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Abstract This article deals with a molecular dynamics

simulation of the diffusion of nanoparticles in dense gases

and liquids using the Rudyak–Krasnolutskii nanoparticle–

molecule potential. Interaction of molecules of the carrier

fluid is described by the Lennard-Jones potential. The

behavior of the nanoparticle velocity autocorrelation

function is studied. It is shown by molecular dynamics

simulation that the diffusion coefficient of small nanopar-

ticles depends greatly on the nanoparticle material. Rela-

tions are obtained between the diffusion coefficient of

nanoparticles and the nanoparticle radius and the temper-

ature of the medium. These relations differ from the cor-

responding Einstein relation for Brownian particles.

Keywords Velocity autocorrelation function �
Nanoparticle � Diffusion coefficient � Temperature

dependence � Nanofluid

1 Introduction

Understanding the transport properties of nanofluids is

necessary for various applications being developed today.

This issue is also important for basic research because it is

already clear that transport processes of small nanoparticles

differ from those of ordinary dispersed particles, in par-

ticular, Brownian particles. Nanoparticle diffusion plays a

key role from this viewpoint. It has long been believed that

it can be described as the diffusion of Brownian particles

by the Einstein relation

D ¼ kT=6plR; ð1Þ

where T is the temperature of the carrier fluid, l is its

viscosity coefficient (this coefficient is the temperature

function, of course), and R is the nanoparticle radius.

According to formula 1, the diffusion coefficient D depends

only on the particle radius and the viscosity of the carrier

fluid. However, with increasing interest in nanoparticles,

experimental evidence has been obtained indicating that

relation (1) does not describe nanoparticle diffusion (see,

for example, Kato et al. 1993; Tuteja and Mackay 2007).

Equation 1 implies that velocity relaxation of a

Brownian particle occurs under the action of the Stokes

force, and, hence, its velocity autocorrelation function

(VACF) has an exponential form with the relaxation time

s = M/6plR, where M is the mass of the particle. How-

ever, molecular dynamics simulations (Rudyak et al. 2000,

2001) have shown that the VACF of a nanoparticle in a

dense fluid is a superposition of two exponential curves

with significantly different relaxation times s1 and s2

v ¼ a1expð�t=s1Þ þ a2expð�t=s2Þ; ð2Þ

where ai are some constants. These results have been

conformed by Ould-Kaddour and Levesque (2007). At the

same time, in (Rudyak et al. 2000, 2001), interactions

between molecules and between molecules and particle

were described using the hard-sphere potential, which,

though giving an adequate qualitative description of dif-

fusion and the correct value of the corresponding coeffi-

cient, is a rather approximate model. For example, it does

not allow one to predict the correct temperature depen-

dence of transport coefficients. For this, it is necessary to

use a more realistic potential.

Previous simulations of the transport properties of nano-

particles have used mainly three potentials: Lennard-Jones

(L-J), Kihara, and Weeks–Chandler–Andersen potentials
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(see, e.g., McPhie et al. 2006; Nuevo and Morales 1998;

Ould-Kaddour and Levesque 2007; Pozhar 2000; and the

references therein). The main difficulty in modeling nano-

particle–molecule interaction with the above-mentioned

potentials is the choice of their constants. These potentials

were developed to describe intermolecular interactions, and

known constants can be used only for this purpose. It is

absolutely not clear what constants apply to the description

of molecule–nanoparticle interactions. For this reason, the

above potentials have been used only to study the qualitative

characteristics of nanofluids.

At the same time, two of the authors of this article

developed a special potential for interaction between

nanoparticles and molecules of the carrier medium (Rud-

yak and Krasnolutskii 1999), whose parameters are deter-

mined from the parameters of the L-J potential of

interaction of molecules with the nanoparticle atoms

(molecules). Later, it was employed as the basis for the

development of the kinetic theory of rarefied gas nano-

suspensions (Rudyak and Krasnolutskii 2001, 2002, 2003),

which has then been confirmed by experiments (Rudyak

et al. 2002). The purpose of this article is to study the

diffusion of nanoparticles in dense gases and liquids based

on the Rudyak–Krasnolutskii (RK) potential.

2 Potential, method, and systems considered

In the study, the standard molecular dynamics method (see,

e.g., Rapaport 2005) was used. The simulation was per-

formed on a cubic mesh with periodic boundary conditions.

