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Abstract Despite the enormous scientific and techno-

logical importance of micro-channel gas flows, the

understanding of these flows, by classical fluid mechanics,

remains incomplete including the prediction of flow rates.

In this paper, we revisit the problem of micro-channel

compressible gas flows and show that the axial diffusion

of mass engendered by the density (pressure) gradient

becomes increasingly significant with increased Knudsen

number compared to the pressure driven convection. The

present theoretical treatment is based on a recently pro-

posed modification (Durst et al. in Proceeding of the

international symposium on turbulence, heat and mass

transfer, Dubrovnik, 3–18 September, pp 25–29, 2006) of

the Navier–Stokes equations that include the diffusion of

mass caused by the density and temperature gradients.

The theoretical predictions using the modified Navier–

Stokes equations are found to be in good agreement with

the available experimental data spanning the continuum,

transition and free-molecular (Knudsen) flow regimes,

without invoking the concept of Maxwellian wall-slip

boundary condition. The simple theory also results in

excellent agreement with the results of linearized

Boltzmann equations and Direct Simulation Monte Carlo

(DSMC) method. Finally, the theory explains the

Knudsen minimum and suggests the design of future

micro-channel flow experiments and their employment to

complete the present days understanding of micro-channel

flows.

Keywords Micro-channel flow � Self-mass diffusion �
Slip boundary condition

1 Introduction

Flows through micro-channels have recently gained intense

attention both because of fundamental scientific issues

and of technological applications in bio-chemical devices,

bio-assays, micro-sensors, -actuators, -reactors, etc.

(Karniadakis et al. 2005). Other important micro-nano-

fluidic devices comprise Winchester-type hard disk drives,

with air gaps of less than 50 nm, handling air flows at very

high speeds. A variety of Micro Electro Mechanical

Systems (MEMS) devices also contain micro-channel

flows, such as electro static comb micro drives (Tai et al.

1989), and electro statically side-driven micromotor

(Mehregany et al. 1990; Trimmer 1997). In all of these

micro-devices, increased mass flow rates are measured

when compared with corresponding flow rates predicted by

the classical Navier–Stokes equations. From the fluid

mechanics point of view, the anomalous mass flow rates

through micro-channels are of particular interest (Arkilic

et al. 1994; Maurer et al. 2003), both because of their
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importance in fundamental studies and their technological

applications in MEMS.

Micro-channel gas flows offer the possibility of directly

testing the theoretical limitations of the basis of the clas-

sical Navier–Stokes equations. Early studies on micro-

channel gas flow had already concluded that the theoretical

predictions, using the Navier–Stokes equations and no slip

velocity at the wall as boundary condition, under-predicted

the experimental mass flow rates (Arkilic et al. 1997). The

resultant discrepancies are often compensated by intro-

ducing the Maxwellian slip velocity boundary condition

(Maxwell 1879) that was originally proposed for atomi-

cally smooth walls.

To get agreement with the experimental measurements,

several different wall-slip models of varying complexity,

containing freely adjustable parameters, have been pro-

posed (Schamberg 1947; Sreekanth 1969; Beskok and

Karniadakis 1999; Dongari et al. 2007). However, it may

be noted that the models, introducing wall-slip as boundary

condition, are not truly predictive, but need adjustable

parameters which are often postulated to have some func-

tional dependence on Knudsen number (Kn = k/h, where k
is the mean free path of molecules and h is the height of the

channel). The model parameters have to be determined by

fitting the experimental data to the simulation results

(Karniadakis et al. 2005). An example of slip model

(Beskok and Karniadakis 1999) that is claimed to be rather

successful in correlating the experimental data is:

Us ¼ Uw þ
2� r

r
Kn

1� BðKnÞKn

dU

dn

� �
ð1Þ

where r is the percentage of molecules that are reflected

from the wall diffusively (i.e., with average tangential

velocity corresponding to that of the wall, i.e., Uw).

Furthermore, Us is the so-called Maxwell slip velocity, Uw

the wall velocity, (dU/dn) is the velocity gradient perpen-

dicular to the wall. It is to be noted that B(Kn) is the above

mentioned fitting parameter which needs to be determined

by comparing predicted results with the Direct Simulation

Monte Carlo (DSMC) method or with reliable experi-

mental data.

