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Abstract A mathematical model is presented for the

problem of apparent slip arising from Stokes shear flow

over a composite surface featuring mixed boundary con-

ditions on the microscale. The surface can be composed of

a bidimensional array of solid areas placed on an otherwise

no-shear surface corresponding to an envelope over the

tops of posts, or no-shear areas placed on an otherwise

solid surface corresponding to an envelope over the tops of

holes. Posts and holes of circular or square cross section,

and solid areas of no-slip or partial-slip types are studied.

Following some previously proposed scaling laws, the

effective slip length is expressed as a certain function of the

solid fraction for some specific cases. More refined equa-

tions based on linear regression of the computed results are

obtained for these cases. Amounts of slippage arising from

these bidimensional patterns are compared with those from

the one-dimensional patterns of grooves/grates. It is also

shown that a larger slip length can result from an

arrangement where the pitch is larger in the spanwise

direction than in the streamwise direction.

Keywords Apparent slip � Micropatterns �
Method of eigenfunction expansions

1 Introduction

The microfluidic community is keen on looking for an

optimized patterned surface that can give rise to as large

boundary slip as achievable. Recent works on flow in

microfluidic devices have reported that slip lengths as large

as 200 lm can be achieved on a properly micro-engineered

superhydrophobic surface (e.g. Choi et al. 2006; Lee et al.

2008). The slip length (Navier 1823), which is defined as

the depth at which the velocity would become zero by

extrapolation of the velocity profile into the envelope of a

surface, is a standard measure of the velocity slip on a

surface. It is also equal in magnitude to the slip velocity per

unit shear rate of flow near a boundary surface.

The boundary slip has been reviewed from an experi-

mental perspective by Neto et al. (2005) and Lauga et al.

(2007), while superhydrophobic surfaces have been

reviewed from a material perspective by Zhang et al.

(2008). The body of work in this area has been fast growing

in recent years. While the main thrust is to develop

experimental methods and to make observations in the

laboratory (e.g. Zhu and Granick 2001, 2002; Cottin-

Bizonne et al. 2002; Tretheway and Meinhart 2002; Choi

et al. 2003, 2006; Ou and Rothstein 2005; Joseph et al.

2006), numerical simulations and theoretical modeling

have also been conducted using continuum or discrete-

element approaches (e.g. Lauga and Stone 2003; Cottin-

Bizonne et al. 2003, 2004; Zhang and Kwok 2004; Priezjev

et al. 2005; Hendy et al. 2005; Priezjev and Troian 2006;

Davies et al. 2006; Sbragaglia and Prosperetti 2007a, b;

Hendy and Lund 2007; Ng and Wang 2009).

The boundary slip as observed on the macroscale is an

apparent or asymptotic behavior in the far field, arising

from a composite surface of mixed boundary conditions on

the microscale. A surface can be engineered to feature
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micro- or nanopatterns, such as grates, posts, cones, turf, or

holes. If the surface is made of hydrophobic (i.e. nonw-

etting) material, the interstitial pores will not be filled with

liquid until the capillary pressure is exceeded. In this so-

called Cassie (fakir) state, the liquid flow is restricted to the

top of the microstructure, and the micropores are filled with

gas or vapor which offers little resistance to the flow.

Hence, the liquid experiences mixed boundary conditions

on approaching the surface: no-slip (or partial slip if the

solid is chemically treated) on the solid part, and no-shear

on the void part of the surface. It is a spatial average of

these micro-effects that will lead to the apparent or effec-

tive slip on the macroscale.

As remarked by Ybert et al. (2007), the hydrodynamic

problem of flow over a surface with mixed boundary

conditions is not easy to solve, and analytical results are

available only for some simple one-dimensional patterns.

A mathematical model that can help predict slippage on

more complex geometries is still much wanting. Most of

the above-mentioned theoretical modeling studies are for

two-dimensional flows over a structure like grates or

grooves. The existing literature lacks in particular theo-

retical work on flow over a three-dimensional structure like

posts or holes.

Motivated by the need for characterizing different

geometries, Ybert et al. (2007) have proposed some pre-

dictive scaling laws for the amounts of slippage achievable

on stripes, posts, and holes as functions of the solid frac-

tion. They have also proposed interpolation relationships to

account for effects due to intrinsic or micro-slip, vapor

dissipation and curvature of the meniscus.

This paper aims to examine in some further detail the

problem of shear flow over bidimensional patterns, such as

posts and holes, based on the scaling laws put forward by

Ybert et al. (2007). Our basic formulation, namely Stokes

flow over a heterogeneous surface, is the same as the one

considered by them. Our solution method is, however,

different from theirs. Ybert et al. (2007) have resorted to

two approaches on numerically calculating the slip length.