Interaction between molecules of the carrier medium was

defined by the 6-12 L-J potential

ULJðrÞ ¼ 4e½ðr=rÞ12 � ðr=rÞ6�; r�Rc

0; r [ Rc

�
; ð3Þ

where r is the effective molecular diameter of the medium,

e is the depth of the potential well, Rc is the effective radius

of activity of potential, and r ¼ ri � rj

�� �� is the distance

between molecules i and j. Interaction of molecules of the

carrier medium with nanoparticles was described by the

RK potential (Rudyak and Krasnolutskii 1999, 2001, 2002)

URKðrÞ ¼ U9ðrÞ þ U3ðrÞ

Ui ¼ Ci

(
1

r � Rð Þi
� 1

r þ Rð Þi

" #

� ai

r

1

r � Rð Þi�1
� 1

r þ Rð Þi�1

" #)
; i ¼ 9; 3; ð4Þ

where, a9 = 9/8r, a3 = 3/2r, Vp
-1 = qp/mp, C9 =

(4pe12r12
12)/45Vp, C3 = (2pe12r12

6 )/3Vp. Here qp is the den-

sity of the dispersed particle material, mp is the mass of the

molecule (atom) of the nanoparticle material, R is the

nanoparticle radius, and rij, eij are the parameters of the L-J

potential of interaction of a medium molecule with a nano-

particle molecule.

Generally, it is also necessary to specify the potential of

interaction between the nanoparticles. However, an ade-

quate potential of their interaction has not yet been

developed. In this study, low concentrations of nanoparti-

cles were considered, so that their interaction could be

neglected. Actually, we always modeled the diffusion of

one particle in a mesh filled with molecules. The molecules

of the medium were uniformly distributed in the simulation

mesh according to the prescribed density. Initial velocities

of the molecules were specified according to the Maxwell

distribution at the given temperature. The initial velocity of

the nanoparticle was set equal to zero. The calculation was

started after a certain relaxation period when the entire

system reached equilibrium. The evolution of the system

was calculated by integrating the Newton equations using

the Schofield scheme (Schofield 1973) or fourth order

Runge–Kutta scheme. The number of molecules of the

carrier medium in all calculations was equal to 8000.

The length of the simulated volume was about 22.3r. The

integration step was set to Dt = 4.6 9 10-16 s. The min-

imum number of steps in the calculations was 106.

Because the employed potentials are infinite-range

potentials, they should be truncated during simulation. In the

L-J potential (3), the radius Rc was set equal to 2.5r and the

RK potential (4) was truncated at distances ~R ¼ Rþ 4r12.

At this distance, the value of the potential was not more than

1% of the potential well depth.

It should be noted that in simulations of the evolution of

nanosuspensions, stricter restrictions are imposed on the

size of the simulation mesh compared to homogeneous

fluid. Since a nanoparticle should not interact with itself, it

is necessary that the length of the side of the cubic mesh be

much greater than the range of the potential L� ~R: In

practice, to eliminate the corresponding correlations, the

distance should be, at least, several times larger.

Argon was considered the carrier fluid. The potential (3)

for argon had the following parameters: r = 3.542 Å,

e/kB = 93.3 K (Reid et al. 1987). Its density nr3 varied

from 0.7 to 0.28. Here n is the number density of the fluid.

Diffusion of nanoparticles of lithium and aluminum in

argon was studied. The nanoparticle diameter varied from 1

to 4 nm. The temperature of the carrier fluid varied from

248 to 420 K.

The parameters of the RK potential (4) were determined

by means of elementary combination relations r12 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
r11r22
p

; e12 ¼
ffiffiffiffiffiffiffiffiffiffiffi
e11e22
p

: So for Li–Ar potential r12 =

3.74 Å, e12/kB = 215.99 K; and for Al–Ar potential

r12 = 3.32 Å, e12/kB = 343.93 K.
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3 Nanoparticle VACF

During molecular-dynamic simulations, the dynamic vari-

ables of molecules and nanoparticle at sequential times are

calculated. From these variables, using methods of non-

equilibrium statistical mechanics it is possible to determine

all thermodynamic characteristics of the system and

calculate the transport coefficients. In particular, the self-

diffusion coefficient D is determined from the Green–Kubo

formula

D ¼ 1

3

ZT

0

vðtÞdt; ð5Þ

where vðtÞ ¼ Vð0Þ � VðtÞh i is the VACF. Here V is the

nanoparticle velocity and the angular brackets denote

averaging over the number of runs. T is the time when the

VACF reaches the plateau value (see Rudyak et al. 2008).

Investigation of the nanoparticle velocity relaxation in

the carrier fluid shows that it occurs in two stages (as for

the hard-sphere system) and is described by relation (2).

This is illustrated in Fig. 1, which shows as an example the

time dependence of the normalized VACF v0 ¼ v= V2ð0Þ
� �

for a lithium nanoparticle of 2 nm diameter in argon (solid

curve). The time t0 is in the units of s = r/c, where c is the

thermal velocity of the molecules of the medium. The

density of argon is nr3 = 0.707. For comparison, the figure

gives the VACF (dotted curve) for the hard-sphere system.

Qualitatively, the behavior of the VACFs obtained for the

hard-sphere and RK potentials given in Fig. 1 is the same.

