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Abstract Capillary filling is the key phenomenon in

planar chromatography techniques such as paper chroma-

tography and thin layer chromatography. Recent advances

in micro/nanotechnologies allow the fabrication of nano-

scale structures that can replace the traditional stationary

phases such as paper, silica gel, alumina, or cellulose.

Thus, understanding capillary filling in a nanochannel

helps to advance the development of planar chromatogra-

phy based on fabricated nanochannels. This paper reports

an analysis of the capillary filling process in a nanochannel

with consideration of electroviscous effect. In larger scale

channels, where the thickness of electrical double layer

(EDL) is much smaller than the characteristic length, the

formation of the EDL plays an insignificant role in fluid

flow. However, in nanochannels, where the EDL thickness

is comparable to the characteristic length, its formation

contributes to the increase in apparent viscosity of the flow.

The results show that the filling process follows the

Washburn’s equation, where the filled column is propor-

tional to the square root of time, but with a higher apparent

viscosity. It is shown that the electroviscous effect is most

significant if the ratio between the channel height (h) and

the Debye length (j-1) reaches an optimum value (i.e.

jh & 4). The apparent viscosity is higher with higher zeta

potential and lower ion mobility.
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List of symbols

Ac Cross-section of the channel

A, B, C, D, E Reduced variables

e Elementary charge, 1.305 9 10-19C

Es Streaming electric field strength

Fe Electrical force

Fs Surface force

Fv Viscous drag force

h Channel’s height

Ic Conduction current

Is Streaming current

k Boltzmann’s constant, 1.381 9 10-23 JK-1

n Local concentration

n0 Bulk concentration

qa Accumulated charge

T Room temperature

t Time variable

u Fluid velocity

Us Streaming potential

w Channel’s width

x Capillary filling length

y Coordinate across the channel height

z Charge number

EDL Electric double layer

IC Initial condition

ODE Ordinary differential equation

_ Average value across the height

^ Divide by channel width w

i Belong to ion species i

Greek symbols

a, b, c Functions in phase space

e Relative permittivity of the fluid
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e0 Permittivity of free space

8.854 9 10-12 CV-1 m-1

f Zeta potential

h Contact angle

g Material dimensionless parameter

j Inverse of Debye thickness

k Conductivity of the fluid/eigenvalue in Appendix 1

Km Molar conductivity of solution

l Dynamic viscosity

la Apparent dynamic viscosity

Dl Increase in dynamic viscosity

t Ion mobility

n Auxiliary variable

qm Mass density of the fluid

qq Charge density

r Surface tension

v Auxiliary variable

W Electrostatic potential across the channel’s height
~W Normalized electrostatic potential ~W ¼ eW

kT

1 Introduction

With the advantages of low cost, speed, and simplicity,

planar chromatography is an important technique for ana-

lytical chemistry. Theories, techniques, and applications of

planar chromatography have been reported in the literature

(Sherma 2002, 2004, 2006, 2008). Traditionally, this

technique is based on capillary filling phenomenon to drive

a mobile phase through a porous material, such as paper,

silica gel, alumina, or cellulose, which serves as stationary

phase. Difference in affinities leads to the separation of the

analytes. Since recent years, advances in micro/nanotech-

nologies allow for the fabrication of structures at nanoscale

(i.e. from several to hundreds of nanometers) (Eijkel and

van den Berg 2005; Mijatovic et al. 2005; Perry and

Kandlikar 2006; Yuan et al. 2007). These technological

advances promise the replacement of traditional stationary

phase in planar chromatography by more deterministic,

controllable nanostructures, such as nanochannels. There-

fore, understanding capillary filling in nanochannel

can contribute to the further development of planar

chromatography.

The coupling of electrokinetic and hydrodynamic phe-

nomena was first observed at the beginning of the

nineteenth century by Reuss (1809) and was first theoret-

ically explained by Helmholtz and Smoluchowski

(Smoluchowski 1903) based on simple description on the

electric double layer. Washburn (1921) provided a simple

formula to describe capillary filling in a porous material.

The formula states that the filling distance is proportional

to square root of time. Theoretical and experimental studies

on capillary filling in nanochannels have been performed in

recent years. In 1923, Debye and Hückel (1923) proposed a

model in which the ionic distribution in solutions follows

Boltzmann energy distribution. A direct result of this

model is the ionic distribution and electric potential dis-

tribution in capillary channel as determined by Poisson–

Boltzmann (PB) equation. This PB equation can be solved

analytically for the case of single flat EDL (Hunter 1981;

Russel et al. 1989; Verwey and Overbeek 1948). Utilizing

this feature, thin EDL approximation can be used to find

the ionic distribution in almost all capillary channel

geometry, as long as the EDL is thin enough in comparison

to the characteristic dimension (Burgreen and Nakache

1964). Another approximation which is usually useful is

the low potential approximation, which linearizes the PB

equation and therefore makes it, theoretically, solvable for

any boundary condition. In 1948, Verwey and Overbeek

derived the solution for the case of plane parallel slit-

shaped channel using low potential approximation (Verwey

and Overbeek 1948). Analytic solutions for special cases

were also studied. Burgreen and Nakache (1964) intro-

duced exact solution for PB equation for the case of

parallel slit-shaped channel in term of elliptic integral.

