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Abstract A detailed theoretical model of capillary trans-

port in rectangular microchannels is proposed. Two

important aspects of capillary transport are revisited, which

are considered with simplified assumption in the literature.

The capillary flow is assumed as a low Reynolds number

flow and hence creeping flow assumptions are considered

for majority of analyses. The velocity profile used with this

assumption results into a steady state fully developed

velocity profile. The capillary flow is inherently a transient

process. In this study, the capillary flow analysis is per-

formed with transient velocity profile. The pressure field

expression at the entrance of the microchannel is another

aspect which is not often accurately represented in the lit-

erature. The approximated pressure field expression at the

entrance of the rectangular microchannel is widely used in

the literature. An appropriate entrance pressure field

expression for a rectangular microchannel is proposed. For

both analyses, the governing equation of the capillary

transport in rectangular microchannel is derived by apply-

ing the momentum equation to the fluid control volume

along the microchannel. The non-dimensional governing

equations are obtained, each for a transient velocity profile

and a newly proposed pressure field, for analyzing the

importance of such velocity profile and pressure field

expression.

Keywords Capillary flow � Transient velocity profile �
Rectangular microchannels � Entrance pressure field

1 Introduction

Microfluidic channels are integral components of a Lab-on-

a-Chip devices. Transport of biomolecules, particles, or

chemicals of interest within these microchannels is an

important requirement which has been achieved by several

traditional or conventional pumping mechanisms. How-

ever, in most of the mechanisms till date, pumping has

been actuated by external actuations, which are an addi-

tional burden on the system. Most commonly, transport is

obtained with pressure-driven flow by actuating a

mechanical pump. However, due to large surface forces at

micro-scale, a very high pressure drop is required for the

transport of the working fluid. Hence, non-mechanical

pumping approaches like electrokinetic and electromag-

netic pumping have been introduced (Nguyen and Werely

2003; Narayan et al. 2005). Commencement of such flows

requires external equipments to actuate electrical and

magnetic fields, which in turn requires additional complex

fabricating steps for the device. In such cases, external

microscopic actuators and connectors with electrome-

chanical interface restrict the flexibility of devices. More-

over, electroviscous effects have to be included with other

significant effects (Phan et al. 2009). Attempts are being

made to establish flow without any external means, i.e.,

autonomous flow. The fluid transport can be achieved by

controlling channel geometries, surface chemistry, and

physical properties of the fluid like surface tension. Such

pumping approach is widely termed as autonomous or

passive pumping which would be an ideal mechanism of

transport for microfluidic devices (Juncker et al. 2002;

Zimmermann et al. 2007). As the size of the device

decreases, the large surface to volume ratio makes surface

forces dominant, particularly the force due to capillarity-

induced pressure is very high as compared to other forces
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(Eijkel and van den Berg 2006). Attempts are also being

made to pump the fluid with capillary flow in closed end

nanochannels (Radiom et al. 2010; Phan et al. 2010).

Hence, the use of surface forces to transport the liquid with

capillary action is becoming a popular option in microflu-

idic devices (Walker and Beebe 2002) and have attracted

special attention at micro (Waghmare and Mitra 2010a, b,

c), meso (Zhang 2011; Diotallevi et al. 2009), and

molecular level (Dimitrov et al. 2007).

Theoretical understanding of capillarity has been con-

ducted over the past century. Through the theoretical

investigations, temporal variation in the position of the

flow front along the length of the capillary is predicted. The

position of the flow front from the capillary inlet is gen-

erally termed as penetration depth. Two distinct modeling

approaches are reported in the literature. In the first

approach, the closed form expression for the transient

variation in the penetration depth is proposed which is

similar to Washburn approach (Washburn 1921). Whereas,

in the second approach, the differential equation in terms of

penetration depth is obtained which encompasses all pos-

sible forces present during the penetration of the flow front

(Levin et al. 1976). The penetration depth with the first

approach is predicted without considering the viscous and

inertial effects and therefore to include such effects, the

second approach has been developed (Levin et al. 1980).

Further, the final governing equation for the capillary

penetration is obtained by applying differential (Levin

et al. 1980) or integral (Dreyer et al. 1993) momentum

equation. Washburn (1921) has reported the close form

solution for the entrance length, which emphasizes that the

steady state velocity assumption is a valid assumption for

capillary flow analysis. A microscopic energy balance is

used by Newman (1968) and Szekely et al. (1971), as

opposed to the quasi-steady state approximation of Wash-

burn (1921) and they have claimed that the Washburn

approach (Washburn 1921) can not be used for short cap-

illary transport. Further, Saha and Mitra (2009b) demon-

strated numerically and experimentally (Saha et al. 2009)

that Washburn prediction deviates for micro-scale geome-

tries. Moreover, Saha and Mitra (2009a) have performed

the numerical simulation of capillary filling process in a

pillared microfluidic geometry and reported that variation

in the capillary filling length does not follow the Washburn

equation. Dreyer et al. (1994) have also quantified the

capillary flow behavior according to the penetration depth

variations with respect to the time. In such analysis, the

governing equation for penetration depth is obtained by

balancing various forces viz., the entrance pressure force,

the surface or the pressure force at the interface, the vis-

cous and the gravity forces with the inertial and transient

terms in the momentum equation. The viscous force,

inertial, and convective terms in the momentum equation

depend on the velocity profile across the channel. Whereas,

other forces are function of the fluid properties, as reported

in a recent modeling effort (Waghmare and Mitra 2010a, b,

c). In such analysis, the velocity dependent terms are

determined by assuming a fully developed, i.e., parabolic

velocity profile across the channel.