There are two stages of relaxation. The relaxation times s2

(see formula 2) are practically similar for the two cases. At

the same time, they have a systematic qualitative differ-

ence. The VACF for the RK potential (2) has a charac-

teristic nonmonotonic region in the initial stage of

relaxation.

This nonmonotonic region is absent for the pair inter-

action between a molecule and nanoparticle when the

carrier medium is sufficiently rarefied. In dense carrier

media, a nanoparticle is in a mean field of interaction

forces between the nanoparticle and molecules of the

medium. Thus, a certain collective effect takes place. Such

a mean self-consistent field is typical of systems with long-

range forces, for example, plasma, and it is practically

absent in ordinary molecular fluids. The potential (4) is

also a long-range one: its characteristic range is on the

order of the nanoparticle size. Thus, in this case, there is

also an analog of a self-consistent force. To show this, we

simulate this potential below.

In equilibrium, a certain mean isotropic density distri-

bution of carrier-fluid molecules is formed around a

nanoparticle, which is described by the radial nanoparticle–

molecule distribution function G(r). The self-consistent

field around the nanoparticle can be modeled as follows.

We ‘‘freeze’’ the given (arbitrary) density distribution of

carrier-fluid molecules by placing the coordinate origin at

the center (r = 0). Next, we place the nanoparticle at dif-

ferent points and calculate the total interaction potential

with this distribution of carrier-fluid molecules for each

position of the nanoparticle. Thus, we obtain a certain self-

consistent potential field in which the nanoparticle moves.

Summation over all molecules can be replaced by inte-

gration; then, the required potential energy for the nano-

particle at a point with spherical coordinates (r = x, h = 0,

and u = 0) is given by the expression,

UðxÞ ¼
ZZ

V

Z
URK ðr; h;/Þ � ðx; 0; 0Þj jð ÞnmG rð ÞdV

¼ nm

ZRcþx

Rp

G rð Þ4pr2dr

Zp

0

URK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ r2 � 2xrcosh

p� �

� sinhdh
2

where nm is the mean density. The field U(x) is spherically

symmetric. As an example of the obtained potential, Fig. 2

shows the potential U(x) which acts on a lithium nano-

particle of 1 nm diameter in argon; the coordinate x is in

nanometers. This potential has very short acting radius.

The nanoparticle oscillates near the equilibrium position.

According to calculations, the characteristic period of

Fig. 1 Time dependence of the normalized VACF for a Li nanopar-

ticle in Ar (solid curve corresponds to the RK potential) and for the

hard-sphere system (dashed curve)
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oscillations of nanoparticle considered in the initial stage of

relaxation is equal to 0.4s, which agrees well with the

period of small oscillations of a nanoparticle in the

potential well constructed above. The last period is equal to

0.42s.

4 Diffusion coefficient of nanoparticles

The diffusion coefficient of a nanoparticle is given by

formula 5. Actually, this is a function of time. The proper

diffusion coefficient is obtained only upon reaching a

certain plateau value (Rudyak et al. 2008). Typical

behavior of the function (5) with time is presented in Fig. 3

for the diffusion coefficient of a lithium nanoparticle in

argon whose VACF is presented in Fig. 1. Here the solid

curve corresponds to the diffusion coefficient obtained

using the RK potential (4), and the dotted curve to diffu-

sion coefficient obtained using the hard-sphere potential.

The diffusion coefficient is in the units of cm2/s. The

obtained values of the diffusion coefficients differ by 8%

with a calculation accuracy of about 5%. The presence of

the attractive branch of the RK potential and the much

weaker repulsive part naturally reduce the mobility of the

nanoparticle and, as a consequence, its diffusion coefficient

is lower than that for the hard-sphere potential.

According to the Einstein formula 1, the diffusion

coefficient of a particle is inversely proportional to its

radius. In the case of small nanoparticles, this is not so. We

simulated the diffusion coefficient of lithium and alumi-

num nanoparticles of 1–4 nm diameter in argon at a tem-

perature of 322.5 K and argon density nr3 = 0.707. The

obtained data are presented in Fig. 4. In all cases,

formula 1 does not describe the observed values of the

diffusion coefficient. In addition, the diffusion coefficients

depend on the particle material. Generally, the dependence

of the diffusion coefficient on nanoparticle radius is

described by the exponential function

D ¼ aR�k ð6Þ

where k [ 1. For lithium nanoparticles, kLi = 1.37, and for

aluminum nanoparticles, kAl = 1.59.

In the Sect. 1, it was already noted that a correct tem-

perature dependence of the diffusion coefficient can be

obtained only using a realistic molecule–nanoparticle

interaction potential. This dependence is also described by

the exponential function

Fig. 2 Potential of the self-consistent force acting on a Li nanopar-

ticle of 1 nm diameter in Ar

Fig. 3 Time dependence of the diffusion coefficient of a Li

nanoparticle in Ar. The solid curve corresponds to the diffusion

coefficient obtained using the RK potential and the dotted curve to

diffusion coefficient obtained using the hard-sphere potential

Fig. 4 Diffusion coefficient (cm2/s) versus nanoparticle radius (nm).