Recent theoretical studies (Brenner 2005, 2006; Durst

et al. 2006) have pointed out the importance of inclusion of

additional terms into the classical Navier–Stokes equations

resulting in the so called extended Navier–Stokes equa-

tions. The key idea is that a strong density gradient for a

compressible fluid acting in the direction of flow adds an

additional diffusive mode of mass transport. It is interesting

that the approach to use extended equations obviates the

need for an ad hoc introduction of Maxwellian slip to

explain flow phenomena such as thermophoresis (Brenner

2005), thermal transpiration (Bielenberg and Brenner

2006) and structure of shock waves (Greenshields and

Reese 2007). It is thus expected that density gradient dri-

ven diffusion may also contribute to micro-channel gas

flows with small channel heights (h), as the convective

pressure driven flow increases proportional to h3 (Arkilic

et al. 1997), whereas the diffusive flux scales linearly with

the height h.

The present paper shows, however, that the most dra-

matic breakdown of the classical Navier-Stokes predictions

occurs in the Knudsen regime (Kn [ 1), where the density

gradient driven diffusive mass flux assumes paramount

importance vis-à-vis the pressure driven convection. The

purpose of this paper is to explore the applications of the

extended Navier–Stokes equations, including the axial

diffusion, to explain the enhanced flow in micro-channels

without invoking the Maxwellian wall slip velocity. A

uniform treatment is proposed for all values of the Knudsen

number by a modification of the diffusivity by undertaking

the Knudsen diffusion phenomenon in the free-molecular

regime (Knudsen 1909; Kennard 1938; Malek and Coppens

2003). In this treatment, the diffusive transport also intro-

duces a slip-kind of wall velocity, but in a somewhat

natural way as the diffusive flux depends only on the axial

pressure gradient, which is uniform across the channel

cross-section.

Another objective of this study lies in exploring the

underlying physics of the so called Knudsen paradox

(Knudsen 1909). The Knudsen paradox relates to the

presence of a minimum when the mass flow rate normal-

ized by the pressure difference is plotted against the

Knudsen number (Knudsen 1909; Gaede 1913). Generally

speaking, the exploration of Knudsen paradox and its full

understanding also requires consideration of the entire

transport regimes (Fig. 1) from small to large values of the

Knudsen number. The results of the extended Navier–

Stokes are compared with the available experimental data,

with Boltzmann simulations and also with the exact sim-

ulations that do not assume a model for the wall-slip, such

as the DSMC method over a large range of Knudsen

number. It is also worth noting that even for higher

Knudsen numbers, the theories (Beskok and Karniadakis

1999; Dongari et al. 2007) based on continuum assump-

tions in conjunction with the higher order slip boundary

Kn=0.0001 0.01 1 100

Continuum Regime

Slip Flow Regime

Kn=0.0001 0.01 1 100

Continuum Regime

Slip Flow Regime

Covered by present theory

0.001 0.1 10

Transition Regime

0.001 0.1 10

Transition Regime

Molecular RegimeMolecular Regime

Fig. 1 Classification of flow regimes with Knudsen number
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conditions have been employed to investigate gas flows

through micro-channels.

A brief literature study pointing out those papers which

are most relevant to the present problem of the theoretical

treatment of micro-channel flows is presented in Sect. 2.

The governing equations and the results of the extended

Navier–Stokes treatment are presented in Sect. 3. The

results are then compared with the experimental and

DSMC data, showing a good agreement and pointing out

the importance of diffusive contribution to the mass

transport in gas flow through micro-channel.

In order to be precise and avoid any confusion, we shall

use the term ‘‘Navier–Stokes equations’’ to refer to the

classical Navier–Stokes equations without any diffusive

effects. The term ‘‘present theory’’ or the term ‘‘modified

Navier–Stokes equations’’ refers to the modified Navier–

Stokes equations proposed by Durst et al. (2006) which

include extra diffusive terms. The diffusive term itself can

be classical diffusion at lower Knudsen numbers or the

Knudsen diffusion at higher values of the Knudsen number.

It may also be noted that in the case of isothermal gas flows

considered here, Brenner (2005, 2006) notion of volume-

diffusion and Durst et al. (2006) notion of self-mass

diffusion in fact result in identical expressions for the

extra diffusive flux driven by the density gradient. See

‘‘Appendix’’ for more detailed discussion.

2 Theory of micro-channel gas flows: a background

Referring to available knowledge, the conventional no-slip

boundary condition was claimed to apply to solid-fluid

interfaces when the wall roughness is of the order of the

mean free path of gas molecules or larger. Studies to

support this were carried out by Richardson (1973) and Mo

and Rosenberger (1990). However, the validity of this

boundary condition has been questioned for gaseous flows

in micro-channels by many researchers (Gad-el-Hak 1999).