The assumption of the parabolic velocity profile is a

valid assumption for steady state conditions. In case of the

transient flow, several researchers have used the assump-

tion of parabolic velocity profile (Washburn 1921; Levin

et al. 1976, 1980; Dreyer et al. 1993, 1994; Newman 1968;

Szekely et al. 1971; Chakraborty 2007) in their analyses.

But this assumption is only valid for a high viscous fluid or

very low Reynolds number flow which may not be true in

all cases (Bhattacharya and Gurung 2010). Hence, it is

important to adopt a different approach for capillary flow

analysis to rectify this discrepancy. This can be achieved

by considering the transient velocity profile derived from

transient momentum equation. This transient velocity

profile not only satisfies the transient integral momentum

equation but also accounts for the time dependent term in

the velocity profile. The equation which governs the

capillary transport consist of two types of terms: velocity-

dependent and velocity-independent terms. The velocity-

dependent terms can be determined using transient velocity

profile and further transient effects can be analyzed by

comparing the results with the steady state velocity profile.

The velocity-independent terms in the momentum

equation are force terms except the viscous force viz.;

pressure forces at the inlet of the microchannel and at the

air-fluid interface. The pressure field at the air–fluid

interface can be calculated using Young–Laplace equation.

On the other hand, Levin et al. (1976) proposed the pres-

sure field at the inlet of the microchannel, different from

the common notation of an atmospheric pressure typically

applied at the entrance of the microchannel. In their study,

they have proposed the pressure field expression for cir-

cular capillary. Several researchers have extended this

circular capillary expression for non-circular capillaries

with equivalent radius assumption. The equivalent radius

assumption may not be applicable for a wide range of

microchannel aspect ratios. This literature suggest that

there is a lack of a pressure field expression for rectangular

microchannels, which is a more common geometry based

on microfabrication techniques for microfluidic devices.

The authors have attempted to propose a pressure field

expression at the entrance of a parallel plate arrangement

(Waghmare and Mitra 2010a, b, c). The pressure field

expression is developed by assuming the length of the plate

is much longer than the gap between two plates, but in

microfluidics applications such assumption may not be

universally valid. Further, the capillary transport analysis

with such modified pressure field for a rectangular
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microchannel is also not available in the literature.

Therefore, it is necessary to determine the appropriate

pressure field at the entrance of the rectangular micro-

channel and the effect of such pressure field expression on

the capillary flow analysis needs to be studied, which is

performed in the later part of this study.

A generalized non-dimensional equation for capillary

transport can be obtained by calculating the velocity

dependent and independent, i.e., appropriate force terms. In

the upcoming section, the theoretical model for capillary

transport with transient velocity profile is presented. Fur-

ther, a generalized non-dimensional equation with steady

state and transient velocity profiles is derived and solved

numerically to investigate the effect of transient velocity

profile. An appropriate pressure field expression at the

entrance of the rectangular microchannel is also derived in

the later part of this study. Finally, the effect of such

pressure field on the capillary transport is also analyzed.

Hence, the analysis presented here is a comprehensive one,

which provides a greater understanding of capillary trans-

port in rectangular microchannels.

2 Mathematical modeling

In most of the capillary flow analysis, the integral

momentum equation for deformable fluid control volume

along the microchannel is used (Levin et al. 1976, 1980;

Dreyer et al. 1993, 1994). The integral momentum equa-

tion for the fluid transport in the microchannel of width

2B and depth 2W, as shown in Fig 1, can be written as,

X
Fz ¼

o

ot

Zh

0

ZW

�W

ZB

�B

qvzdxdydzþ
ZW

�W

ZB

�B

vzð�qvzÞdxdy

ð1Þ
Here, q is the density of the fluid, vz is the velocity of the

capillary across the channel, and h is the penetration depth

or movement of the fluid flow front in the capillary. This

momentum equation governs the transient response of the

capillary front movement along z-axis, which is termed as

penetration depth in this analysis. Here,
P

Fz is the sum-

mation of all forces acting on the fluid under consideration

viz., viscous ðFvÞ; gravity ðFg ¼ 4qghBWÞ; pressure forces

at the flow front ðFpfÞ, and at the inlet ðFpiÞ; as illustrated

here:
X

Fz ¼ Fv|{z}
velocity dependent

þ Fg þ Fpf þ Fpi|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
velocity independent