Although the numerical value of the elliptic integral can be

calculated quite easily nowadays using computer, Burgreen

and Nakache’s result is difficult to use for further analytic

investigation. In 1965, Rice and Whitehead (1965) sug-

gested a solution for PB equation in cylindrical channel

using low potential approximation. The result was

expressed in term of Bessel’s functions. Electroviscous

effect for electroosmotic flow was also presented. In 1974,

Levine and Neale (1974) investigated the electrophoresis

problem of a swarm of identical, dielectric, spherical par-

ticles, with consideration of the interaction of individual

particles through the associated electric field. The result

justified Smoluchowski’s model for electrophoretic flow

with in porous media.Recognizing the practical limitation

in Rice and Whitehead’s result, which require low f
potential, in 1975, Levine et al. (1975a) published a

modification model that is more suitable for higher f
potential. However, this is also an approximated model

because it uses a mathematical approximation proposed by

Philip and Wooding (1970). Also in 1975, Levine et al.

(1975b), utilizing series expansion, improved the result

found previously by Burgreen and Nakache. The electro-

viscous effect in electroosmotic flow was also discussed.

As a contribution to membrane separation technology, in

1995, Bowen and Jenner (Bowen and Jenner 1995) intro-

duced a cell model for charged colloidal dispersion. The

model considered the effect of interparticle, including

London-van der Waals, electroviscous, and hydration

forces. Numerical method was used to solve the non-linear

PB equation. In 1997, Yang and Li (1997) analyzed pres-

sured driven flow in a rectangular microchannel, with
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consideration of electroviscous effect. Numerical method

was used to solve the P–B equation. The result showed a

reduction in flow rate, which is a result of electroviscous

force. In 2002, Hsu et al. (2002) gave a theoreticalinves-

tigation on the electrokinetic flow of an electrolyte solution

through an elliptical microchannel. Three kinds of bound-

ary condition for PB equation, including constant surface

charge, constant surface potential and charge-regulated

surface were considered. Numerical method was used to

solve the governing equations. The results showed that for

a constant cross-sectional area, the volumetric flow rate and

the streaming potential increase with an increase in the

aspect ratio while total electric current and the electrovis-

cous effect may exhibit a local minimum as the aspect ratio

varies. In 2005, Ren and Li (2005) introduced an

improvement on the electrokinetic flow in microchannel.

The authors showed that traditional understanding about

Boltzmann distribution of ion in the channel may not be

sufficient in some cases, such as dilute solution or very

small channel. Improved model with consideration of the

dissociation constants of substances show remarkable

reduction in flow rate in comparison to conventional

solutions, even for a large channel such as microchannel.

Mohiuddin Mala and Li (1999) performed an experimental

investigation on the pressure-driven water flow through

microtubes with diameters ranging from 50 to 254 lm. It

was found that for a relatively high flow rate, the required

pressure gradient to force the liquid through the microtube

is higher than theoretically predicted; however, for small

flow rate, theoretical and experimental data agree well. In

2007, Huang and Yang (2007) presented the ionic con-

centration variation in overlapped EDL that lead to

changing in electrokinetic behavior in comparison to that

predicted by traditional theory. Modified concentration

approach was introduced to solve the PB equation.

Numerical result obtained showed that the constant surface

charge assumption is more suitable to use in low-salt

regime. Also Huang and Yang (2008) presented the effect

of ion depletion and enrichment zone in capillary channel

to the dynamics of fluid. Ion depletion/enrichment zone

were created by external electric field. Experimental results

showed that the low conductivity within the depletion zone

induces a rapid electroosmotic flow, which in turn prompts

the generation of vortex flow structures within the deple-

tion zone. Tas et al. (2003) found that water plugs in

hydrophilic nanochannels can generate a significant nega-

tive pressure due to high-tensile capillary force. Tas et al.

(2004) investigated the capillary filling speed of water and

sodium chloride (NaCl) in nanochannels with rectangular

cross section and a height of 100 nm. The experimental

results showed that the filling distance versus time follows

Washburn’s model, but the filling speed is lower than

expected. Lyklema et al. (2005) in his book explained the

formation of electrical double layer (EDL) is due to the

non-electric affinity of charge-determining ions for a sur-

face such as dissociation or adsorption of charged

molecules from the solution. Han et al. (2006) investigated

the filling kinetics of different liquids in nanofabricated

capillaries with rectangular cross-section. Their results

confirmed Washburn’s model in capillary filling. The

trapping of air bubbles during filling process was observed.

The authors suggested that nanochannels should be used as

an idealized model to study mass transport mechanisms in

systems where surface phenomena dominate. Huang et al.

(2006) reported on theoretical and numerical investigations

on capillary flow inside microchannels with patterned

surfaces. The equivalent contact angle (ECA) model for

flows with small capillary number was introduced and was

confirmed by numerical results. Van Honschoten et al.