The first approach is the mathematical model previously

used by Cottin-Bizonne et al. (2004), and the second

approach is a 3D finite-element analysis implemented on a

commercial package. In the model developed by Cottin-

Bizonne et al. (2004), the problem is to solve numerically

the Fourier-transformed components of the vorticity in the

Fourier space. As pointed out by Cottin-Bizonne et al.

(2004) and Ybert et al. (2007) themselves, this numerical

method of solution may have limitations that restrict the

range of some input values (e.g. accuracy will be signifi-

cantly lost when the solid fraction becomes smaller than a

certain value).

A semi-analytical solution method based on eigenfunc-

tion expansions is applied in this study. The Reynolds

number in terms of the microscopic length scale is so small

that the flow can be assumed to be inertia free, and is called

creeping or Stokes flow. For Stokes flow over the two-

dimensional microstructures of longitudinal and transverse

grooves/grates, the method of eigenfunction expansions

and matching has been used previously by Wang (2003),

and Ng and Wang (2009) to study the effects of liquid

penetration into the grooves. This solution technique is

now extended to more complicated flow over the three-

dimensional microstructures of posts or holes. Specifically,

three-dimensional flow over a periodic array of solid pat-

ches on an otherwise no-shear surface, or vice versa, is

solved in terms of the primitive variables in the real space.

The variables are expressed in terms of Fourier series that

naturally satisfy all the boundary conditions except the

mixed slip conditions on the composite surface. The point

collocation method is then used to determine the Fourier

coefficients in order that the mixed boundary conditions are

satisfied as well. This solution method is straightforward to

apply, and is not subject to the limitations mentioned

above.

Posts and holes of circular or square cross section

organized on a rectangular lattice are studied in this work.

The solid areas may be of no- or partial-slip type, and a unit

cell of the lattice may have an aspect ratio different from

unity. For various geometries and effects, we compute the

effective slip length as a function of the solid fraction. The

data points are plotted following the scaling laws proposed

by Ybert et al. (2007). Like Ybert et al. (2007), linear

regression relationships are derived, but in our case the

regression is based on more data points extending over a

wider range of the solid fraction, and is geometry specific.

We not only refine, but also supplement the linear regres-

sion equations obtained by Ybert et al. (2007).

The threshold value of the solid fraction below which

posts/pillars (especially those of circular shape) may give

rise to larger slippage than grooves/grates is determined.

The slippage is also affected by the configuration of the

arrangement of different areas in the array. On varying the

aspect ratio of a periodic cell, we find that it can be more

advantageous to have the pitch (i.e. one length period)

being larger in the spanwise direction than in the stream-

wise direction. This in some sense amounts to adding

longitudinal grooves into an array of posts.

2 Mathematical model

Stokes shear flow of a viscous liquid over the envelope of a

structured surface composed of posts or holes is consid-

ered. From a plan view, the surface features a periodic

array of patches organized on a rectangular lattice; see

Fig. 1a, b. The Cassie state is assumed: the liquid does not
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fill the voids, and the flow remains on top of the micro-

structure. In the case of posts or pillars, the individual

patches (area I) represent the liquid/solid interfaces where

the no- or partial-slip boundary condition applies. The

continuous part (area II) of the surface is then the liquid/

void interface on which infinite slip of the liquid holds. In

the case of holes, the pattern is interchanged: the discrete

areas I are the void surfaces, and the continuous area II is

then the solid surface.

The patterned surface can be seen as being made up of a

rectangular array of unit cells, where one unit cell encloses

a single area I centered in the middle. For any unit cell, we

define at its center the local rectangular coordinates (x,y),

such that the x-axis points in the direction of the flow far

above the surface. The area I has a geometry that is sym-

metrical about the x- and the y-axes. The centers of

neighboring cells are separated by a distance (or pitch) L

and bL in the x- and y-directions, respectively. Hence, a

unit cell has an aspect ratio of b:1.

A unit cell extending into the far field results in a semi-

infinite unit volume, which forms the basic domain of our

analysis. Figure 1c shows such a unit volume, where the

normal z-axis is defined, pointing into the space above the

surface. The velocity V � ðu; v;wÞ and pressure p, which

L

bL
x

y

→ ∞

x

z

x

y

z

(-1/2, -b/2, 0) (1/2, -b/2, 0)

(1/2, b/2, 0)

unity velocity gradient
along the x-direction
far above the surface

At y = ±b/2:
uy = v = wy = py = 0.

At z = 0:
w = 0, and
either partial-slip u = λuz, v = λvz

or zero-shear uz = vz = 0.

As z :
uz = 1, v = w = p = 0.

At x = ±1/2:
ux = v = w = p = 0.