ð2Þ

Transient and convective terms in Eq. 1 and the viscous

force term in Eq. 2 can be determined by using the velocity

profile, vz across the channel. For simplicity, fully

developed Poiseuille flow is assumed in the literature

(Washburn 1921; Levin et al. 1976, 1980; Dreyer

et al. 1993, 1994; Newman 1968; Szekely et al. 1971;

Chakraborty 2007; Waghmare and Mitra 2010a, b, c),

neglecting the change in the velocity profile at the entrance

region and at the flow front. This introduces an

inconsistency due to the fact that the fully developed

velocity profile assumption is valid only for steady flow

systems (Bhattacharya and Gurung 2010). Thus, a

developing, i.e., transient velocity profile instead of a

developed velocity profile needs to be considered for the

analysis. This can be achieved by considering the transient

momentum equation in the direction of the flow with

pressure drop dp=dz as depicted here,

q
ovz

ot
¼ l

o2vz

ox2
þ dp

dz
ð3Þ

where l is the viscosity of the fluid. The velocity in Eq. 3

can be decoupled in the following manner (Keh and Tseng

2001),

vzðx; tÞ ¼ vz1ðxÞ þ vztðx; tÞ ð4Þ

here, vz1ðxÞ is the velocity field at steady state, which

can be written as (White 2006),

vz1ðxÞ ¼
B2

2l
dp

dz
1� x

B

� �2
� �

ð5Þ

The transient component of the velocity can be obtained

from following equation using boundary conditions of no

slip and maximum velocity at wall and center, respectively

with zero velocity as an initial condition (Keh and Tseng

2001),

q
ovzt

ot
¼ l

o2vzt

ox2
ð6Þ

h(t)

O z

x

y

2W

2B

Liquid-air interface

Microchannel inlet Fig. 1 Schematic of

microchannel of width 2B and

depth 2W considered for the

theoretical modeling of

capillary transport
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The method of separation of variable is used to obtain

the solution of Eq. 6 and is given as,

vztðx; tÞ ¼ 2
X1

n¼1

ð�1Þn 1

Blk3
n

dp

dz

" #
cosðknxÞ expð�mk2

ntÞ

ð7Þ

where kn ¼ ð2n�1Þp
2B and m is the kinematic viscosity of the

fluid. Hence, the transient fluid velocity profile vz(x, t) can

be obtained by combining Eqs. 5 and 7.

vzðx; tÞ ¼
X1

n¼1

ð�1Þn 1

Bl
2

k3
n

 !
cosðknxÞ expð�mk2

ntÞ
(

þ 1

2l
B2 � x2
� �	 dp

dz
ð8Þ

The average velocity across the channel can be

expressed as,

vzðtÞavg ¼
B2

3l
1�

X1

n¼1

96

ð2n� 1Þ4p4

"

exp �ð2n� 1Þ2p2mt

4B2

" ##
dp

dz
ð9Þ

As done for other capillary flow models (Newman

1968), the pressure drop term in Eq. 8 is replaced by the

average velocity so that the velocity profile is obtained in

terms of the penetration depth,

vzðx; tÞ ¼
B2

2l
a1

X1

n¼1

ð�1Þn 4

ðBknÞ3

" #
cosðknxÞ expð�mk2

ntÞ
(

þ 1� x2

B2


 �	

� 1

a1 1�
P1

n¼1 b1 exp �k2
nmt

� �� 

( )

dh

dt
ð10Þ

where

a1 ¼
/ð Þ4�4 exp� /2t

3

h i

/ð Þ4�6 exp� /2t
3

h i ð11Þ

and / = kn B. The velocity dependent terms of the

governing equation for capillary transport can be derived

with transient velocity profile provided in Eq. 11. Pressure

forces at the fluid-air interface within the microchannel and

at the inlet of the microchannels can be determined by

using respective pressure field distributions at the interface

and at the inlet of microchannel. Young–Laplace equation

(Washburn 1921) with the fluid surface tension, r and

equilibrium angle, h is used to determine the pressure at the

interface. The radii of curvature for Young–Laplace

equation are as B= cos h and W, respectively. The concept

of pressure force at the entrance of the capillary was first

proposed by Levin et al. (1976). However, they have

reported the pressure field expression at the entrance of

circular capillaries and several researcher have extended

this circular capillary expression to parallel plate

configuration with a simplified assumption. For parallel

plate configuration, the pressure field is investigated by

assuming a hemispherical control volume and the radius of

the hemisphere is determined from the projected cross

sectional area at the capillary entrance. The derived

pressure field in such case, as used by several other

researchers for rectangular capillaries like flow of liquid

coolant (Dreyer et al. 1994), alcohol (Xiao et al. 2006),

nanoparticulate slurry (Marwadi et al. 2008), and blood

(Chakraborty 2007), can be written as,

pðo; tÞ ¼ patm

� 1:11q
ffiffiffiffiffiffiffiffi
BW
p d2h

dt2
þ 1:58q

dh

dt


 �2

þ 1:772lffiffiffiffiffiffiffiffi
BW
p dh

dt

( )