(2007) suggested a model of elastocapillary filling in

deformable channels. During the filling process, nano-

channels are easily deformed due to the high negative

pressure across the meniscus. It is shown in their model

that in the elastocapillary filling process, two opposite

effects compete: decrease in the channel cross section

increases the flow resistance, while the Laplace pressure

that acts as the driving force becomes more negative due to

an increase in the meniscus curvature. It was also con-

cluded that the filling speed qualitatively follows

Washburn’s relation. Mortensen et al. (2006, 2007 reported

on an investigation on the linear-response theory for the

mass and charge transport coefficients that satisfy Onsager

relations. Hilbert space eigenfunction expansion was used

to derive the results. Mortensen and Kristensen (2008)

theoretically investigated the electroviscous effect of cap-

illary filling in nanochannels. The theory was established

based on a linear relationship among liquid flow rate,

electric current, pressure drop and voltage drop. It was

found that the apparent viscosity reaches a maximum in the

mesoscopic regime where the hydraulic radius is compa-

rable to the Debye screening length. However, comparison

between theory and experimental data showed that elec-

troviscous effect contributes only a portion of the overall

increase in viscosity. This suggested that other phenomena

may be involved in the change of viscosity during capillary

filling process in nanochannels. In 2008, Chakraborty

(2008a, b) developed a model to describe the complex

coupling phenomena between electrohydrodynamic effects

and other transport characteristic in the narrow confine-

ment, such as interfacial wettability. One of the important

results is that the hydrophobic interaction may lead to an

amplification of the f potential. Petsev (2008) gave a

review about transport effects in nanochannels, including

electroosmosis, electrophoretic, and pressure driven flow.

The review presented the physics behind fluidic transport

in nanochannels, especially about the effect of Debye layer.
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Nanochannels for capillary filling experiments were

fabricated in a wide range of materials. Jeong et al. (2007)

reported on a simple method using hydrophilic poly(eth-

ylene glycol) (PEG) to fabricate nanochannels. The

capillary filling experiment was performed in PEG-based

microchannels to compare with those made in hydrophobic

polydimethylsiloxane (PDMS). The results agreed well

with the theoretical predictions based on the simple

Poiseuille formation. Lerch and Jacobson (2007) presented

microfluidic device designs with a two-dimensional planar

format and methods to facilitate efficient sample transport

along both dimensions. The experiment illustrated fluid

handling capabilities in a microfluidic device with a planar

format. Persson et al. (2007) reported on the fabrication of

SiO2 nanochannels using the so-called double thermal

oxidation scheme. The nanochannels have heights ranging

from 14 to 300 nm and widths of 2.5, 5 and 10 lm. Cap-

illary filling experiments were also performed to test the

channels. Data of the apparent viscosities for various sub-

stances and channel heights were reported. Thamdrup et al.

(2007) observed the formation of bubbles during capillary

filling. The experiments were performed with water in SiO2

nanochannels with heights ranging from 33 to 158 nm. It

was found that the formation of an isolated pinned bubble

causes a short-time reduction of the filling speed and is

accompanied by a forward jump of the meniscus. Van Delft

et al. (2007) introduced a microfabricated Fabry-Pèrot

interferometer with nanochannels of various heights

between 6 and 20 nm embedded in its cavity. The device

allows the investigation of fluid behaviors inside a nano-

channel without using fluorescent substances. Capillary

filling experiments were carried out in these channels and

revealed that the entrapment of air bubbles may happen

during the filling process. Zimmermann et al. (2007)

designed a capillary pump for autonomous capillary sys-

tems, comprising microstructures of various shapes with

dimensions from 15 to 250 lm. The pumps were designed

to have a small flow resistance and are preceded by a

constricted microchannel, which acts as a flow resistance.

The authors also showed how to connect different pumps

with different specifications to achieve the desired purpose.

Tas et al. (2008) presented a procedure for fabrication of

silicon-based nanochannels with heights ranging from 5 to

50 nm using a thin silicon oxide spacer layer. Capillary

filling experiments were carried out in these channels. The

results showed that the filling process in 5-nm-height

channels agrees with Washburn’s model but with a

Washburn’s coefficient 1.6 times lower than expected.

When the size of the channel decreases to nanoscale,

surface effects become more significant. The electrokinetic

force, which may be negligible in larger scale channels

now contributes significantly to the dynamics of the fluid

column inside the nanochannel. It is shown in literature

that most of current theories on the electroviscouseffec in

capillary filling are based on the similarity between capil-

lary filling and pressure-driven flow, which neglect the

continuous absorption of ions at the meniscus, a special

phenomenon of capillary filling.This paper reports an

analysis for capillary filling in nanochannels with consid-

eration of electroviscous effects. The presented model

describes charge distribution within the channel and eval-

uates the interactions between electrokinetic effects and

surface force as well as viscous force. The model is used to

estimate the contribution of electroviscous effects on the

increase in apparent viscosity. Figure 2 compares the two

main current theories on the increase in apparent viscosity

in nanochannels with the new description of capillary fill-

ing in nanochannels presented in this paper.

2 Analytical model for capillary filling

in a nano-channel

2.1 Physical description

Figure 1 describes the geometry for the model of capillary

filling in a nanochannel with a height of h and a width w.

