknown

and escape may not be by convection. Those equations

would be difficult to solve for a general condition. Hence,

as a first approximation we employ simplified simulations

of trapping and escape and proceed to show how the

approach is applicable in more general experimental con-

ditions. We use a modified version of previously described

simulations (Weihs et al. 2007). Free diffusion within traps

is expected when no interaction with the microenvironment

occurs and is typically the desirable experimental situation

(Valentine et al. 2004). Convection was added to escape

segments to ensure trap-partition for algorithm optimiza-

tion and is discussed in more detail later; convective speed
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is not part of the algorithm parameters and trap separation

is not required during experimental application.

2.1 The simulations

Trajectories are simulated by cycles of diffusion within a

hard-edge trap and subsequent diffusive and convective

escape (see Fig. 1a); simulations are described in detail in a

previous study (Weihs et al. 2007). Trapping cycles sim-

ulate conditions where particles diffuse freely within a

confined region and when an edge is encountered elastic

return ensues. In many biological and physical systems the

suspending fluid is water, hence we expect to measure

diffusion within a Newtonian fluid when particles are small

relative to the any network mesh. Diffusion is produced in

both trapping and escape phases by generating steps with a

normal distribution; those have a mean of 0 and variance of

1 for a narrow distribution (generated with the randn

function in MATLAB). The size of a single step at time,

s (e.g., 1/frame rate) in a Newtonian liquid is defined by the

Stokes–Einstein relation (Stokes 1856; Einstein 1956) and

is detailed by (Weihs et al. 2007): hDr2(s)i = 2kBTs/

3plRparticle, with Bolzmann’s constant, kB, constant abso-

lute temperature, T, particle radius, Rparticle, and viscosity,

l. Diffusing particles become trapped within polygonal

cages. The cages are randomly generated polygons defined

by 15 vertices with a user-defined average radius (see inset

Fig. 1); this is in contrast to the original simulations, where

simple circular cages were used. The polygonal cages

provide a rounded but randomized trap shape. Such traps

have are typically observed experimentally by particle

tracking in biological, engineering, and food systems

(Weeks et al. 2000; Suh et al. 2004; Bursac et al. 2005;

Cohen and Weihs 2010). The hard trap-edge results in

steps being cut short when an edge is encountered and the

next step being directed toward the center, with some

randomization.

The escape process is generated as Brownian motion

concurrent with convection, where escape time is constant

and convective speed is pre-defined with random direction in

each cycle. To obtain the convective, direction escape, we

sum in each frame a diffusive step and a convective step. The

diffusive step is generated from the normal distribution and

has random direction. To that we add in each frame a con-

vective step composed of a constant speed, e.g., 3 lm/s will

be 0.1 lm in a single frame at 30 fps. The convection is

unidirectional, with a random albeit constant direction for

each escape segment. Convective regimes are short relative

to trapping regimes, 10–30% of the total trajectory steps. All

simulated trajectories have four non-overlapping traps each,

as a consistent basis for algorithm optimization. Hence, the

overall trajectory time is proportional to the time spent in

each trap, where the maximal trajectory time was 60 s.

The time-averaged MSD, hDr2(s)i = h[x(t ? s) -

x(t)]2 ? [y(t ? s) - y(t)]2i, does not correctly depict the

time-dependent motion of the particles when transient

elements are present; the angular brackets here represent

time average. Figure 1b shows the MSD of the entire tra-

jectory, which does not readily correlate to trajectory fea-

tures, such as trapping. Conversely, when analyzing

trapping segments separately, the caged nature of the

motion is apparent. That bias in analysis would only be

enhanced if many particles were also ensemble averaged

together following the time average, losing the ability to

reveal underlying mechanisms of motion and structural

features from the MSD.

Fig. 1 Simulated transient trap-escape trajectories, where particle

radius 50 nm, liquid viscosity at 509 water at 37�C, and 30 fps.

a Representative simulated trajectory. Particle becomes transiently

trapped in a region for approximately 10 s and escapes by diffusion

combined with 3 lm/s convection for 1.3 s. Inset shows zoom in of a

single trap, where interactions with the hard edges are apparent.

b Mean-square displacement of the entire trajectory (top, blue) and

each of the four traps (bottom, red overlapping plots). Analysis of the

entire trajectory masks the caging, in contrast to analysis of each

individual segment (color figure online)
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3 Algorithm development, testing, and application

3.1 The trap-identification algorithm

We use image-processing techniques to identify locations

of transient-traps. Figure 2 shows a representative simu-

lated trajectory and iterative determination of the optimal

trap-identification threshold. Initially, we rescale each

simulated trajectory-image to a 600 9 600 matrix, for

uniformity. On the rescaled image-matrix of particle

locations we apply an averaging filter with a 14 9 14

window size; that was determined as the optimum for the

simulated trajectories (data not shown). Filtration provides

a density image, where ‘‘hot-spots’’ indicate high step-

density (see Fig. 2b). Hot-spots indicate where a particle

step is within a (known) simulated trap. In many cases, a

particle samples only part of the trap, e.g., due to short

time-in-trap or residence time; in those cases we do not

expect to identify the entire simulated trap. Hence, we

obtain average thresholds inside and out of traps, which we

then iterate between to determine the optimal threshold.