ð12Þ

To emphasize and analyze the effect of transient

velocity profile, in this part of analysis the pressure field

expression from existing literature (i.e., Eq. 12) is used to

determine the pressure force at the entrance of the

microchannel. An appropriate pressure field expression

for rectangular microchannel and the importance of such

accurate pressure field expression are presented in the later

part of this study. Finally, one can rewrite the momentum

equation Eq. 1 incorporating the relevant forces, transient

and convective terms, where the transient velocity profile is

used for calculating the velocity dependent terms. Further,

the non-dimensional analysis is performed which results in

a generalized non-dimensional governing equation for

capillary flow in microchannel which can be written as

(Waghmare and Mitra 2010a, b, c),

ðh� þ C1Þ
d2h�

dt�2
þ C2

dh�

dt�


 �2

þ C3 þ C4h�ð Þ dh�

dt�
þ C5h�

þ C6 ¼ 0 ð13Þ

The non-dimensional time (t*) and the penetration

depth(h*) which are defined with respect to the character-

istic time, t0 ¼ q 2Bð Þ2
12l and the characteristic length h0 = 2B,

respectively. Table 1 depicts the different constants of

Eq. 13 for an evolving capillary transport. All coefficients

are the function of the velocity profile. In non-dimensional

analysis, two non-dimensional numbers are obtained, i.e.,

Bond number (Bo) and Ohnesorge number (Oh). The

Ohnesorge number Oh ¼ lffiffiffiffiffiffiffiffi
2Bqr
p

� �
represents the ratio of

viscous to surface tension force, the Bond number
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Bo ¼ qgð2B2Þ
r

� �
dictates the ratio of gravity to surface ten-

sion force and another non-dimensional parameter, i.e.,

c (=B/W) is the aspect ratio of the microchannel, defined as

the ratio of width to depth of the microchannel.

3 Effect of developing velocity profile in capillary

transport

It is important to analyze the importance of such transience

in velocity during the capillary transport. The variation in

the penetration depth with the steady sate and unsteady

state velocity profile are presented in Figs. 2 and 3. The

bottom left inset of Fig. 2 shows penetration depth varia-

tions at the beginning of the transport and the attainment of

the equilibrium penetration depth is shown in the upper

right inset. The equilibrium penetration depth is the length

along the microchannel for which the flow front attains a

zero velocity. In this analysis, the development of velocity

profile from unsteady to steady state is accounted with a

developing, i.e., transient velocity profile. At the beginning

of the channel filling process, the velocity is undeveloped,

therefore, the magnitude of the penetration depth is smaller

than the penetration depth with the developed velocity

profile. The lower bottom inset of Fig. 2 suggests that

within the first 10 ms, there is a difference of 5 mm in the

penetration depth, which has important implications in

terms of controlling chemical reactions, antigen-antibody

binding, and other bio-MEMS applications. As the flow

Table 1 Constants of the generalized non-dimensional governing

equation for a capillary flow in a rectangular microchannel with a

developing velocity profile

Constants Expressions

C1
0:55
a1

ffiffiffi
c
p

C2
a1

1:158þa1

C3 1

3a1 /4�6e
�/2 t�

3

h i� /6 1� a1ð Þ � 4/2e
�/2 t�

3 þ 3/4
h i

C4
0:295

ffiffi
c
p

a1

C5
Bo

144a1Oh2

C6
c�cos h
72a1Oh2

Fig. 2 Transient response of penetration depth with fully developed

(steady state) and developing (unsteady) velocity profile. The

corresponding dimensional time and penetration depth are presented

on the top and left axis, respectively. The bottom left inset shows the

enlarge view of the penetration depth variations at the beginning of

the transport and the variations in the penetration depth during the

attainment of the equilibrium penetration depth is presented in the

upper right inset

(a)

(b)

Fig. 3 Transient response in the difference in the penetration depths

with fully developed (steady state) and developing (unsteady) velocity

profile under different conditions. a Penetration depth variations for

fluid with Bo = 0.01 and b Oh = 0.05
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front approaches toward the equilibrium penetration depth,

the transient velocity profile attains the steady state and the

quantitative difference in the penetration depth is negligi-

ble as depicted in the upper right inset of the Fig. 2.

The effect of transient velocity profile with the change

in the fluid properties is depicted in Fig. 3. For a highly

dense and viscous fluid, the effect of transience in the

velocity profile is qualitatively same as observed in the

previous case. Figure 3a shows the penetration depth var-

iation with highly dense (Bo = 0.01) fluid whereas, similar

variations are observed for highly viscous fluid in Fig. 3b.