The channel is of high aspect ratio w/h � 1 and can be

considered as two parallel plates. The channel wall is

positive charged. The shade areas in Fig. 1 represent the

electrical double layer (EDL), containing the compact layer

attached to the channel wall and the mobile layer. When

liquid fluid flows along the nanochannel, the absorption of

positive charge into the wall causes negative ions to

accumulate at the meniscus. Charge imbalance between the

meniscus area and the channel inlet induces a streaming

voltage. This streaming voltage generates a conductive

current.

h

x

Compact layer’s 
positive charge

Mobile layer’s 
negative charge

Accumulated
negative charge

Conductive current’s
positive charge

1/2Fs

1/2Fs

Fig. 1 Capillary filling in a nanochannel: Ion distribution and

movement inside a liquid column moving in a nanochannel due to

capillary filling
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2.2 Mathematical formulations

The capillary filling phenomenon in a nanochannel is

assumed to be governed by the following physics and

assumptions.

2.2.1 Continuum assumption

The Knudsen number, Kn represents the ratio of the

molecular mean-free path to the characteristic length. In

order to apply continuum assumption, low Knudsen num-

ber is required (Nguyen 2008). For most of liquids, the

mean-free path is in the order of few nanometers. Thus,

even in nanochannels with a height from tens to several

hundreds nanometers, the continuum assumption

(kn \ 10-1) is still valid.

2.2.2 Electrokinetic flow

The driving force depends on the surface tension of the

fluid and the contact angle between the fluid and the

channel wall. Due to the surface tension at the meniscus, a

static pressure difference builds up between the channel

entrance and the meniscus, resulting in a capillary filling

flow. With the continuum assumption, the flow in the

nanochannel has the typical parabolic velocity profile.

When the liquid fills the nanochannel, the zeta potential f
of the channel causes the redistributions of ions to form the

channel electric double layer (EDL) (Debye and Hückel

1923; Smoluchowski 1903), as shown in Fig. 1. If the

channel wall is positive charged, it induces apparent

accumulation of negative charge ions in the meniscus

region. The total electric charge in this region, termed as

the accumulated charge qa, creates an electric field ES that

in turn generates a conductive current. Voltage drop along

this electric field is the streaming voltage US. The charge

balance considers the total charge of the liquid column, the

total charge on the channel’s wall, the accumulated charge,

the streaming current and the conductive current. The

charge density distribution in the nanochannel is governed

by the Poisson-Boltzmann (PB) equation. For low zeta

potential f, the Debye-Hückel approximation can be used

to linearize the PB equation.

Electrostatic interaction between the induced streaming

potential and the charge density of the liquid column slows

down the capillary filling effect. Electrostatic interaction is

governed by Gauss’s theorem and Lorentz’s force law. The

effect of all the aforementioned forces on the dynamics of

the fluid column is governed by Newton’s second law.

2.2.3 Capillary force

The pressure difference across the meniscus of the moving

liquid column is assumed by the Young-Laplace equation:

Dp ¼ r
1

r1

þ 1

r2

� �
ð1Þ

where Dp is the pressure difference, r is the surface

tension, and r1 and r2 are the radii of curvature. Figure 1

shows the forces acting on the meniscus. Assuming

w � h, the capillary force can be described as

FS ¼ 2rwcos h ð2Þ

where FS is the force at the contact line caused by surface

tension, and h is the contact angle between the fluid and the

surface’s wall. In this investigation, the variation of surface

Streaming
potential

Retard force

Increase in
apparent viscosity

Pressure
difference

Fluid flow Ion absoption

Charge
imbalance

Streaming
potential

Conductive
current Retard force

Increase in
apparent viscosity

Pressure driven or
electroosmosis flow

Current theories on
capillary filling

New description on
capillary filling

Pressure difference
or voltage applied

Fluid flow

Streaming
current

Charge
imbalance

Streaming
potential

Conductive
current

Retard force

Increase in
apparent viscosity

- -

Fig. 2 Comparison of existing

theoretical approaches for

analyzing the increase in

apparent viscosity and the

present analysis on capillary

filling
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energy due to accumulation of charged particles near the

meniscus, as described in Gibbs–Duhem equation, is

neglected. It was reported in literature that the liquid slip at

the solid–liquid interface (Yang et al. 2004) and interaction

with electrokinetic effect (Chakraborty and Chakraborty

2008) may lead to modification of effective contact angle.

However, in capillary filling in nanochannel, the shear stress

and streaming voltage diminish fast. In such condition; the

modification in effective contact angle is negligible.

2.2.4 Viscous force

Capillary filling flow can be considered as a pressure-dri-

ven flow, except the fact that the velocity at the meniscus

has a plug distribution. Similar to the entrance effect in

microscale, at the exit region, the velocity changes from its

parabolic profile to the plug-like profile. This entrance effect

is important at the initial stage of filling process, especially

when the filling length is comparable to the entrance length.

The entrance effect introduces additional flow resistance.