I
II

(a)

(c)

(b)
liquid

III IIIIIII
envelope

Fig. 1 a Side view of liquid flow over the envelope of a structured

surface, composed of solid posts (I) embedded in shear-free gas (II),

or holes (I) filled with shear-free gas in a solid medium (II). b Plan

view of the surface envelope, featuring a periodic array of discrete

areas I organized on a rectangular lattice in a continuous area II. The

x-axis points in the direction of the flow far above the surface.

c Three-dimensional view of a unit domain enclosing one discrete

area I at the center on its base, with periodic conditions on the four

lateral boundaries, and mixed slip conditions on the surface envelope.

The length quantities are normalized with respect to the x-pitch of the

periodic structure
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are functions of x � ðx; y; zÞ; are governed by the conti-

nuity and Stokes equations

r � V ¼ 0; ð1Þ

r2V ¼ rp; ð2Þ

where the variables x, V, and p have been normalized with

respect to L, U, and lU/L, respectively. Here, l is the

dynamic viscosity of the liquid, L is the pitch of the surface

pattern in the streamwise x-direction, and U is a velocity

scale such that the velocity gradient in the far field is equal

to U/L. Our problem is from here on expressed in terms of

the normalized variables.

The flow is driven by a unity velocity gradient in the

x-direction in the far field as z??, where v = w = p = 0

is assumed. By virtue of the forcing and the configuration

of the surface pattern, the following symmetry or anti-

symmetry properties of the flow field can be anticipated: u

is even in both x and y, v is odd in both x and y, while w and

p are odd in x but even in y. To observe periodicity, the

following conditions on the four lateral boundaries must be

satisfied:

ou

ox
¼ v ¼ w ¼ p ¼ 0 at x ¼ �1=2; ð3Þ

ou

oy
¼ v ¼ ow

oy
¼ op

oy
¼ 0 at y ¼ �b=2: ð4Þ

On the surface z = 0, the vertical velocity component

vanishes, w = 0, and mixed boundary conditions are

imposed on the horizontal velocity components. Over the

void part of the surface, the no-shear or infinite-slip

condition applies:

oðu; vÞ
oz

�
�
�
�
z¼0

¼ 0: ð5Þ

Over the solid part of the surface, the Navier partial-slip

condition applies:

ðu; vÞz¼0 ¼ k
oðu; vÞ

oz

�
�
�
�
z¼0

; ð6Þ

where k C 0 is the micro- or intrinsic slip length. When

k = 0, the solid surface becomes a no-slip surface.

The basic solutions naturally satisfying the lateral peri-

odic boundary conditions can be expressed in the form of

the following eigenfunction expansions:

uðx;y;zÞ¼ zþdþ
X1

n¼1

cosðanxÞUn0ðzÞþ
X1

m¼1

cosðbmyÞU0mðzÞ

þ
X1

n¼1

X1

m¼1

cosðanxÞcosðbmyÞUnmðzÞ; ð7Þ

vðx; y; zÞ ¼
X1

n¼1

X1

m¼1

sinðanxÞsinðbmyÞVnmðzÞ; ð8Þ

wðx; y; zÞ ¼
X1

n¼1

sinðanxÞWn0ðzÞ

þ
X1

n¼1

X1

m¼1

sinðanxÞcosðbmyÞWnmðzÞ; ð9Þ

and

pðx; y; zÞ ¼
X1

n¼1

sinðanxÞPn0ðzÞ

þ
X1

n¼1

X1

m¼1

sinðanxÞcosðbmyÞPnmðzÞ; ð10Þ

where d is a constant known as the macro-slip length, and

Un0, U0m, Unm, and so on, are functions of z. The

eigenvalues are given by

an ¼ 2np; bm ¼ 2mp=b n;m ¼ 1; 2; . . .: ð11Þ

The constant d is also known as the effective or apparent

slip length. It amounts to an apparent slip velocity per unit

shear rate of the flow near the patterned surface, but at a

distance sufficiently far from the microstructure.

Substitution of Eqs. 7–10 into the components of the

Stokes equation 2, after matching of terms, gives (for n,

m = 1,2,...)

U00n0 � a2
nUn0 ¼ anPn0; ð12Þ

U000m � b2
mU0m ¼ 0; ð13Þ

U00nm � c2
nmUnm ¼ anPnm; ð14Þ

V 00nm � c2
nmVnm ¼ �bmPnm; ð15Þ

W 00n0 � a2
nWn0 ¼ P0n0; ð16Þ

W 00nm � c2
nmWnm ¼ P0nm; ð17Þ

where c2
nm ¼ a2

n þ b2
m: Substitution of Eqs. 7–9 into the

continuity equation 1 further gives

W 0n0 � anUn0 ¼ 0; ð18Þ

W 0nm � anUnm þ bmVnm ¼ 0: ð19Þ

Using the far-field conditions Un0, U0m, Vnm ? 0 as z??,

and the conditions Wn0ð0Þ ¼ Wnmð0Þ ¼ 0; the Eqs. 12–19

can be solved to yield after some algebra:

Un0ðzÞ ¼ A1n e�anz � anze�anzð Þ; ð20Þ

U0mðzÞ ¼ A3me�bmz; ð21Þ
UnmðzÞ ¼ B1nme�cnmz þ B2nmze�cnmz; ð22Þ

VnmðzÞ ¼
an

bm

B1nm þ
cnm

anbm

B2nm

� �

e�cnmz � bm

an
B2nmze�cnmz;

ð23Þ
Wn0ðzÞ ¼ anA1nze�anz; ð24Þ

WnmðzÞ ¼ �
cnm

an
B2nmze�cnmz; ð25Þ
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Pn0ðzÞ ¼ 2anA1ne�anz; ð26Þ

and

PnmðzÞ ¼ �2
cnm

an
B2nme�cnmz: ð27Þ

The solutions deduced so far, which contain

undetermined constants d, A1n, A3m, B1nm and B2nm

(n, m = 1,2,...), have yet to satisfy the boundary conditions

Eqs. 5 or 6 on the surface z = 0. Let us first truncate each of

the series in Eqs. 7–10 to a finite number of terms:

uðx;y;zÞ¼ zþdþ
XN

n¼1

cosðanxÞUn0ðzÞþ
XM

m¼1

cosðbmyÞU0mðzÞ

þ
XN

n¼1

XM

m¼1

cosðanxÞcosðbmyÞUnmðzÞ; ð28Þ

vðx; y; zÞ ¼
XN

n¼1

XM

m¼1

sinðanxÞsinðbmyÞVnmðzÞ; ð29Þ

and so on. Then, the no-shear condition 5 gives

2
XN

n¼1

anA1ncosðanxÞ þ
XM

m¼1

bmA3mcosðbmyÞ

þ
XN

n¼1

XM

m¼1

cnmB1nm � B2nmcosðanxÞcosðbmyÞ ¼ 1; ð30Þ

and

XN

n¼1

XM

m¼1

ancnm

bm

B1nm þ
an

bm

þ 2bm

an

� �

B2nm

� �

� sinðanxÞsinðbmyÞ ¼ 0: ð31Þ

The partial-slip condition 6 gives

dþ
XN

n¼1

ð1þ 2kanÞA1ncosðanxÞþ
XM

m¼1

ð1þ kbmÞA3mcosðbmyÞ

þ
XN

n¼1

XM

m¼1

ð1þ kcnmÞB1nmcosðanxÞcosðbmyÞ

� k
XN

n¼1

XM

m¼1

B2nmcosðanxÞcosðbmyÞ ¼ k; ð32Þ

and

XN

n¼1

XM

m¼1

an

bm

ð1þ kcnmÞB1nmsinðanxÞsinðbmyÞ

þ
XN

n¼1

XM

m¼1

cnm þ kða2
n þ 2b2

mÞ
anbm

B2nmsinðanxÞsinðbmyÞ ¼ 0:

ð33Þ

Now, we need to develop a system of Kc = 1 ?

N ? M ? 2N 9 M equations in order to solve for the

same number of unknown coefficients: d, A1n, A3m, B1nm

and B2nm, where n = 1,...,N, and m = 1,...,M. The method

of point collocation is adopted here. The boundary

conditions 30 and 31, or 32 and 33, depending on the

regions of the surface, are required to be satisfied at a finite

number of discrete points distributed over a representative

part of the patterned surface. By symmetry of the flow

field, it suffices to consider a half-pitch in both x and y.

Hence, a convenient computational domain can be the first

quadrant: 0 B x B 1/2 and 0 B y B b/2. In our scheme,

two different sets of collocation points are selected for the

x- and y-components of the boundary conditions. This is to

avoid setting points along the four boundaries of the

domain for the conditions in terms of v, which is zero on

these boundaries. The x-component of the boundary

conditions, viz. 30 and 32, are imposed to be satisfied at

an IM 9 JM array of points ðxð1Þi ; y
ð1Þ
j Þ ¼ ðði� 1ÞDx; ðj�

1ÞDyÞ; where i = 1,...,IM, j = 1,...,JM, Dx ¼ 0:5=ðIM � 1Þ
and Dy ¼ 0:5b=ðJM � 1Þ: For the y-component of

the boundary conditions, viz. 31 and 33, they are

imposed to be satisfied at an (IM-1) 9 (JM-1) array of

points ðxð2Þi ; y
ð2Þ
j Þ ¼ ðx

ð1Þ
i þ 0:5Dx; y

ð1Þ
j þ 0:5DyÞ; where

i = 1,...,IM-1, and j = 1,...,JM-1. Note that the first set

of points covers the entire computational domain, while the

second set of points only extends to a region that is off

the boundaries of the domain by a half grid interval. The

total number of collocation points is therefore

Kp = IM 9 JM ? (IM-1) 9 (JM-1), which should be

exactly equal to Kc in order to form a system with a unique

solution. It happens that Kc = Kp when IM = N ? 1 and

JM = M ? 1.