The questioning was based on differences observed

between the experiments and theoretical results, the latter

being based on the classical Navier–Stokes equations and

the application of the no-slip boundary condition at walls.

It has been thought that the applied no-slip wall boundary

condition is responsible for these deviations. Maxwell

(1879) first proposed a first order slip model to calculate

the slip velocity at the wall for atomically smooth walls.

Later many other heuristic extended slip models have been

proposed even for atomically rough walls and are com-

prehensively summarized by Karniadakis et al. (2005).

Various values of the slip-coefficients and the methods of

their determination have been applied (Schamberg 1947;

Deissler 1964; Sreekanth 1969; Beskok and Karniadakis

1999; Pan et al. 1999; Colin 2005; Dongari et al. 2007).

Fitting of the experimental results, with the help of theo-

retical results based on a slip-model, often necessitates

postulating various dependences of the slip coefficient on

the Knudsen number and the geometry of a considered

channel. A number of these slip coefficients are summa-

rized in Colin (2005) and Dongari et al. (2007). The logic

for the choice of a particular slip-model is not really

described in the above cited papers.

Brenner (2005, 2006) and Durst et al. (2006) have recently

proposed modifications to the Navier–Stokes equations that

relate to volume diffusion (Brenner 2005) or self-mass dif-

fusion (Durst et al. 2006) occurring in fluids that would be

significant for flows with high density gradients. It is shown

that for strong local temperature and/or density gradients,

diffusive transport of momentum, heat, and mass gives rise to

additional terms in the constitutive relationships. The

resultant modifications gave good predictions of the viscous

structure of shock waves (Greenshields and Reese 2007)

in the range Mach numbers 1.0–12.0 (while conventional

Navier–Stokes equations are known to fail above about

Mach number 2). The modified equations are also found to be

successful in explaining phenomena such as thermophoresis

(Brenner 2005), thermal transpiration (Bielenberg and

Brenner 2006). In this paper, we therefore utilize these

modified forms of Navier–Stokes equations (Durst et al.

2006) to investigate gas flows through micro-channel with-

out using the no-slip boundary condition.

Hence, the main objective of this paper is to extend the

applicability of the continuum based equations in con-

junction with the diffusive mass flux to predict the flows

operating at high Knudsen numbers as the studies of gas

flows in the transition regime (0.1 \ Kn \ 10, refer to

Fig. 1) are certainly interest to researchers in many areas of

physics, chemistry and engineering technology, and in the

Knudsen regime (Kn [ 10) covering from traditional het-

erogeneous catalytic processes over porous catalysts, to

molecular transport processes in nano-structured materials,

to rarefied gas processes in atmosphere and space.

There are several simulations of the micro-flows inde-

pendent of the Navier–Stokes treatment. For example,

semi-analytical and numerical solutions of the linearized

Boltzmann equations for rarefied flow for channels (or) pipe

in both transition and free-molecular regimes have been

obtained. Linearized Lattice-Boltzmann treatment by

Cercignani and Daneri (1963) addressed the problem of the

so-called Knudsen paradox. In such studies, simplifications

for the collision integral based on the BGK model were

extensively used under the assumptions of small pressure

gradients and isothermal condition. Other investigators

derived solutions based on the hard-sphere and Maxwellian

models for the collision integral (Huang et al. (1997), Sone

(1989) and Ohwada et al. (1989)). Using the slip model

given in Eq. 1, within the context of slip-models, Beskok
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and Karniadakis (1999) have provided some results for the

transition regime (Kn * 1), and early free-molecular

regime (Kn * 10). The slip models encompassing the free-

molecular regime are postulate based, rather than physics

based, and thus the extensions of the original Maxwell’s slip

model and also the values of model parameters have to be

determined by DSMC simulations for various Knudsen

number regimes and various geometries.

As noted before, the diffusive effects are likely to

become very important in the free-molecular regime

(Kn [ 10), where the bulk diffusivity (or Fickian diffusion

coefficient, Hosticka et al. 1998) also becomes modified

because of the increased frequency of molecular wall col-

lisions. When the ratio of mean free path to the confining

channel dimensions becomes large (Kn � 1), the situation

is described as the Knudsen regime (Malek and Coppens

2003). In this regime, diffusion is described by the

Knudsen diffusivity rather than the bulk diffusivity.