The inset of both the figures shows the enlarged views of

the penetration depths with two velocity profiles. The

equilibrium penetration depth with a high density fluid is

smaller than penetration depth with high viscous fluid. In

case of high viscous fluid, a longer time is required to attain

the same equilibrium penetration as compared to the case

shown in Fig. 2. It is important to quantify the difference in

penetration depths, even though it may seem to be small,

due to the transience in the velocity profiles. Therefore, the

difference in the penetration depths with developed and

developing velocity profiles for the same time instant is

calculated and the percentage change in the penetration

depth is presented in Fig. 4. In this particular case study,

the comparison in penetration depths of previous three

cases (Figs. 2, 3) is presented. The enlarged view in the

inset shows that the penetration depth with transient

velocity profile deviates up to 16% from the penetration

depth value with steady state velocity profile. The bound-

ary layer formation is the effect of no slip at the wall which

propagates across the channel and the rate of propagation is

decided by the physical properties of fluid, particularly the

fluid viscosity. As the viscosity of fluid increases, the

boundary layer thickness also increases, which results in

the retardation of flow within the boundary layer. The

density has an opposite effect (Schlichting 1968). It is

observed that for a high viscosity fluid, the percentage

difference in the penetration depth is lower (8%) as com-

pared to the difference with high density fluid (16%). Thus,

it can be concluded that the fully developed velocity profile

assumption needs to be used carefully in the capillary

analysis. It is stated in the literature that (Bhattacharya and

Gurung 2010), the approximation of steady state velocity is

a valid assumption for low Reynolds number flows like a

creeping flow. Also literature suggests that the surface

driven flow can be considered as a creeping flow and hence

the simplified fully developed velocity profile can describe

the velocity field across the microchannel in case of a

capillary transport. Here, the quantified difference in pen-

etration depth due to such assumption is presented and

observed that at the beginning of the capillary transport the

transience in the velocity plays a significant role. At micro-

scale, such effects need to be considered carefully before

designing microfluidic devices particularly for devices,

with capillary transport.

As mentioned earlier, apart from the velocity profile

across the microchannel, the pressure field at the inlet of

the microchannel is another aspect, which has been con-

sidered with some degree of approximation in the existing

literature. It is necessary to derive the appropriate pressure

field at the entrance of a rectangular microchannel.

Therefore, in the next section, the pressure field for a

rectangular microchannel is derived. Moreover, the pene-

tration depth with the proposed and approximated pressure

field from literature is compared to analyze the importance

of the proposed pressure field.

4 Pressure field at the entrance of the microchannel

As explained in Sect. 2 , the force at the capillary entrance

is calculated using the pressure field at the entrance of the

capillary. Levin et al. (1976) reported that the pressure at

the entrance of the microchannel is different than the

atmospheric pressure. A separate control volume, as shown

in Fig. 5, at the entrance of the capillary, in addition to the

deformable control volume along the microchannel, has

been considered for the derivation of the pressure field.

A well defined control volume at the entrance, such as a

hemispherical fluid volume shown in Fig. 5a, within a

large volume of a fluid in contact with capillary is

responsible for defining the pressure field at the inlet. For a

circular capillary, Levin et al. (1976) has taken a hemi-

spherical control volume of radius equal to that of the

capillary. The velocity components in the hemispherical

Fig. 4 Transient response in the difference in the penetration depths

with fully developed (steady state) and developing (unsteady)

velocity profile under different conditions
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control volumes are determined and further the momentum

balance to the fluid flow in the control volume is applied to

calculate the pressure field.

The classical expression proposed for circular capillary

has been extended by several researchers for capillaries of

different geometries like, parallel plates (Dreyer et al.

1993). In parallel plate arrangement, a hemispherical

control volume in the reservoir is assumed, as done by

Levin et al. (1976). The radius of this hemisphere is cal-

culated by equating the projected area of hemisphere to the

cross sectional area at the entrance of the parallel plates

(Dreyer et al. 1993). Several other researchers have adop-

ted this concept of equivalent radius and performed the

capillary flow analysis in rectangular microchannels (Dre-

yer et al. 1994; Xiao et al. 2006; Marwadi et al. 2008;

Chakraborty 2007). The concept of equivalent radius with

an assumption of hemispherical control volume is not a

realistic representation of the entrance region in non-cir-

cular geometries. For high aspect ratio channels

(width \\ depth), the region for the fluid volume or the

appropriate control volume for the analysis can not be

considered as a hemisphere. For non-circular geometries,

e.g., rectangular microchannels, a separate shape for the

control volume needs to be considered. For the parallel

plate arrangement, authors have earlier derived the pressure

field expression which only depends on the gap between

the two plates and is independent of the depth of the plates

(Waghmare and Mitra 2010a, b, c). It is necessary to derive

the appropriate expression for pressure field with an

appropriate control volume at the entrance of non-circular

microchannels. In the upcoming section, the appropriate

control volume is considered and the pressure field at the

entrance of non-circular microchannel is derived.