Figure 2 shows an example of how the two staggering

sets of points are distributed for a case where b = 1,

IM = JM = 74, and a circular area I of radius r = 0.25 is

considered. Points immediately on the two sides of the

interface separating regions I and II are slightly adjusted in

position so that they are at an equal distance of Dx/2 from

the interface. In this work, we have chosen to use the

IMSL-DLSARG high-precision solver to solve the system

of equations. Some trial tests have shown that solutions of

good accuracy can be obtained when the numbers of the

points are as many as IM, JM [ 70.

3 Results

3.1 Flow over posts

Let us first consider flow over a patterned surface made up

of solid areas organized on a square lattice (i.e. b = 1),

with zero slip on the solid surfaces (i.e. k = 0). This kind

of pattern corresponds to the tops of posts or pillars as a

structured surface. The no-slip solid areas can be circular

or square in shape. The ratio of solid to total area of the
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surface, or simply the solid fraction, is denoted by /s.

Ybert et al. (2007) have proposed that in the limit of small

solid fraction, the macro-slip length for posts is scaled by

lim
/s!0

d�/�1=2
s : ð34Þ

They verified this scaling law by showing that their com-

puted slip lengths indeed collapse closely onto a single

straight line when plotted against /�1=2
s : They derived that,

for some ten data points in the range 0.02 \/s \ 0.3

including circular as well as square solid areas, a linear

regression analysis gives the relation d ¼ 0:325/�1=2
s

�0:44:

Here, in Fig. 3, we re-examine in a more detailed

manner the plotting of d versus /s
-1/2 based on our com-

puted values. First, many more data points for each

geometry of the solid areas are generated. Second, to obtain

a more accurate linear fit reflecting the small limit of

/s?0, the solid fraction being considered for linear

regression is shifted to a range of smaller limits

0.008 \ /s \ 0.25. With these changes, we find that the

data points for the two geometries actually fall on slightly

different straight lines. These lines are mathematically

given by

d ¼ 0:34/�1=2
s � 0:468 for circular posts; ð35Þ

d ¼ 0:33/�1=2
s � 0:461 for square posts. ð36Þ

One can see that these two lines have slightly greater slopes

and lower intercepts than those of the line derived by Ybert

et al. (2007). For the same solid fraction, the circular solid

areas give rise to a slightly larger effective slip length than

the square ones. Nevertheless, the scaling law as proposed

by Ybert et al. (2007) is very well followed by either

geometry of the solid areas.

The inset of Fig. 3 is a plot of the same computed results

on linear coordinates. Shown in this inset are also the

measured data points recently reported by Lee et al.

(2008), who performed rheometry tests with a cone spin-

ning under a constant shear rate over a hydrophobic

structured surface exhibiting posts or grates of 50 lm

pitch. Apart from some discrepancy, which is probably due

to the rotational flow pattern in the rheometry system (Lee

et al. 2008), the measured data and the theoretical results

show a similar trend of sharp rise of the slip length as the

solid fraction tends to zero.

It is also of interest to compare posts with grates.

Figure 3 shows also the results corresponding to flow over

parallel or normal stripes (i.e. tops of grates). Analytical

expressions for the effective slip lengths over these one-

dimensional patterns have been obtained by Philip (1972),

who considered shear flow over a flat plate with a periodic

array of no-shear alternating with no-slip slots:

Fig. 2 An illustration of the distribution of two staggering sets of

collocation points on a composite surface, where the dots and the

crosses are, respectively, the points at which satisfaction of the x- and

the y-components of the mixed slip conditions are imposed. In this

example, b = 1, IM = JM = 74, and a circular area I of radius

r = 0.25 is considered. Points immediately on the two sides of the

interface separating areas I and II are slightly adjusted in position so

that they are at an equal distance of Dx/2 from the interface

++

+

+
+
+++

0 0.2 0.4 0.6 0.8
0

0.5

1

1.5

2

2.5

φs

δ

1 2 3 4 5 6 7 8 9 10 11 12
0

1

2

3

4

φs
-1/2

δ

normal
stripes

parallel
stripes

Fig. 3 Effective slip length, d, versus the negative half power of the

solid fraction, /s
-1/2, for circular (circles and solid line) and square

(squares and dashed line) posts, where the symbols are computed

results, and the lines are straight lines best fitting the results over the

range 0.008 \/s \ 0.25. Other inputs: b = 1, k = 0. The corre-

sponding theoretical results for stripes oriented parallel and normal to

the flow, as given in Eq. 37, are also plotted for comparison. The inset
shows the computed results plotted on linear coordinates. The crosses
are the experimental results reported by Lee et al. (2008)
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dparallel ¼ 2dnormal ¼
1

p
ln sec

pð1� /sÞ
2

� �� �

: ð37Þ

The figure shows that when the solid fraction is sufficiently

small, namely /�1=2
s [ 3 or /s \ 0.11 (say, circular posts

of a radius smaller than 0.37 of the half-pitch), the posts

will perform better than the parallel grates. The difference

is more pronounced as the solid fraction drops further.