From the brief presentation above, it can be concluded

that the approach to micro-channel flows, based on the

classical Navier–Stokes equations, is limited to the use of

postulate based wall slip models for which various

parameters are determined either empirically or by com-

parisons with independent simulations. The slip-models

become even more complex when the transition and

Knudsen regimes of flow are considered. On the other

hand, the recently developed extended Navier–Stokes

equations including the diffusive mode of transport are

beginning to successfully address the problems such as

thermophoresis that were historically also formulated by

postulating a wall slip. In view of these, we propose to test

the predictions of the extended Navier–Stokes approach for

the problem of micro-channel flows without introducing a

model of the wall slip a priori.

3 Theory and results

3.1 Extended Navier–Stokes equations

It needs to be emphasized for the present study that fluid

motions can occur by both convection and diffusion where

the latter has its origin in the thermal motion of molecules

(Brenner 2005, 2006; Durst et al. 2006). When both

motions are taken into account, the total fluid velocity can

be written as,

Ûi ¼ Ui þ �uD
i ð2Þ

where Ûi ¼ total velocity, Ui = convection velocity and

�uD
i ¼ diffusion velocity, see Kennard (1938). Hence both

convective and diffusive motions need to be treated accu-

rately when dealing with flow situations where high

gradients of the thermodynamic properties occur in a flow

field, i.e., high gradients of the density q, temperature T or

pressure P.

The modified continuity and the momentum equations,

including the molecular mass transport and the molecular

momentum transport, derived by Durst et al. (2006) are

given below:

oq
ot
þ oðqÛiÞ

oxi
¼ 0) oq

ot
þ oðqUiÞ

oxi
¼ � oð _mD

i Þ
oxi

ð3Þ

local diffusive mass transport can be derived from the

kinetic theory of gases:

_mD
i ¼ q�uD

i ¼ �qD
o

oxi
ln q

ffiffiffiffi
T
p� �h i

ð4Þ

where _mD is the mass flux induced due to molecular self

diffusion, D ¼ 1=3ð Þ�uMk and qD = l in accordance with

the transport theory for ideal gases. Here D is defined as the

diffusivity of the gas,�uM is the molecular mean velocity

and l is the viscosity of the gas.

o ðqÞUj

� �
ot

þ
o ðqUiÞUj

� �
oxi

� 	
¼ � oP

oxj
� osij

oxi
þ qgj ð5Þ

sij ¼ �l
oUj

oxi
þ oUi

oxj

� �
þ 2

3
ldij

oUk

oxk
þ _mD

i Uj þ _mD
j Ui

� 2

3
dij _mD

k Uk ð6Þ

The general governing equations simplify to the form

given below if the following imposed flow conditions

relevant for a micro-channel flow are taken into account:

(a) The flow is assumed to be steady, two-dimensional,

locally fully developed, i.e., the transverse velocity can be

neglected; (b) The flow conditions are isothermal, as the

Mach number of flow analyzed in the present paper is

assumed to be very low (Ma � 1) and hence, the energy

equation does not need to be solved; (c) The channel is

long, and the entry and exit effects are negligible, i.e., the

fully developed channel flow is treated.

oðqðU1Þ2Þ
ox1

 !
¼ � dP

dx1

� os11

ox1

� os21

ox2

ð7Þ

Using the above mentioned assumptions, the expressions

for s11 and s21 can be derived from Eq. (6) to yield the

following momentum transport relationships:

s11 ¼�l
4

3

oU1

ox1

� �
þ 4

3
_mD

1 U1 and s21 ¼�l
oU1

ox2

� �
ð8Þ

In this work, it is also assumed that the channel height, h is

much smaller than the channel width, w, so that the fluid

essentially sees two infinite parallel plates, separated by h.

Hence the assumption of two-dimensionality introduced to

derive the final equations is valid, refer to Fig. 2 for the

channel geometry.

682 Microfluid Nanofluid (2009) 6:679–692

123



The Reynolds numbers of all the flows studied in micro-

channels are usually very low, i.e., Re \ 1, and hence it

becomes very important to incorporate the physically cor-

rect molecular diffusion into any analysis to treat micro-

channels flows. Our detailed solutions of the governing

equations yielded the following simple and physically

justified insights: (a) The additional mass diffusion given

by _mD
1 in Eq. 4 is important and needs to be taken into

account in the continuity equation; (b) The additional

momentum terms s11 and
oðqðU1Þ2Þ

ox1

� �
are small in compari-

son to the gradient driven term s21, given in Eq. 8. Because

of this, s11 is neglected for the results presented in this

paper; (c) the last but not least, it should be mentioned, that

the convective part of the velocity profile is assumed to be

parabolic. The assumption of the convective part of

velocity profile being parabolic is also in agreement with

the numerical data available in the literature (Beskok and

Karniadakis 1999; Agrawal and Agrawal 2006; Agrawal

et al. 2005; Pan et al. 1999; Arkilic et al. 1997).