This phenomenon has been carefully discussed in recent

investigation (Chakraborty 2007; Chakraborty and Mittal

2007; Huang et al. 2001; Chakraborty 2005). However,

when the filling length is much longer than the entrance

length, the important of entrance effect diminishes. In this

investigation, because the asymptotic solution is consid-

ered, the entrance effect is assumed to be negligible due to

the low Reynolds number here. The velocity profile of 1D

laminar pressure-driven flow between two infinite parallel

plates is given by (Kundu and Cohen 1990).

u ¼ �u 6
y2

h2
� 3

2

� �
; � h

2
\y\

h

2
ð3Þ

where u is the fluid velocity, �u is the average velocity

across the channel height, y is the coordinate across the

channel height. The average velocity �ucan be proven to be

equal to the velocity of the meniscus due to its plug-like

velocity distribution. The variable �u represents both front

surface velocity and average velocity across the channel

height. With the above assumptions, the viscous force act

on the entire liquid column can be determined by

FV ¼ l
du

dy

����
y¼h

2

�l
du

dy

����
y¼�h

2

 !
wx ¼ � 12l�u

h
wx ð4Þ

where FV is the viscosity force acting on the fluid and l is

the dynamic viscosity of the fluid.

2.2.5 EDL charge density distribution

The charge density distribution determines the electro-

static force in the capillary filling process. In a

nanochannel, the potential distribution and consequently

the charge density distribution is governed by the Poisson–

Boltzmann equation (Debye and Hückel 1923; Petsev

2008). Because the filling length is considered much longer

than the channel height, it is appropriate to assume that the

potential and charge density distribution across the channel

is influenced by the f potential only and not by the

streaming potential.

r2W ¼ �
qq

ee0

¼ � e

ee0

X
i

zin
0
i exp � zieW

kT

� �
ð5Þ

where W is the electrostatic potential, qq is the charge

density, e = 1.6021 9 10-19C is the elementary charge, e
is the relative permittivity of the fluid, e0 = 8.854 9

10-12 CV-1 m-1 is the permittivity of vacuum, zi is the

charge number of ionic species i, n0
i is the bulk

concentration of ionic species i, k = 1.381 9 10-23JK-1

is Boltzmann’s constant, and T is the temperature. For a

symmetric binary electrolyte (i.e. z1 = z2 = z3), Eq. (5)

can be written as

r2 ~W ¼ j2

z
sin hðz ~WÞ ð6Þ

where ~W ¼ eW=kT is the dimensionless potential, and j is

the Debye parameter, j2 ¼ 2e2z2n0
�
ee0kT (n0 is the bulk

concentration of the solute). With the Debye–Hückel

approximation of a low potential, Eq. (6) can be linearized to

r2 ~W ¼ j2 ~W ð7Þ

which solution is given by (Petsev 2008).

~WðyÞ ¼ ef
kT

cos hð � jyÞ
cos h(jh=2Þ ð8Þ

Therefore

WðyÞ ¼ f
cos h �jyð Þ
cos hðjh=2Þ ð9Þ

and the charge density distribution is given by

qq ¼ �ee0

d2W
dy2
¼ �ee0fj

2 cos hðjyÞ
cos hðjh=2Þ ð10Þ

In order to keep the result simple for further

manipulation, the Debye–Hückel of low potential is used

here. At room temperature, this approximation is only valid

for f potential below 26 mV (Conlisk 2005). This

restriction theoretically limits the applications of the

result. In literature, there were studies describing the

solution of PB equations in different conditions, utilizing

various approaches (Bowen and Jenner 1995; Burgreen and

Nakache 1964; Hsu et al. 2002; Huang and Yang 2007;

Hunter 1981; Levine et al. 1975a, b; Levine and Neale

1974; Rice and Whitehead 1965; Russel et al. 1989;

Verwey and Overbeek 1948; Yang and Li 1997). Also, Ren

and Li (2005) introduced a modification in PB equation for
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the case of dilute solution, such that the electroviscous

effect becomes more significant, even for microchannel.

The approach introduced in this investigation does not

restrict the application of those results instead of Eq. (10).

However, in such cases, the final result should be much

more complicated.

2.2.6 Conductivity of the electrolyte

The conductivity of an electrolyte in a nanochannel can be

calculated by Eq. (11):