3.2 Flow over holes

We next consider flow over a patterned surface made up of

holes organized on a square lattice (i.e. b = 1), with no slip

on the solid surface (i.e. k = 0). The holes can also be

circular or square in shape. Ybert et al. (2007) argued that

holes behave like solid stripes running parallel or normal to

the flow, depending on whether /s?1 or /s?0. In the

limit /s?0, the right-hand side of the Eq. 37 behaves like

½lnð2=pÞ � lnð/sÞ�=p: This has motivated Ybert et al.

(2007) to propose a scaling law

lim
/s!0

d� � lnð/sÞ ð38Þ

for stripes or even holes.

We show in Fig. 4 our computed slip lengths for circular

and square holes as functions of � lnð/sÞ: For square holes,

the numerical method applied by Ybert et al. (2007) can

only handle /s� 0:1: Without subject to this constraint, we

have computed for square holes of a solid fraction as small

as /s = 0.05. As long as /s \ 0.75, the data points of the

slip length of square holes are very closely described by a

straight line of the equation:

d ¼ �0:115 lnð/sÞ � 0:014 for square holes: ð39Þ

Square holes are comparable in effective slip length with

normal stripes for an intermediate value of the solid frac-

tion /s & 0.6–0.2. For smaller /s, square holes are out-

performed by other geometries.

Circular holes arranged on a square lattice remain dis-

connected when their radius is smaller than the half-pitch

of the pattern; the smallest possible solid fraction for iso-

lated circular holes is hence 1-p/4 = 0.215. We find that,

in the range 0.22 \ /s \ 0.75, the data points of the slip

length of circular holes can be fitted, with reasonably good

agreement, by a straight line of the equation:

d ¼ �0:134 lnð/sÞ � 0:023 for circular holes: ð40Þ

Over this range of the solid fraction, circular holes are also

comparable in slip length with normal stripes.

Circular holes become connected when their radius is

larger than the half-pitch of the pattern. When this happens,

the solid part of the surface becomes disconnected instead,

and the pattern will tend to behave like posts (i.e., d
increases with /s

-1/2 instead of � lnð/sÞ). This explains the

dramatic increase in the slip length of circular holes when

the solid fraction drops below the threshold value of 0.215.

For any given /s, circular holes always give rise to a higher

slip length than square holes; the difference is much more

pronounced as /s? 0.

In the upper limit /s?1, both circular and square holes

behave more like parallel stripes, as has been pointed out by

Ybert et al. (2007). On comparing Figs. 3 and 4, one can

note that for the same solid fraction posts will in general give

rise to a much higher effective slip length than holes.

3.3 Effect of micro-slip

Let us next consider the effect of micro-slip (or ‘‘intrinsic

slippage’’) on the macro-slip length. Obviously, the slip

length will be enhanced by finite slippage on the solid

areas. Ybert et al. (2007) have put forward the following

scaling law for the increase in slip length due to micro-

slippage

Dd � dk � d0�
k
/s

; ð41Þ

where k is the intrinsic slip length, dk is the effective slip

length for a patterned surface with micro-slippage on the

solid areas, d0 is the effective slip length for the same
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Fig. 4 Effective slip length, d, versus the negative natural logarithm

of the solid fraction, � lnð/sÞ; for circular (circles and solid line) and

square (squares and dashed line) holes, where the symbols are

computed results, and the lines are straight lines best fitting the results

over the ranges 0.22 \/s \ 0.75 and 0.05 \/s \ 0.75 for the two

geometries. Other inputs: b = 1, k = 0. The corresponding theoret-

ical results for stripes oriented parallel and normal to the flow, as

given in Eq. 37, are also plotted for comparison. The inset shows the

computed results plotted on linear coordinates. The circular holes
become connected when /s\0:22; leading to a dramatic increase in

the slip length
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surface, but without micro-slippage. Similar approximate

formulas have been proposed by Ng and Wang (2009), who

showed that the following phenomenological equation can

be used to predict with good accuracy the effect of micro-

slippage for the case of flow over grates:

Dd ffi k
/s

for solid stripes running parallel or normal to the flow:

ð42Þ

Note that this equation becomes exact, i.e. Dd = k, when

the surface is wholly solid /s = 1. Equation 42 leads one

to expect that, for any surface patterns, the scaling law

(Eq. 41) should have a numerical prefactor nearly equal to

unity. Ybert et al. (2007) have reported a factor of 0.165

based on linear regression of some results for square posts.