3.2 Analytical treatment of micro-channel gas flow

The governing equations of fluid motions in Sect. 3.1

suggest that the actual total mass flux through the channel

is made up of two parts, the convective motion, driven by

the imposed pressure difference between inlet and outlet,

and the motion caused by the self-diffusive mass transport.

Hence the same pressure difference that drives the con-

vective motion also induces a diffusive motion, which for

isothermal condition can be written as follows using Eq. 4

_mD
1 ¼ �qD

1

q
dq
dx1

� �
ð9Þ

Using the ideal gas law one can also write:

1

q
dq
dx1

¼ 1

P

dP

dx1

and _mD
1 ¼ �qD

1

P

dP

dx1

� �
ð10Þ

In spite of the fact that the governing differential

equations for the velocity profile are non-linear, e.g., see

Eq. 7, closer considerations of the magnitude of the various

terms in Eq. 7 suggest that the convective and diffusive

motions of the gas are not coupled and can thus be treated

independently.

Using Eqs. 9 and 10, one can write the expression for

the induced mass flow rate, due to self diffusion, as

follows:

_MD ¼ _mDwh ¼ �l
1

P

dP

dx1

wh ð11Þ

where w and h are the width and height of the channel

respectively.

By integrating Eq. 11 from inlet to outlet, one can

obtain the following relationship for diffusion mass flow

rate ð _MDÞ

_MD ¼ lwh

L
ln

Pin

Pout

� �
ð12Þ

where L is the length of the channel

The analytical expression for the mass flow rate for

compressible flows using the Navier–Stokes equations and

the no-slip wall velocity boundary conditions, can be given

by the equation below, e.g., see also Arkilic et al. (1997):

_MC ¼
h3w P2

in � P2
out


 �
24lLRT

ð13Þ

Hence, the total mass flow rate through a micro-channel

can be expressed as the sum of _MD and _MC yielding:

_MT ¼
h3w P2

in � P2
out


 �
24lLRT

þ lwh

L
ln

Pin

Pout

� �
ð14Þ

To compare results obtained with the present theory, the

experimental data of Maurer et al. (2003) were selected as a

basis because his results cover a wide Kn-number range,

from the continuum regime up to the early transition regime

shown in Fig. 1. More importantly, Maurer’s experimental

studies report all the conditions of the experiments that are

required for the authors’ theoretical computations.

Figure 3 shows the present theory results and compares

them with the experimental data. The comparisons of the

experimental data of Maurer et al. (2003) and the corre-

sponding theoretical results show good agreement for small

differences in the square of pressures, i.e., for high

Knudsen numbers. At the high end of the square of the

pressures, i.e., for small Knudsen numbers, the theoretical

solution, as expected, converges to the corresponding

Navier–Stokes solution with the no-slip velocity boundary

condition, whereas the experimental data (Maurer et al.

2003) data shows some deviation. This must be due to

small experimental errors, which may have resulted from

the errors in estimating the effective or ‘‘fluid mechanically

felt’’ channel height. With this assumption one can correct

the data yielding an offset to the theory at low Kn numbers.

After incorporating this correction, the results shown in

Fig. 4 were obtained. This figure shows excellent agree-

ment of the measurements with the theory. This confirms

that predictions of micro-channel flow rates can be carried

1x
2x

3x

Flow Direction

w

h
Channel
side wall

h, channel height
w, channel width

Fig. 2 Channel geometry, with the system of coordinates
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out, based on the Navier–Stokes equations in conjunction

with the diffusive flux, together with the conventional

no-slip wall velocity as a boundary condition. Wherever

the flow conditions for the results present in this paper are

not mentioned explicitly, one has to note that the authors

used the information provided in the Table 1 to compute

the results.