The dashed curve and boxes correspond to lithium nanoparticle, the

dot-dash curve and circles to aluminum nanoparticles, and the solid
curve to the Einstein formula
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D ¼ aTn; ð7Þ

where the exponent n is not universal and depends on the

nanoparticle material and size. As an example, Fig. 5

shows the temperature dependence of the diffusion coef-

ficient for lithium nanoparticles of 2 nm diameter in argon

(nr3 = 0.707). Here the points correspond to our calcula-

tion and the dashed curve to its approximation by relation

(7) with n = 1.1. The corresponding dependence deter-

mined from the Einstein formula (solid curve) gives much

smaller growth, and this difference increases with

temperature.

5 Conclusions

In this study, it was shown that the diffusion of nanopar-

ticles in dense fluids differs significantly from the diffusion

of Brownian particles. Molecular dynamics simulation

using the RK potential (4) leads to qualitatively similar

effects as when using the hard-sphere potential. At the

same time, the use of the RK potential made it possible for

the first time to obtain a number of new results. This is, first

of all, the dependence of the diffusion coefficient on the

nanoparticle material, which is not typical of macroscopic

theories. On the other hand, similar results are also

obtained in the kinetic theory of nanoparticle diffusion in

rarefied gases (Rudyak et al. 2008b). The difference of the

diffusion coefficients between different materials nano-

particles ranges from 9 to 32%. This discrepancy is

decreased when the nanoparticle size increases.

The dependence of the diffusion coefficient on the

carrier-fluid temperature is described by the formula 7.

The similar dependence has been experimentally obtained

for the diffusion coefficient of nanoparticles in gases at

normal pressure (Rudyak et al. 2009). In cited article, it

was shown that the temperature dependence of the diffu-

sion coefficient was not described by the known

Cunningham–Millikan–Davis correlation (analog of the

formula 1 for gases).

The dependences of the diffusion coefficient of nano-

particles on their size and carrier-fluid temperature also

differ significantly from the dependence obtained for

Brownian particles (see formula 1). Of course, as the size

of nanoparticles increases, their diffusion coefficient will

approach the diffusion coefficient of Brownian particles. It

follows from kinetic theory that the individual properties of

nanoparticles have a significant effect on their diffusion up

to nanoparticle sizes of about 20–30 nm. Apparently, for

nanoparticles with sizes R [ 50 nm, this dependence can

always be neglected in practice.

Now a few words about the limits of applicability of the

RK potential (1) of nanoparticle–molecule interaction

(Rudyak and Krasnolutskii 1999). This potential was

obtained at the following assumptions:

• The interaction of molecules with the particle surface is

described classically;

• The adiabatic approximation can be used;

• The interaction potential between molecules of the

carrier gas with a molecule (atom) of the particle is

assumed to be pairwise and additive;

• The influence of the surface structure was neglected;

• The possible internal degrees of freedom, including the

possible thermal fluctuations of the particle surface,

were not taken into account.

The above assumption actually imply that (i) the tem-

peratures should not be too low (as for ordinary classical

intermolecular potentials); (ii) the interaction energy

should not be very high (BkeV); (iii) the criterion of the

applicability of the classical approach is the smallness of

the de Broglie wavelength, compared with the typical

spatial scale of the problem. It is easy to see that at not too

low temperatures, this condition is satisfied; (iv) account-

ing for lattice vibrations and surface structure can seriously

affect quantitative calculation results. However, this is

particularly important in considering adsorption, inelastic

effects of the interaction, possible spraying, which are also

not considered in this model. The contributions of these

effects to transport processes, however, are usually not

too great; and (v) the number of molecules (atoms) in

nanoparticles should be much greater than 1. Therefore,

particles with a characteristic size of 1 nm or larger may

well be described by this potential.

Fig. 5 Diffusion coefficient (cm2/s) of Li nanoparticle of 2 nm

diameter in argon nanoparticles versus temperature of the medium

(K). The boxes correspond to our calculation and the dashed line to its

approximation by the formula 7 with n = 1.1, solid line to Einstein

formula
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Dependence of the diffusion coefficient nanoparticles on

their material is very interesting property. The similar

effect must be observed for other transport coefficients of

the nanofluids. In particular, the viscosity of the nanofluids

must be depended on not only the nanoparticles volume

fraction but also on their material. The molecular dynamics

simulation for hard spheres model confirms this point of

view indirectly (see Rudyak et al. (2008a), but the simu-

lation with the RK potential needs in future. This potential

may be used in study of the all thermophysical properties

of the nanofluids.
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