k ¼
X

i

ki ¼
X

i

zij jemini ð11Þ

where k is the total conductivity of the electrolyte, ki is the

individual contribution of ionic species i to the

conductivity, vi is the electrical mobility of ionic species

i, ni is the concentration of ionic species i. Substituting

Poisson–Boltzmann equation into Eq. (11) gives

k ¼ n0
X

i

zij jemi exp(� z ~WÞ ð12Þ

Then, the average conductivity across the channel height

can be computed from

�k ¼ 1

h

Zh
2

�h
2

kdy ¼ n0 1

h
e

Z h
2

�h
2

X
i

zij jmi exp(� zi
~WÞdy ð13Þ

With the Debye–Hückel approximation, Eq. (13) can be

expressed as

�k ¼ n0 1

h
e

Z h
2

�h
2

X
i

zij jmið1� zi
~WÞdy ð14Þ

If a monovalent electrolyte such as NaCl solution

(z? = -z = 1) is considered, Eq. (14) can be rewritten as

�k ¼ n0eðmþ þ m�Þ 1þ 1

h

m� � mþ
mþ þ m�

Zh
2

�h
2

~Wdy

0
B@

1
CA ð15Þ

Substituting the solution of the potential distribution

Eqs. (10) into Eq. (16) and performing the integration

result in

�k ¼ n0eðmþ þ m�Þ 1þ fe

kT

m� � mþ
mþ þ m�

2 tan h jh
2

� �
jh

� �
ð16Þ

Defining the molar conductivity of a monovalent

electrolyte Km ¼
P

i eNAmi; we can obtain the expression

from the average conductivity as

k ¼ n0 Km

NA

1þ fe

kT

v� � vþ
vþ � v�

2 tan h jh
2

� �
jh

� �
ð17Þ

2.2.7 Charge balance

Unlike in pressure-driven flow or electrosomosis flow,

where the ion absorption at the channel wall is saturated, in

capillary filling, ion absorption takes place continuously

during the filling process, creating a charged surface

attached to the wall. Due to ion absorption, an accumulated

charge exists in the fluid. Because the channel wall far

away from the meniscus is quickly saturated, the absorp-

tion only takes places near the meniscus. Hence, the charge

accumulation is assumed to be at the meniscus only. The

speed of development of the charged surface is equal to the

meniscus speed, and the net charge in the nanoscale vol-

ume must neutralize the surface charge, the contribution of

ion absorption to the development of accumulated charge

can be expressed by the streaming current IS

IS ¼
Z
AC

uqqdA ¼
Z h

2

�h
2

uqqwdy ð18Þ

The accumulated charge induces streaming current US,

which in turn causes the conductive current IC

IC ¼ �
US

�kAC

x
ð19Þ

where AC = wh is the cross section of the channel. Let the

accumulate charge at the meniscus of the liquid column is

qa, the charge balance for the liquid column requires

Ic þ Is ¼
d

dt
qa ð20Þ

Substituting Eqs. 18 and 19 into Eq. (20) results in the

charge balance equation

�Us
�kwh

x
þ
Z h

2

�h
2

uqqwdy ¼ d

dt
qa ð21Þ

It was shown (Chakraborty and Das 2008) that the

convective transport of ions under the influence of

streaming field is usually ignored in literature, leading to

inaccuracy in estimation of streaming potential. In

Eq. (21), the streaming current is expressed using the

general velocity field u, without explicit relation to the

causes of this velocity, hence the mistake is avoided.

2.2.8 Newton’s second law

The force balance on the moving liquid column is

expressed according to Newton’s second law

FS þ FV þ Fe ¼
d

dt
ðqmwhx�uÞ ð22Þ
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where Fe is the electric force due to interaction between

the induced streaming potential and the EDL charge

density of the channel wall, and qm is the mass density of

the fluid. The electric charge accumulated at the front of

the fluid column produces an electric field, namely the

streaming potential field. Such electric field in turn causes

electrostatic force acting on the entire liquid column.

Assuming a constant electric field along the channel, the

electric force is

Fe ¼ �x

Z
AC

Us

x
qqdA ¼ �xw

Z h
2

�h
2

Us

x
qqdy ð23Þ

Applying Gauss’s theorem to the meniscus area, where

the accumulated charge is located, the streaming electric

field strength is

�Es ¼
Us

x
¼ qa

ACee0

¼ qa

whee0

ð24Þ

Substituting Eq. (24) into Eq. (23) gives an expression

for the electric force

Fe ¼ �
qax

hee0

Zh
2

�h
2

qqdy ð25Þ

Also, substituting Eq. (24) into Eq. (21) results in

� qa
�k

ee0

þ
Zh

2

�h
2

uqqwdy ¼ d

dt
qa ð26Þ

The force balance and the charge balance the form the

equation system for the capillary filling effect in a

nanochannel are expressed as

2rwcos h� 12l�u

h
wx� qax

hee0

Zh
2

�h
2

qqdy ¼ d

dt
ðqmwhx�uÞ

� qa
�k

ee0

þ �uw

Z h
2

�h
2

3

2
� 6

y2

h2

� �
qqdy ¼ d

dt
qa

8>>>>>>>>><
>>>>>>>>>:

ð27Þ

2.3 Asymptotic solutions

The system of non-linear ordinary differential equations

(ODE) Eq. (27) cannot be solved analytically. However, an

asymptotic solution can be found. Introducing �u ¼ _x; v ¼
x _x and n ¼ qax=w

With

F̂s ¼ 2rcos h;

A ¼ 12l
h
;

B ¼ 1

hee0

Zh
2

�h
2

qqdy ¼ 2fj
h

tan h
jh

2

� �
;

C ¼ qmh;

D ¼
�k

ee0

and

E ¼ �ee0fj
2

Zh
2

�h
2

3

2
� 6

y2

h2

� �
cos hðjyÞ

cos h(jh=2Þ dy

¼ 12ee0f½jh� 2 tan hðjh=2Þ�
ðjhÞ2

;

the equation system Eq. (27) can be written as

F̂s � Av� Bn ¼ C _v
�Dnþ Evþ n

v �u2 ¼ _n

ð _v� �u2Þ �u
v ¼ _�u

8><
>: ð28Þ

Apply algebraic transformation

_v ¼ F̂s

C � A
C v� B

C n
_n ¼ �Dnþ Evþ n

v �u2

_�u ¼ F̂s

C � A
C v� B

C n
� �

�u
v� �u3

v

8>><
>>:

ð29Þ

By setting _v ¼ 0; _n ¼ 0; _�u ¼ 0; it is straightforward to

find the solution of Eq. (29) as

v ¼ DF̂s

BEþAD

n ¼ EF̂s

BEþAD
�u ¼ 0

8><
>: ð30Þ

Because the velocity approaches zero �u! 0 when the

time goes to infinity t ? ?, the critical point described by

Eq. (30) is a stable point. Details of mathematical

derivation is shown in Appendix 1. Substituting v ¼ x _x
back in to the first equation of Eq. (30) and performing the

integration with the initial condition x(0) = 0 result in the

position of the meniscus as function of time

x ¼ 2DF̂s

BEþ AD
t

	 
1=2

ð31Þ
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3 Results and discussion

Equation (31) presents asymptotic solution of the dis-

placement as t ? ? with consideration of electrokinetic

effects. This equation is qualitatively similar to Washburn

equation, which stated that x / t1=2; and therefore, �u ¼
_x / t�1=2: The results lead to a singularity that

�u!1when t ? 0. However, this singularity is solved

with consideration of entrance effect at the initial stage of

filling, as discussed in recent studies (Chakraborty 2007;

Chakraborty and Mittal 2007; Huang et al. 2001; Chakr-

aborty 2005). In this investigation, as the asymptotic

solution is considered, the Eq. (31) is acceptable.

For comparison, the asymptotic solution of the dis-

placement without EDL effect can be expressed as

x ¼ 2F̂s

A
t

	 
1=2

ð32Þ

Substituting back F̂s ¼ 2r cos h and A = 12 l/h into the

two solutions results in

2DF̂s

BEþ AD
t

	 
1=2

¼ r cos hh

3la

t

	 
1=2

ð33Þ

2F̂s

A
t

	 
1=2

¼ r cos hh

3l
t

	 
1=2

ð34Þ

where la is the apparent viscosity which is higher than the

real viscosity l due to the electrokinetic effects. The ratio

between these two viscosities can be obtained as

la

l
¼ BEþ AD

2DF̂s

2F̂s

A
¼ 1þ BE

AD

� �
ð35Þ

The relative change of the viscosity can be expressed as

Dl
l
¼ la�l

l
¼ BE

AD
¼ g

tanh jh
2

� �
jh� 2tanh jh

2

� �� �
1þ fe

kT
m��mþ
m�þmþ

2tanhðjh=2Þ
jh

h i
ðjhÞ2

ð36Þ

where g ¼ ð4ee0NAf2e2
�
lKmkTÞ � ð2e2e2

0f
2j2
�
l�kÞ is a

dimensionless parameter.

Under normal conditions, i.e. f\ 100 mV, T & 300 K,

the dimensionless parameter fe=kT has a value on the order

of unity one. For many common binary solutions, where

the mobility of ion species is the same, the ratio m��mþ
m�þmþ

reduces to zero. In extreme cases, �1\ m��mþ
m�þmþ

\1: This

ratio does not change the trend of the Dl=l vs. jh sig-

nificantly, as illustrated in Fig. 3. Therefore, Eq. (36) can

be approximated by

Dl
l
¼ g

tan h jh
2

� �
jh� 2tan h jh

2

� �� �
ðjhÞ2

ð37Þ

The dimensionless channel height jh is determined by

both the channel height and the electrolyte concentration.

At room temperature, Debye length j-1 ranges from

several nanometers to a theoretical maximum of submicron

for pure water. Therefore, in order to observe

electroviscous effect, it is necessary to fabricate channels

with height in nanoscale. With a specific channel height,

there is one optimum concentration at which the

electroviscous effect is most significant. Dilute or

concentrate solution (relative to such optimum

concentration) gives a lower increase in viscosity, as

illustrated in Fig. 4. Figure 5 shows that if the channel

height is on the order of tens to hundreds of nanometers,

the solution must be very dilute (i.e. 10-6 M) to reach the

maximum apparent viscosity. At a higher concentration,

the viscosity simply increases with the decrease in channel

height.

Setting the first order derivative of the relative change of

viscosity Eq. (37) to zero shows that the maximum of Dl
l is

reached when jh & 4. Figure 6 shows the ratio Dl
l with

respect to normalized channel height jh for various values

of g. In Fig. 7, the ratio Dl
lgwith respect to normalized

channel height jh is plotted in comparison with corre-

sponding ratio reported previously (Mortensen and
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Kristensen 2008), the results showed quite close

agreement.

However, the apparent viscosity observed in reported

experiments still seems to be higher than that predicted by

the present model, as shown in Fig. 5. The deviation

between current theories on electroviscous effect and

experimental results on the reduction in filling speed sug-

gests that the electroviscous is not the only cause of the

speed reduction. There are reports on the formation of air

bubbles during the filling process (Han et al. 2006;

Thamdrup et al. 2007). The negative pressure across the

meniscus in nanochannel may release the gas diluted in the

fluid in form of bubbles. A fraction of energy is stored in

term of surface energy of the air bubbles; hence, less

energy transfers to kinetic energy of the fluid column,

which leads to reduction in filling speed. Therefore, in

order to observe the electroviscous effect, it is essential to

eliminate, or quantitative evaluate other factors contribute

in filling speed reduction, such as bubbles formation.