The factor should be rectified to be 1.03, as a factor of 2p
had been mistakenly introduced in the horizontal coordi-

nate of their Fig. 3 (Cottin-Bizonne, personal communi-

cation, April 3, 2009).

To investigate the relationship in a more thorough

manner, we show in Figs. 5 and 6 the increase in the slip

length, Dd, as a function of k//s for posts and holes,

respectively. Three values of the micro-slip length are

considered: k = 0.5, 0.25 and 0.05. In these plots, the

symbols are the calculated results, and the lines are straight

lines which best-fit the results. Here, many more data

points are used for the line-fitting than was done by Ybert

et al. (2007). The equations of these lines-of-best-fit are

summarized in Table 1. The following observations can be

made. First, individual sets of data points are indeed well

described by straight lines with insignificant scattering. The

linearity applies virtually to the entire range of the solid

fraction 0 \ /s \ 1, although the linear fitting is more

affected by data of small solid fraction /\ 0.1 (i.e. over

the range of sparse packing). Second, these lines indeed

have slopes close to unity, ranging from 1.006 to 1.048 in

the case of posts, and from 1.037 to 1.255 in the case of

holes. The slope tends to increase as k decreases. Third,

whether the shape is circular or square is rather unimpor-

tant in the case of posts, but can have some finite effects in

the case of holes, especially at small micro-slippage. In the

case of posts, the data points of the two geometries collapse

to nearly the same line for each value of k. In the case of

holes, the micro-slippage tends to have a larger effect on

circular holes than on square holes, the difference being

more pronounced when /s?0.

3.4 Effect of aspect ratio

We lastly look into the effect of unequal pitches in the

x- and the y-directions (i.e. b 6¼ 1). We here compare cases

in which circular posts are organized on a rectangular

lattice with various aspect ratios. Shown in Fig. 7 are again

the plots of d against /s
-1/2 for circular solid areas without

micro-slippage, but for cases with the y-pitch to x-pitch

ratio equal to (i) 2:1, (ii) 1:2, (iii) 1.25:1, (iv) 1:1.25,

(v) 1:1, (vi) 0.8:1, and (vii) 0.5:1. Note that the second and

the seventh cases, and the fourth and the sixth cases appear

to have the same aspect ratios, but they correspond to

different scenarios; the length quantities are normalized

with respect to the y-pitch in cases (ii) and (iv), but with

respect to the x-pitch in cases (vi) and (vii). Compared with

the reference case (v), cases (vi) and (vii) are those with the

y-pitch shortened, cases (ii) and (iv) are those with

the x-pitch lengthened, and cases (i) and (iii) are those with

the y-pitch lengthened. By linear regression, the lines that

best fit the seven sets of data points (for /s \ 0.25) are

found as follows:
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Fig. 5 The increase in slip length due to micro-slippage, Dd, versus

the ratio of micro-slip length to solid fraction, k//s, for circular

(circles and solid line) and square (squares and dashed line) posts,

where the symbols are computed results, and the lines are straight
lines best fitting the results. Other inputs: b = 1, and k = (a) 0.5, (b)

0.25, (c) 0.05
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d ¼

0:475

0:480

0:384

0:376

0:340

0:302

0:240

8

>>>>>>>>>>><

>>>>>>>>>>>:

9

>>>>>>>>>>>=

>>>>>>>>>>>;

/�1=2
s �

0:476

0:697

0:505

0:523

0:468

0:422

0:348

8

>>>>>>>>>>><

>>>>>>>>>>>:

9

>>>>>>>>>>>=

>>>>>>>>>>>;

for the aspect ratio

2 : 1

1 : 2

1:25 : 1

1 : 1:25

1 : 1

0:8 : 1

0:5 : 1

8

>>>>>>>>>>><

>>>>>>>>>>>:

9

>>>>>>>>>>>=

>>>>>>>>>>>;