It is a well known fact that the mass flow rate is directly

proportional to the pressure drop for high Knudsen num-

bers, i.e., for Kn ? ? covering the free-molecular regime

(Kennard 1938). However, by inspection of Figs. 3 and 4,

one can notice that the mass flow rate solution obtained

using the extended Navier–Stokes equations approaches a

constant value in the free-molecular regime, which is in

contradiction with the free-molecular theory. One can
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Fig. 3 Comparison of mass

flow rate as a function of

composite pressure drop

(difference in squares of

pressures), for helium, against

the experimental data of Maurer

et al. (2003)
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Fig. 4 Comparison of mass

flow rate as a function of

composite pressure drop

(difference of squares of

pressures), for helium, against

the experimental data by Maurer

et al. (2003)

Table 1 Imposed flow conditions and physical properties of helium

gas

Parameter Range or mean value

Ambient pressure 100,000 Pa

Temperature 298 k

Molecular mass 4.0029 g/mol

Mean free path at atmospheric pressure 176.5 nm

Ratio of specific heats 1.67

Molecular diameter 210 pm

Viscosity 0.0196 cP

Width of the channel 100 lm

Length of the channel 1,000 lm

Height of the channel 1 lm
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explain this deviation of extended Navier–Stokes equations

by introducing the Knudsen diffusion phenomenon into the

treatment of diffusive motion of fluids. As pointed out

before, the bulk diffusivity ðD ¼ 1=3ð Þ�uMkÞ (or Fickian

diffusion coefficient, Hosticka et al. 1998) becomes mod-

ified because of the increased frequency of molecular wall

collisions in the rarefied Knudsen regime Kn ? ?. When

the ratio of mean free path to the confining channel

dimensions becomes large, the situation is described as the

Knudsen regime of micro-channel flows (Malek and

Coppens 2003). More detailed discussions on Knudsen

diffusion and the corresponding results are presented in the

section below.

3.3 Flow rates in free molecular and transition regime

Knudsen’s experimental study of rarefied gas flow through

capillaries, which he initiated around 1907, was among the

first designed to test the consequences of the kinetic theory

of gases. Bulk diffusion given by Eqs. 4, 9 and 11 occurs

when the mean free path (k) is relatively short compared to

the channel size (h). However, for large Knudsen numbers,

relatively few gas molecules collide with each other

compared to the number of collisions between molecules

and the wall of the channel. This leads to the occurrence of

so-called Knudsen diffusion when the mean free path is

relatively large compared to the channel size, i.e., such as

height of the channel, so the molecules collide frequently

with the channel walls. Knudsen diffusion is more domi-

nant compared to the molecular diffusion for the Knudsen

numbers greater than 1. For fully developed Knudsen dif-

fusion, the mass flux can be expressed as follows (Knudsen

1909; Kennard 1938):

_MK ¼ wh2

3

ffiffiffiffiffiffiffiffiffi
8

pRT

r
dP

dx1

ð15Þ

where R is the specific gas constant

By taking into account the linear variation of pressure

variation in the flow in the free-molecular regime, one can

deduce from Eq. 15 the following relationship:

_MK ¼ wh2

3L

ffiffiffiffiffiffiffiffiffi
8

pRT

r
Pout Pr � 1ð Þ ð16Þ

Here Pr = Pin/Pout, where as Pin and Pout are the inlet and

outlet pressure, respectively.

From the above Eq. 16, one can notice that the differ-

ence between Eqs. 4, 9 and 11 and Eq. 16 lies in the fact

that the mean free path (k) in the bulk diffusion Eq. 11 is

replaced by the height of the channel (h) (Note:

l ¼ 1=3ð Þq�uMk). This finding also indicates that the

molecular transport term for mass (Durst et al. 2006)

(Eq. 11), should be incorporated in the classical continuity

equation. The bulk diffusion which is given in Eq. 11 is

dominant when the mean free path is relatively short

compared to the channel dimensions, i.e., for small

Knudsen numbers (Kn ? 0). Figure 5 presents the graph-

ical sketch of the both kinds of diffusion.

The theory for free-molecular regime (Kn [ 10),

continuum and to some extend the slip flow regime

(0 \ Kn \ 0.1), is well developed. However, the opera-

tional regime of many microsystems at standard temperature

and pressure can be in the transition regime (0.1 \ Kn \ 10)

(Karniadakis et al. 2005). It is thus necessary to carry out

investigations in the transition regime. In the transition

regime, the diffusion has properties of both Knudsen and

bulk diffusion. The exact theoretical basis to fundamentally

describe diffusion in transition regime, however, remains

unclear. It is instructive to read Knudsen’s own attempts to

understand it and his dissatisfaction with his own explana-

tions (Knudsen 1909). It is however clear that the transition

regime is a mixture of both the free and the confined modes

of diffusion to a varying degree depending on the magnitude

of the Knudsen number. Using Eq. 4 one can obtain the bulk

diffusivity (Db = D) as follows

Db ¼ 1

3

� �
�uMk ¼ 1

3

� �
�uMh

� 
Kn ð17Þ

Hence, using Eq. 17 and by replacing k with h, one can

write the Knudsen diffusivity as follows (DK)

DK ¼ 1

3

� �
�uMh ð18Þ

Eqs. 17 and 18 can be rewritten as

lim
Kn!0

Deð Þ ¼ DKKn ð19Þ

lim
Kn!1

Deð Þ ¼ DK ð20Þ

where De is the effective diffusivity

One can notice that DK remains constant for a given gas,

channel height (h) and temperature.