In published literature, many theories have been devel-

oped to explain the electroviscous effect in capillary filling.

Each approach shown to be convenient in some specific

cases. Generally, electroviscous effect is the coupling

between electrokinetic and dynamic flow of fluid in the

nanochannel. In this investigation, the authors attempted to

explain what happens during capillary filling process in a

general perspective, to determine which phenomena

involve in the filling process, and to represent those phe-

nomena in term of the parameters of final equation. For the

sake of readability, simplified models were used to describe

these phenomena. However, this approach is also applica-

ble for more complicated cases, which merely lead to the

modification of the parameters F̂S; A, B, C, D, and E,

without the necessity to rebuild the whole derivation. For

each specific case, those parameters can be obtained ana-

lytically, numerically, or even experimentally.

4 Conclusions

In conclusion, we have developed a mathematical model

for capillary filling in nanochannels. The model describes

the electroviscous effects on such capillary filling process.

The asymptotic solution showed that the filling process

follows Washburn’s equation x /
ffiffi
t
p
; with increasing

apparent viscosity. The apparent viscosity is the largest

when the dimensionless channel height, namely the ratio

between channel height and the Debye length j-1 reaches

an optimum value of about 4. A typical Debye length

theoretically has values ranging from several nanometers to

submicron. Thus, for a dominant electroviscous effect, it is

necessary to reduce and precisely control the channel

height. The apparent viscosity increases with high zeta

potential and low molar conductivity or low ion mobility.

Because of the electrostatic interactions during the filling

process, the speed of each individual ion/molecule depends

on its electric charge and mobility. This phenomenon can

be applied to separate different ion species, especially for
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those with high molecular weights such as DNAs, poly-

mers or proteins. Further studies can involve the feasibility

of chromatography applications.

Appendix 1

To analyze the stability of the critical point found in

Eq. (30), it is necessary to rewrite equation Eq. (29) as

below

_v ¼ aðv; n; �uÞ ¼ F̂s

C � A
C v� B

C n
_n ¼ bðv; n; �uÞ ¼ �Dnþ Evþ n

v �u2

_�u ¼ cðv; n; �uÞ ¼ F̂s

C � A
C v� B

C n
� �

�u
v� �u3

v

8>><
>>:

ð38Þ

These non-linear equations cannot be linearized because

cx, cn, c�u reduce to 0 when �u ¼ 0:

However, the stability still can be discovered by con-

sidering some experimental facts. First, the capillary filling

length x increases with time. Therefore, �u ¼ _x is a non-

negative function. Second, the viscous force is proportional

to �ux: Because the surface tension, as the capillary filling

driving force, is a constant, the viscous force must be

bound. Therefore, the average velocity �u must approach 0

when t ? ?. So, the problem reduces to determining the

stability of the critical point in �u ¼ 0 hyperplane. With this

condition, the Eq. (38) can be rewritten as.

aðv; n; 0Þ ¼ F̂s

C � A
C v� B

C n
bðv; n; 0Þ ¼ �Dnþ Ev

�
ð39Þ

To linearize this equation in �u ¼ 0 hyperplane, at the

critical point, the Jacobian matrix J is evaluated at that

point.

J ¼ av an

bv bn

	 

¼ � A

C � B
C

E �D

	 

ð40Þ

The eigenvalues k are calculated by

� A
C � k � B

C
E �D� k

����
���� ¼ � A

C
� k

� �
ð�D� kÞ þ BE

C
¼ 0

ð41Þ

Expand the variable

k2 þ A

C
þ D

� �
kþ ADþ BE

C
¼ 0 ð42Þ

Discriminant D

D ¼ A

C
þ D

� �2

�4
ADþ BE

C

¼ A2

C2
� 2

AD

C
þ D2 � 4BE

C

¼ A

C
� D

� �2

� 4BE

C

ð43Þ

It is necessary to know the sign of the reduced variables.

By their definition, the variables A, C and D are positive.

Both variables B and E are opposite in sign to f; therefore,

the product BE is positive.

As a result, if D C 0, two eigenvalues are

k1 ¼
1

2
� A

C
� D�

ffiffiffiffi
D
p� �

ð44Þ

k1 ¼
1

2
� A

C
� Dþ

ffiffiffiffi
D
p� �

ð45Þ

With A, C and D are positive, k1 is negative obviously.

In quadratic equation (42)

k1k2 ¼ 4
ADþ BE

C
[ 0 ð46Þ

Then, k2 is also negative. The critical point is a nodal

sink (stable).

If D\ 0, two eigenvalues are complex numbers, with

the real parts are

Re(k1Þ ¼ Reðk2Þ ¼
�A� D

2C
\0 ð47Þ

The critical point is a spiral sink (stable).

Because there is only one finite critical point, and three

variables v, n, and �uare bound as t ? ?, the critical point

as in Eq. (30) describes the asymptotic solution of the

system.
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