: ð43Þ

Let us consider for instance in case (v) a solid fraction of

/s = 0.05 on a 1:1 lattice. Assuming that the solid area

remains unchanged, the solid fraction will increase to

0.0625 in case (vi) when the y-pitch is shortened to 0.8, and

decrease to 0.04 in cases (iii) and (iv) when either pitch is

lengthened to 1.25. Also, the solid fraction will increase to

0.10 in case (vii) when the y-pitch is shortened to 0.5, and

decrease to 0.025 in cases (i) and (ii) when either pitch is

lengthened to 2.0. On substituting these values of /s into

the equations above, we get d = 2.53, 2.34, 1.42, 1.36,

1.05, 0.79 and 0.41 for the corresponding seven values of

the aspect ratio. Obviously, decreasing the solid fraction

will result in a higher slip length, and vice versa. This

example shows that a 20–50% reduction in the y-pitch may

lead to some 25–61% decrease in the slip length. Also,

lengthening the x- and y-pitches by 25–100% may

respectively lead to 30–123 and 35–141% increase in the

slip length. A further possible change in the configuration

is as follows. If the aspect ratio remains 1:1 and the solid

area remains the same, the solid fraction will drop to 0.04

when the pitches are each lengthened to
ffiffiffiffiffiffiffiffiffi

1:25
p

: Then, with

some calculations, one finds that an equal increase of the

two pitches will lead to a slip length of 1.38 (31%

increase), which is an intermediate value between cases

(iii) and (iv). Similarly, when the pitches are each length-

ened to
ffiffiffi

2
p

; the solid fraction drops to 0.025, leading to a

slip length of 2.38 (127% increase), which is also an

intermediate value between cases (i) and (ii). These results

suggest that, for a given solid fraction, it is more advan-

tageous to have the posts spaced farther apart in the

y-direction than in the streamwise x-direction. In some

sense, widening the gap between rows of posts is equiva-

lent to putting grooves into the structured surface. It is

already known that, as given in Eq. 37, longitudinal

grooves will give higher effective velocity slip than

transverse grooves. This explains why increasing the

y-pitch can have a better effect than increasing the x-pitch.

This exercise reveals the possibility that a greater slip

length can be achieved by a suitable combination of posts

and grooves than that by posts or grooves alone.

4 Concluding remarks

A semi-analytical method based on eigenfunction expan-

sions and point collocation has been developed to solve the

problem of three-dimensional Stokes flow over a composite

surface with mixed boundary conditions. The slip length,

which is yielded directly as part of solution, has been

computed as a function of the solid fraction, for periodic

arrays corresponding to posts or holes. Based on linear

regression of calculated results following the scaling laws

proposed by Ybert et al. (2007), we have obtained more

detailed geometry-specific equations 35, 36, 39, 40, 43, as

well as those presented in Table 1, for surfaces with or

0.5 1 1.5 2 2.5 3
0.5

1

1.5

2

2.5

3

∆δ

∆δ

∆δ

λ /φs

λ /φs

λ /φs

(a)

(b)

(c)

λ = 0 .5

λ = 0 .25

λ = 0 .05

0.5 1.51

0.4

0.6

0.8

1

1.2

1.4

0.05 0.1 0.15 0.2 0.25 0.3
0.05

0.1

0.15

0.2

0.25

0.3

Fig. 6 The increase in slip length due to micro-slippage, Dd, versus

the ratio of micro-slip length to solid fraction, k//s, for circular

(circles and solid line) and square (squares and dashed line) holes,

where the symbols are computed results, and the lines are straight
lines best fitting the results. Other inputs: b = 1, and k = (a) 0.5, (b)

0.25, (c) 0.05
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without micro-slippage. These equations should refine or

supplement the counterparts previously deduced by Ybert

et al. (2007). To get the dimensional slip length, one has to

multiply the normalized slip length by the pitch of the

surface pattern. Typical micro-engineered surfaces have a

pitch in the order of 10–100 lm. Referring to Fig. 3, one

can see that a slip length that is two or three times the pitch

can in principle be achieved if the solid fraction is small

enough.

While the focus has been largely on arrays organized on a

1:1 square lattice, we have shown that an aspect ratio other

than 1:1 may give a better slip effect. For the same solid

fraction, it is more advantageous to have a larger pitch in the

spanwise direction than in the streamwise direction. In

theory, the larger the aspect ratio, the larger the increase in

the slip length. There is no finite asymptotic limit for the slip

length as the aspect ratio increases. In practice, the absolute

maximum pitch is, however, limited by the stability

condition depending on the liquid pressure (Lee et al. 2008).

We leave the details to a future study to further test the

effects of varying the configurations of the arrangement of

no-shear and no-slip areas in a periodic unit cell.

Feuillebois et al. (2009) have recently arrived at the

conclusion that, on the Hele-Shaw limit of a thin channel, it

is an array of longitudinal stripes that will provide the

largest possible slip that can be achieved by any texture,

whether isotropic or anisotropic. This is opposite to the

prediction for thick channels, as considered in this work,

where an array of posts will give larger slip than stripes for

a sufficiently small solid fraction. One would then ques-

tion: in what exact manner will the optimum texture

change depending on the channel thickness, from an iso-

tropic texture in one limit to an anisotropic texture in

another limit? It is very likely that, for a channel of

intermediate thickness (i.e. the pattern unit length is com-

parable with the channel depth), the optimum texture is one

made up of certain proportions of the two limits. The

details of such an optimum texture as a function of the

channel thickness are yet to investigated.
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