4.1 Pressure field at the entrance of non-circular

microchannels

Figure 5 shows a representative control volume for dif-

ferent capillary geometries (circular, parallel plate, and

rectangular), which acts as a fluid source mimicking a sink

flow at the microchannel entrance. Further, the same con-

trol volume is used for the derivation of the entrance

pressure field expression. In the literature, for a circular

capillary a hemispherical control volume is assumed

(Levin et al. 1976), and for parallel plate arrangements, the

semicylindrical control volume is considered (Waghmare

and Mitra 2010a, b, c), as shown in Fig. 5a and b,

respectively. It is also assumed that the control volume at

the entrance of capillary aligns with the microchannel

at the entrance. In case of rectangular microchannels,

neither the hemispherical nor the semicylindrical control

volume is an appropriate control volume for the analysis.

The hemispherical control volume represents the axi-

symmetric sink flow at the entrance whereas, in case of

semicylindrical shape (Fig. 5b), the flow along the length

of a semicylinder is considered. Further, in case of a

semicylindrical control volume, the fluid volume contained

at the two ends of the semicircular cylinder is neglected.

This might be a valid assumption for very high aspect ratio

microchannels, where the microchannel can be treated as

parallel plates for the analysis. But for moderate aspect

ratio microchannels, like rectangular microchannels, which

are generally used in microfluidic applications, the fluid

volumes at the two ends of the semicircular cylinder need

to be incorporated. Hence, it is necessary to consider a

different shape for the control volume representing rect-

angular microchannels. Therefore, to account such effects,

(a) (b)

(c)

Fig. 5 The fluid volume from

infinite reservoir considered as

control volume for pressure

field expression analysis. a The

control volume considered for

circular capillary, b the

appropriate control volume for

parallel plate arrangement and

for rectangular microchannel,

and c the appropriate control

volume. Arrow shows the

direction of the fluid flow from

the reservoir into the

microchannel
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the combination of the cylindrical and the spherical control

volumes, as depicted in Fig. 5c, is considered as an

appropriate control volume for the analysis. For the rect-

angular microchannel of aspect ratio c, which is the ratio of

width to depth of the microchannel, the control volume

shown in Fig. 5c is an appropriate control volume.

A cylindrical and a spherical co-ordinate system with ori-

gin Oc and Os, respectively, are considered for cylindrical

and spherical regions. One can determine the radial

velocity in the corresponding regions by applying the

continuity equation to the control volumes. The origin Oc

of cylindrical region coincides with the origin of the mi-

crochannel at the inlet plane. It is assumed that vr is the

radial velocity components for both the coordinates.

As mentioned earlier, dh
dt is the penetration rate along the

microchannel. The flux of volume in the direction of the

capillary flow from the reservoir can be calculated using

continuity equation as follow,

vrcrcplc þ 2pvrsr
2
s ¼ �4BW

dh

dt
ð14Þ

Here, lc represents the length of cylindrical control volume.

In this analysis, the subscripts c and s are used to represent

the cylindrical and spherical regions. From Eq. 14, one can

deduce the radial velocity component from cylindrical and

spherical regions as,

vrs ¼ �
2BW

pr2
s

dh

dt
� vrcrclc

2r2
s

ð15Þ

vrc ¼ �
4BW

prclc

dh

dt
� 2vrsr

2
s

rclc

ð16Þ

Now, the pressure field in the radial direction can be

determined using the momentum equation in the radial

direction. The momentum equation can be written as,

q
ovrc

ot

� 	
¼ � op

orc

þ l
o

orc

1

rc

o

orc

rcvrc
½ �


 �� 	
: ð17Þ

Using Eq. 16, the pressure field in the cylindrical region

of the control volume can be expressed as,

pðrc; tÞ ¼ patm �
4qBW

plc
ln

r1
rc


 �
d2h

dt2
ð18Þ

Here, r1 is the radial distance far away from the inlet of

the microchannel outside the cylindrical region where, the

pressure p(rc, t) approaches to atmospheric pressure patm

and capillary force becomes negligible. Following the same

approach, the pressure field for the two end regions, i.e., for

the spherical domain is given by,

pðrs; tÞ ¼ patm �
2BWq
prs

d2h

dt2
ð19Þ

The velocity field within the control volume is unknown

which is necessary to determine the pressure field at the

entrance of the microchannel. Such velocity field can be

computed by considering the momentum balance which

suggests that the rate of change of total momentum in the

control volume is equal to the combination of the net

momentum flux and forces acting on the surface of the

control volume.