Quality of trap determination is defined by the number of

pixels where trap or non-trap locations were correctly iden-

tified out of the total number of pixels (i.e., 600 9 600).

When the threshold value is too low or too high, non-trap

steps are erroneously identified as traps or trap steps are

missed, respectively (Fig. 2). The optimal threshold (Fig. 2f)

is an average on all four traps in each trajectory. That extends

the sample space well beyond the number of simulated per-

mutations and minimizes effects of irregularities.

3.2 Determining the threshold function

To facilitate application of the suggested approach to

experiments, we determine a functional form for the

threshold. Our approach can be used for experiments with

parameters close to those tested here or the simulations can

be further extended. The optimal threshold correlates with

the chosen conditions for each simulation. We perform

many permutations of the simulations parameter ranges

typical to particle-tracking experiments (see Table 1).

Following that we use linear least-squares parameter esti-

mation (Beck and Arnold 1977) to determine the threshold

function. For the final form of the function, we use

parameters that are experimentally available or ones where

a lower limit can easily be defined by the user. We main-

tained simulated viscosity at 34.6 mPa s, which is 50-fold

water viscosity at 37�C. We also maintained a constant trap

radius, simulating particle motion in a specific mesh

Fig. 2 Iterative determination of trap location in simulated trajecto-

ries. a Trajectory steps are marked in blue (thin lines), simulated traps

in red (thick lines), and identified traps in green (thick, wavy line);

b filtered image with ‘‘hotspots’’ indicating higher step-density and

likely traps; c–e trap localization as a function of increasing threshold.

The simulated trap, correctly and incorrectly identified regions are

marked in red (line), blue (within region), and green (outside region),

respectively. c Threshold value is too low and escape steps are

identified; d optimal trap localization is achieved; e the threshold is

too high, degrading the identified trap; and f quality of trap/non-trap

determination for known simulated locations. Threshold increases

with iteration number, while quality may also decrease. Maximum

quality is [0.95 for over 98% of the simulated data (color figure

online)

c
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network. To avoid overlapping traps during threshold

optimization, we add a constant convective speed of 3 lm/s to

the escape steps; the convective step per frame is always

smaller than the diffusive step. We do not define the con-

vective speed as a parameter in the threshold function, as it is

not an experimentally available value and its purpose is only to

ensure trap separation here.

Figure 3 shows the threshold dependence on each of the

three base system and experiment parameters varied in the

simulations: time spent in each trap, ttrap, camera frame

rate, rate, and particle radius, Rparticle. The threshold

increases with the time-in-trap (Fig. 3a) and frame rates

(Fig. 3b). That is expected, as longer time-in-trap and/or

higher frame rates increase the number of steps and hence

step-density; their product actually gives the number of

steps in a trap. Higher step-density increases threshold

values, making the difference between trap and background

easier to distinguish, or improving quality of detection.

Threshold dependence on particle radius (Fig. 3c) is

more complex. It is determined by the particle step-size

and the area in the trap that remains free when the particle

occupies it. The region where a particle may move, or the

effective trap, is in fact smaller than the trap radius (Tseng

et al. 2004); the average free annulus is defined by Rtrap -

Rparticle. Particle step-size varies inversely with the square

root of its radius and the frame rate (Weihs et al. 2007). At

a constant frame rate, smaller particles have larger area for

travel, but also exhibit larger steps. Hence, on average

smaller particles encounter the edges more often, are more

obviously caged, and their step-density and threshold

increase (Fig. 3c); moreover, in the smallest particles each

step is larger than Rtrap - Rparticle, leading to slightly dif-

ferent functional behavior. In contrast, large particles move

in small steps within a small area, resulting in a dense

trajectory in the trap. Thus, a balance between the area for

travel and the diffusive step size determines the threshold

dependence on particle radius. By fixing the trap radius in

our simulations and changing the particle radius, we are

also inherently modifying the particle-to-trap ratio of radii

and the same functional behavior is expected for that ratio

as for the radius.