Fig. 5 Sketch showing the

different kind of diffusive

modes of transport of fluids (a)

molecular diffusion (b) fully

developed Knudsen diffusion
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The effective diffusivity (De) should smoothly vary

between the two limits of bulk diffusion (Kn ? 0) to fully

developed Knudsen diffusion (Kn ? ?). Since the

asymptotic behaviors of De in both low and high Knudsen

numbers regimes is known, the suggestions of Churchill

and Usagi (1972) and the work of Durst et al. (2005) on the

development lengths of laminar pipe and channel flows can

be employed to get the simplest interpolation which cor-

rectly reproduces these asymptotic cases. The behavior in

the transition regime can be interpolated by:

De ¼ Db

 �cþ DK


 �c� �1=c ð21Þ

Here c is interpolation constant.

One can clearly deduce from Eq. 19 that when Kn ? 0,

the effect of Knudsen diffusion term is negligible and for

high Knudsen numbers (Kn ? ?) the effect of molecular

diffusion is negligible, which is possible only when c \ 0.

Figure 6 shows the variation of normalized effective dif-

fusion (De� ¼ De=DK) against the Knudsen number for

different values of c.

Using Eqs. 12, 16 and 21, the effective diffusive mass

flow rate can be written as given below

_MD
e ¼ _MD


 �cþ _MK

 �c� �1=c ð22Þ

Hence, using Eqs. 22 and 13 the effective total mass flow

rate can be written as:

_MT
e ¼ _MC

e þ _MD

 �cþ _MK


 �c� �1=c ð23Þ

here _MC
e is the effective convective mass flow rate that is

similar to the expression given in Eq. 13, except the fact

that l is replaced with le (effective viscosity), which is

obtained using the effective diffusivity.

As seen in Fig. 6, the effective diffusivity (De) matches

both the asymptotes smoothly for -2 \ c \ -1. The best fit

to the experimental data (Maurer et al. 2003) on the mass

flow rate is obtained using equation (23) with c = -1.6. As

shown in Fig. 7, the agreement is very good and the present

theory also converges to the free-molecular and continuum

theories in the asymptotic cases. Thus, the exponent

c = -1.6 is used for interpolation in the transition regime.

However, for typical values of c ranging from -2 to -1,

negligible differences were observed between the predicted

values of mass flow rate. Thus, a value of c = -1 may be

chosen without much loss of accuracy. It may also be noted

that other intuitive simpler interpolation schemes such as,

given in Eq. 24, work nearly equally well in describing the

experimental data of normalized flow rate (Q), see Eq. 25.

However, these computations are not shown in Figs. 8 and 9

to avoid the overcrowding of data displayed.

_MD
e ¼

_MD þ Kn _MK

1þ Kn
ð24Þ

One can notice from Eq. 24 that when Kn ? 0, the effect

of the Knudsen diffusion term is negligible and for high

Knudsen numbers (Kn ? ?) the effect of molecular dif-

fusion is negligible. The results based on the present theory

and their matching with the experimental and simulation

data are not much sensitive to a reasonable interpolation

scheme used.

3.4 Normalized flow rate and Knudsen’s Paradox:

comparisons with experiments

To further study the use of the extended Navier–Stokes

equations, one can turn ones attention to the normalized
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effective diffusivity against
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volume flow rate (Q) defined in Eq. 22 as given in Dongari

et al. (2007), where cs represents the speed of sound. It is

known from Knudsen’s (1909) and Gaede’s (1913) experi-

ments in the transition flow regime that there is a minimum in

the normalized flow rate in pipe and channel flows. Knudsen

observed this minimum at about approximately Kn * 1.

This behavior has been investigated by many researchers

both theoretically (Cercignani and Daneri 1963; Loyalka and

Hamoodi 1990) and experimentally (Dong 1956; Tison

1993). It was first shown by Knudsen that in the free-

molecular regime, a diffusive transport process proportional

to the pressure gradient but independent of density is

observed; see also Eq. 15.