Two major forces are acting on the control volume

shown in Fig. 5c; the first one is along the surface of the

entire control volume and another one is at the inlet of the

microchannel. These forces are determined by calculating

the momentum flux and rate of change of momentum

within the control volume. Forces acting along the surface

at rc = B and rs = B in the direction of capillary flow can

be determined by using the stress tensor in the radial

direction. The forces on both the surfaces are calculated

separately. Using Eqs. 16 and 18, the stress tensor along

the surface of cylindrical region in the radial direction is,

rrc;rc
jrc¼B ¼ �patm þ

2qB

pð1� cÞ ln
R1
B


 �
d2h

dt2
þ 4l

pB

dh

dt
ð20Þ

Similarly, using Eqs. 15 and 19, the stress tensor for the

spherical region is

rrs;rs
jrs¼B ¼ �patm þ

2qW

p
d2h

dt2
þ 8l

pB


 �
ð2� cÞ

c
dh

dt
ð21Þ

From Eqs. 20 and 21, the total force acting on the

surface of the control volume in the direction of the

capillary transport is

Fr¼B ¼ 2pB2 þ 4BWð1� cÞ
� 


p0

� 4qB2W 1� 2

p
ln

R1
B

� �
d2h

dt2

� 16lW ð2� cÞ þ ð1� cÞ
p

� �
dh

dt
ð22Þ

The other force acting in the direction of the capillary

transport from the same control volume is the force at the

inlet of the microchannel, i.e., at the plane z = 0. This can

be calculated as,

Fz¼0 ¼ �
ZW

�W

ZB

�B

pð0; tÞdxdy ð23Þ

The total rate of change of momentum within the control

volume can be calculated with the instantaneous

acceleration within the system. It is difficult to determine

the instantaneous acceleration within the system, therefore,

the mean of accelerations at the curvature of control

volume and at the inlet of the microchannel are calculated.
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The rate of change of momentum is the product of the

mass of the control volume and the total acceleration across

the control volume (Levin et al. 1976). The total acceler-

ation can be determined by calculating the acceleration flux

within the control volume and the volume flux along the

microchannel.

The total acceleration flux at r = B is,

4BW
dh

dt

1

p
þ 4

p2

� �
d2h

dt2
þ 4ð2� cÞ

Bp2
� 8ð1� cÞ

p3cW

� �
dh

dt


 �2
( )

ð24Þ

which is the combination of acceleration flux at

rc = B and rs = B. The volume flux along the rectangular

microchannel can be given as, 4BW dh
dt :

Using the expression Eq. 24 and in conjunction with the

volume flux along the rectangular microchannel, the mean

acceleration at r = B can be written as,

ameanr¼B
¼ 1

p
þ 4

p2

� �
d2h

dt2
þ 4ð2� cÞ

Bp2
� 8ð1� cÞ

p3cW

� �
dh

dt


 �2

ð25Þ

Similarly, the mean acceleration at the entrance of the

microchannel is (Levin et al. 1976),

ameanz¼0
¼ 6

5

d2h

dt2
ð26Þ

The mean acceleration of the control volume can be

determined by the calculating the average of the mean

accelerations over r = B and z = 0. Therefore, the rate of

change of total momentum can be expressed as,

2pqB2W
2cþ 6ðc� 1Þ

3

� �
1

2p
þ 1

p2
þ 6

5

� �
d2h

dt2

�

þ 4ð2� cÞ
Bp2

þ 4ð1� cÞ
p3cW

� �
dh

dt


 �2
)

ð27Þ

One also needs to find out the total momentum flux

across the surface of the control volume. The momentum

flux across the curvature is the combination of the flux

across the cylindrical and the spherical regions, which can

be written as:

_Mr¼B ¼
4qB2

p
1þ 4ð1� cÞ

cp

� �
dh

dt


 �2

ð28Þ

Equation 28 shows the momentum flux across the

curvature. The momentum flux at the microchannel

entrance (z = 0) is given by (Levin et al. 1976),

_Mz¼0 ¼
24qBW

5

dh

dt


 �2

ð29Þ

Finally, one can write the momentum balance for the

control volume using Eqs. 22, 23, 25, 27–29 and by

rearranging the terms, the pressure field expression for

rectangular microchannel is

pð0; tÞ ¼ patm � qB
4cþ 3ð1� cÞ

24

� �
p

1

2p
þ 2

p2
þ 6

10

� �� 	�

þ 1� 2

p
ln

R1
B

� �	
d2h

dt2

þ q
4ð1� cÞ

p2
� 6

5

� �
� 4cþ 3ð1� cÞ

6

� ��

� ð2� cÞ
2p

� ð1� cÞ
p2

� �	
dh

dt


 �2

� 4l
B
ð2� cÞ þ ð1� cÞ

p

� �
dh

dt
ð30Þ

In Eq. 30 by substituting c = 1, one can readily find the

pressure field at the inlet of a square capillary, which can

be written as,

pð0; tÞ ¼ patm � qB
13

12
þ 1

3p
þ p

10

� 	
d2h

dt2

� q
6

5
þ 1

3p

� 	
dh

dt


 �2

� 4l
B

dh

dt
ð31Þ

Another limiting case is when the length of the channel

is very large compare to its width, i.e., c! 0; for which the

pressure field can be written as,

pð0; tÞ ¼ patm �
1

4p
þ 3p

40
� 15

16
þ 2

p
ln

R1
B

� 	
d2h

dt2

� q
9

2p2
� 6

5
� 1

2p

� 	
dh

dt


 �2

�4 2þ 1

p

� �
l
B

dh

dt

ð32Þ

One can re-derive the governing equation Eq. 13 with

the proposed pressure field as presented in Eq. 30 instead of

Eq. 12. It is necessary to perform the analysis to understand

the effect of pressure field on the capillary transport.