We have used least-squares estimation to determine the

functional dependence of the threshold. We define

controlling parameters that are experimentally available,

can be estimated from a trajectory, or can be bounded by

the user, e.g., particle size, diffusive step-size, or minimal

time-in-trap, respectively. Each parameters was fit inde-

pendently and interaction parameters were also evaluated,

e.g., number of steps in trap = ttrap*rate. While, other

functional forms may be suitable for the threshold, ours

Table 1 Simulation parameters for threshold function determination

Parameters Range\value

Particle radius (nm), Rparticle 25–400

Time-in-traps (s), ttrap 2–14

Frame rate (frames/s), rate 5–240

Trap radius (nm) 500

Fluid viscosity (mPa s) 34.6

Convection speed (lm/s) 3

Fig. 3 Trap threshold as a function of three simulated system-

parameters: time-in-trap, frame rate, and particle radius. Points are

iteratively determined threshold and lines are functional fits. In each

plot, two parameters are varied and the third is held constant.

a Particle radius is 25 nm; b particle radius is 25 nm; and c time-in-

trap is 4 s
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takes into account independent parameter effects as well as

interaction between then and we believe is a good

descriptor of the process. The exponents in the threshold

equation were obtained by trial and error. Analysis pro-

vided the following threshold function:

Threshold¼� 0:00223 � t0:5
trap� 0:00238 �R0:5

particle

þ 0:0000068 � rate1:5

þ 0:000458 � ttrap � rate
� �0:75

þ 0:00088 � Rparticle

�
Dr2 sð Þ
� �

diffusion

� �1:7

þ 0:042 � Rparticle

�
Rtrap�Rparticle

� �� �
þ 0:0158:

ð1Þ

We define a diffusive step, hDr2(s)idiffusion, as the

distance travelled at the shortest lag time, 1/frame rate;

those steps also depend on particle radius and viscosity

(Weihs et al. 2007, 2006). When diffusive steps are small, a

particle will sample traps slowly. Hence, if particle steps

are small we expect to accurately observe and identify only

small traps and can thus limit the Rtrap/Rparticle ratio

according to step size and time-in-trap. We have defined

Rtrap/Rparticle as an algorithm input and calculate the

Rparticle/(Rtrap - Rparticle). We could detect traps with as

few as 20-steps, when diffusion steps outside the trap were

relatively small. Another bounding input is the time-in-

trap, which we had maintained at a minimal cutoff of 1 s.

We have observed that for step sizes \5 lm/frame the

algorithm performs well with an Rtrap/Rparticle = 2, while

higher values require a larger ratio. That can perhaps

indicate which Rtrap/Rparticle to choose. However, as this is

system dependent, e.g., frame rate can affect it, we leave it

as a user input.

After a trap is identified, we reintroduce the time-ele-

ment to improve detection. When analyzing a trajectory as

an image, we basically disregard the time-dependence and

order of the trajectory steps. Thus, we search for and

append single step that were not identified in a trap and that

are surrounded by steps that were. In doing so, we assume

that there are no unphysical, large, single jumps out of a

trap; that assumption can easily be verified by comparing

the added steps to the median of the identified trap steps. In

some cases, even more than a single step may actually

belong to the identified trap. However, caution must be

taken in adding those steps, as that may introduce errors

and bias into the analysis. Convection was introduced into

the algorithm to prevent trap-overlap. However, if overlap

occurs, the time-dependence of the trajectory will reveal

trapping at different times in the same location. Moreover,

if escape is very slow and residence time in the trap is

short, we expect to observe a Brownian-like trajectory,

where no traps are apparent. In that case, we also do not

expect the algorithm to detect any traps.

3.3 Algorithm verification and application

to experimental data

We have analyzed 2D Brownian motion simulations, to test

for false positives in trap detection. Brownian trajectories

occasionally appear to linger at a location, yet that does not

indicate local trapping (see Fig. 4a, inset). We have gen-

erated 10,000 random simulations of 200-nm diameter

particles at 30 fps, in a Newtonian liquid with 50-fold

water viscosity at 37�C. The average step-size in those

simulations was 2.5–3 lm/frame, hence the trap was cho-

sen as small relative to the particle size (Rtrap/Rparticle = 2).

No traps were identified in over 70% of the Brownian

trajectories. In about 20% of them a single trap was

Fig. 4 Verification and application to experimental data. a Simulated

Brownian motion of 200-nm diameter particle at 30 fps, in Newtonian

liquid with viscosity 509 water at 37�C. Trajectory is in gray and

identified trap is marked with thick black line; (inset, a) mean-square

displacement (MSD) of the entire trajectory and the incorrectly

identified trap, top and bottom lines, respectively. Dashed line is a

guide to the eye of scaling exponent, a = 1. As the identified trap

exhibits a[ 0 it can be eliminated; b trajectory of a 500-nm diameter

particle trapped by laser tweezers and then diffusing in glycerol. The

identified trap is, as expected, circular; (inset, b) MSD of the entire

trajectory and the elastic trap only (a = 0)
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identified and in the remaining 10% of trajectories, more

than 1 trap was identified. Informed filtration of the iden-

tified traps can considerably reduce the 30% false positive

detection we have observed here. Here, for example anal-

ysis of the time-averaged MSD of the steps in the identified

trap can sometimes provide an indication of the Brownian

nature of the motion, as in Fig. 4a; the observed log-slope

of close to unity indicates that no elastic trapping has

occurred in the region and the identified trap can be auto-

matically removed. In addition, the distribution of step

sizes or other user-defined parameters could also be

employed as an automated measure for identifying specific

(expected) behaviors in a tested sample. The correlation

between successive particle displacements or steps has

recently been applied to provide insight on particle caging

(Oppong and de Bruyn 2007; Rich et al. 2011). We apply it

here as an approach to distinguish real and falsely identi-

fied traps.