Therefore, in the upcoming section the penetration depth

with the pressure field from the literature is compared with

the penetration depth calculated using the proposed

pressure field.

5 Effect of appropriate pressure field in the capillary

transport

Figure 6 shows the variation in the penetration depth with

the pressure field from the literature and with the newly

proposed pressure field expression. As mentioned earlier,

the pressure field expression for rectangular microchannel

from literature has been extended from circular capillary

expression with an equivalent radius assumption. Hence in

Fig. 5c, the penetration depth obtained using the pressure
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field from the literature is labeled as the pressure field with

equivalent radius. For higher aspect ratio microchannels,

the length of the cylindrical region (Fig. 5c) is much longer

than the radius of the spherical region, therefore, the fluid

volume entering through the spherical region is negligible

as compared to the fluid volume entering through the

cylindrical region.

Figure 6a shows the variations in the penetration depths

for c = 0.05 which represents the microchannel of very

small width as compared to its depth. For such arrange-

ments, it is observed that there is a negligible difference

between the penetration depths with two different pressure

fields. In such cases, the flow from cylindrical region of

control volume plays significant role compared to the flow

from the spherical region of the control volume, therefore,

the difference in the penetration depth is negligible. In case

of lower aspect ratio microchannels, where the width is

comparable with the depth of microchannel, the fluid vol-

ume entering from the ends of semicylindrical volumes,

i.e., from the spherical regions along with that from

cylindrical region can not be neglected. The penetration

depth under such condition is depicted in Fig. 6b. The

penetration depth with proposed pressure field is signifi-

cantly different than the penetration depth with pressure

field from the literature. During the filling of the micro-

channel, the magnitude of the penetration depth with the

proposed pressure field is less than the penetration depth

with the pressure field from literature for the same time

instant, which can be attributed to the additional fluid mass

from the spherical regions. It is observed that pressure field

from the literature over predicts the penetration depth.

Thus, the proposed pressure field expression is an appro-

priate pressure field expression for the analysis of capillary

flow in rectangular microchannel, which is applicable for a

wide range of aspect ratios of the microchannel.

6 Conclusion

In traditional capillary flow analysis, the velocity across the

microchannel and the pressure field at the microchannel

entrance are considered with the simplified assumptions. In

this study, these assumptions are revisited and modifica-

tions in these assumptions are presented. Initially, the

analysis emphasize on the nature of the velocity profile

across the microchannel. For inherently transient capillary

flow analysis, the steady state velocity profile is used in the

literature. In this study, the transient developing velocity

profile instead of fully developed velocity profile is used to

investigate the effect of transience in the velocity profile.

The non-dimensional governing equation for penetration

depth, i.e., flow front movement along the microchannel

due to capillary with the transient velocity profile is

derived. Further, the penetration depth with the proposed

velocity profile is compared with the penetration depth for

steady state velocity profile. While deriving the governing

equation, different forces like, gravity, viscous, and pres-

sure forces acting on the fluid volume are considered. In

general, the pressure force acting at the entrance of the

microchannel is deduced from the pressure field expression

at the microchannel inlet. In the past studies, for rectan-

gular microchannels, the circular capillary expression is

adopted with an equivalent radius assumption. This

assumption may not be valid for all cases. An appropriate

pressure field for rectangular microchannels is proposed

and compared with the pressure field from literature. From

(a) Penetration depths with higher aspect ratio microchannel and cor-

responding difference in the penetration depth

(b) Penetration depths with lower aspect ratio microchannel

Fig. 6 The comparison of variations in the penetration depth with

equivalent radius and with recently proposed pressure field expres-

sions. a shows the comparison of penetration depth for c = 0.05 with

the corresponding difference in the penetration depth where b shows

the comparison for c = 0.9
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the theoretical analysis following important conclusions

can be made:

– In capillary flow analysis, transience in the velocity

profile need to be considered at the beginning of the

transport. The difference in the penetration depth is

observed at the beginning of the filling process

whereas, this difference is negligible as flow becomes

developed or steady state flow.

– For a high density and viscous fluid, transient effect is

observed at the beginning of the filling of the

microchannel.

– Transience effect is more for high density fluid than

high viscosity fluid.

– The flow front progression with the proposed pressure

field is slower than the flow front progression with the

approximated pressure field from the literature.

– For lower aspect ratio microchannels, where typically

the rectangular microchannel geometries approaches

toward the square microchannel, it is important to

consider the proposed pressure field.
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