The correlation of successive steps can reveal true par-

ticle caging as compared to free diffusion in a region in the

segmented trajectory. The correlation is defined as:

x12h i ¼ r~1�r~2

r1k k

D E
, where the vectors of successive steps 1 and

2 are dot multiplied and the angular brackets represent

ensemble averages at a specific lag time. When particles

are completely confined, typically above a certain lag time,

successive steps will be in opposing directions, resulting in

a negative correlation. In that case, the correlation varies

inversely linear with the size of r1 so that hx12i/kr1k tends

toward -0.5 (Rich et al. 2011); this was verified with our

simulations as well (data not shown). However, when

particles are freely diffusing, successive steps will be

uncorrelated. Thus, when a segment such as in Fig. 4a is

input, the correlation exhibits a wide scatter as a function

of r1, meaning it is uncorrelated and is thus not a real trap.

It is important to note that this metric is applicable to

segments of the trajectories, as provided by our algorithm,

or to trajectories where a persistent mode-of-motion exists

throughout the examination, e.g., persistent trapping.

Inputting a trajectory with transient elements on the same

time-scales, such as in the simulations in Fig. 1, results in a

non-interpretable correlation. Having optimized and veri-

fied our trap-identification algorithm, we now apply it to

experimental data.

We successfully analyzed trajectories from a laser

tweezers experiment. We have transiently trapped a

500-nm diameter particle in Newtonian glycerol, using a

1064-nm laser, and then released it to diffuse freely. The

algorithm correctly identified a single, elastic circular cage

(Fig. 4b), as expected from a laser trap. Moreover, the

identified time in the trap was consistent with the actual

trapping time. It is important to note that in this data, a

single trap was identified regardless of the Rtrap/Rparticle

input parameter, albeit the trap dimensions varied slightly.

We have also verified the trap through the successive-step

correlation (Rich et al. 2011) and obtained consistent val-

ues of -0.5 in the ratio of the correlation and the step r1 for

the identified trap and uncorrelated motion for the

remaining steps. We have calculated trap stiffness from the

identified steps using the equipartition theorem ktrap =

2kBT/hDr2i, and obtained a value of 3.1 pN/lm; the hDr2i
is the variance of particle displacement from the trap center

(Yao et al. 2009). We have also analyzed the steps outside

of the trap and calculated the liquid viscosity by the

Stokes–Einstein relation (Weihs et al. 2006; Cohen and

Weihs 2010). Before trapping, the viscosity was deter-

mined to be 800 mPa s at 25�C and after trapping, vis-

cosity was reduced to about 30 mPa s, indicative of local

heating due to the laser.

4 Discussion and conclusions

We have presented an approach to automatically identify

transient-traps in single-particle trajectories. The approach

was successful in accurately analyzing experimental laser

tweezers data quantifying trap and liquid parameters. We

expect that our approach will be directly and successfully

applicable to experimental trajectories where particles do

not interact with their environment and the media is a

Newtonian liquid. Those encompass most experimental

systems studied to date, including living cells, biomaterials,

and physical systems, such as surfactants and gels. The

rheology of the material should not, however, affect algo-

rithm, performance, as long as particles diffuse freely in the

cages and do not interact; that is, as long as diffusion is the

same at each location within a trap. Underlying diffusion,

the basis of the simulations, exists in most active transport

systems, e.g., living cells. In cells, video frame rate

(30 fps) is typically enough to observe the underlying

diffusion at the shortest lag time. We expect the step-

density will remain qualitatively similar, albeit the time-in-

trap and optimal Rtrap/Rparticle inputs will likely change. In

experiments, for example, well-chosen particle size and

frame rate can compensate for short residence times. For a

new experimental data set, the threshold function can be re-

optimized with a different simulation parameter-range,

e.g., by changing underlying viscosity; viscosity affects the

step sizes in and out of traps albeit not the general

appearance of the expected trajectory. Hence, we expect

that the method outlined here will be widely applicable for

trajectory analysis in many different types of experiments.

The automatic trap segmentation presented here allows

easy application to large amounts of experimental data. In

conclusion, the presented approach of single-particle

trajectories reduces errors incurred by analyzing entire
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transient-trajectories and provides accurate indication

which trajectories can be ensembled.
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