The normalized volume flow rate can be obtained as:

Q ¼
�qcs

R h

0
Ûdy

h2 dP=dxð Þ ð25Þ

Figure 8 presents comparison of normalized mass flow

rate as a function of Knudsen number through the micro-

channel obtained from the present theory against the semi-

analytical solution obtained using linearized Boltzmann

equations of Cercignani et al. (2004) and the experimental

data of Dong (1956). The present theory agrees very well

with Cercignani et al. (2004) for Kn less than about 0.1,

which corresponds approximately to the end of the slip

flow regime. The Boltzmann solution diverges from the
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experimental data in the early transition flow regime

(Kn [ 0.1). However, the present theory matches fully

with the experimental data in the entire transition flow

regime (0.1 \ Kn \ 10). One has to note that this excellent

agreement is achieved without incorporating any kind of

complex and adjustable slip models. This suggests that the

extended Navier–Stokes equations with appropriate

treatment of diffusive mode of transport, in conjunction

with the conventional no-slip boundary condition at the

wall, indeed form a suitable framework to explain all the

details of the micro-channel flows.

Figure 9 shows the variation of normalized mass flow

rate against Knudsen number (Kn). In this figure, the

extended Navier–Stokes results are compared over a larger

range of Knudsen number with the second order slip flow

theory (Dongari et al. 2007), Boltzmann solution (Cercig-

nani and Daneri 1963) and DSMC simulation results

(Karniadakis et al. 2005). One can notice from Fig. 9 that

the second order slip flow theory deviates from all other

theoretical approaches at Knudsen number around 2 and

diverge away at high Knudsen numbers. The linearized

Boltzmann solution has good agreement with the extended

Navier–Stokes equations solution up to Kn = 10. However,

in the limit of high Kn numbers, the flow rate predicted by

the lattice Boltzmann approach increases asymptotically to

a value proportional to (1/p)1/2 ln (Kn). On the other hand

DSMC results match the Boltzmann solution quite well up

to Kn = 10. But beyond this value, the DSMC results are

close to our extended Navier–Stokes solution and subse-

quently approach a constant value in the free-molecular

regime, rather than increasing logarithmically. It is impor-

tant to note that Knudsen (1909) mentioned that the

normalized volume flow rate (Q) reaches a constant value in

the Knudsen regime (Kn ? ?).

One can deduce by looking at Eqs. 15 and 23 and Fig. 7

that the normalized volume flow rate must converge towards

a finite limit for large Knudsen numbers (Kn ? ?). As

discussed above, this inability to approach the free-molec-

ular regime at high Kn numbers indicates a limitation of the

Boltzmann approach. However, DSMC simulations seem to

correctly capture this regime.

4 Design of micro-channel flow studies

To give a further example of the usage of the above equations,

in the considerations below, the Knudsen paradox is treated.

For this purpose, the conductance C ¼ _MT
e = Pin � Poutð Þ is

expressed as follows by using Eqs. 12, 13, 16 and 24:

C ¼
_MT

e

Pin � Pout

¼ h3wPout Pr þ 1ð Þ
24lLRTð Þ þ lwh

LðKnþ 1Þ
ln Prð Þ

Pr � 1ð ÞPout

� 

þ wh2Kn

3LðKnþ 1Þ

ffiffiffiffiffiffiffiffiffi
8

pRT

r
ð26Þ

One can relate the outlet pressure (Pout) to the outlet

mean free path of the gas molecules as follows:

Pout ¼
K

kout

; with K being K ¼ RTffiffiffi
2
p

Pd2NA

ð27Þ

Here R is the gas constant, T temperature, d molecular

diameter and NA, the Avogadro number. Differentiating

Eq. 26 with respect to the mean free path (kout), and making
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Existence of the minimum at

Kn * 1 is referred to as the

Knudsen paradox

688 Microfluid Nanofluid (2009) 6:679–692

123



dC/dkout = 0, one can obtain the following expression for

Knudsen number (Kn), where the conductance minimum

occurs:

Kn ¼ 1ffiffiffi
Z
p
� 1

ð28Þ

Z ¼ l ln Prð Þ
ðPr�1ÞK þ

1

3

ffiffiffiffiffiffiffiffiffi
8

pRT

r" #
24lRT

KðPrþ1Þ

� 
ð29Þ

One can clearly deduce from Eqs. 23 and 26 that the

change in curvature of conductance, i.e., the occurrence of

minimum, happens when the diffusive mass flow rate ð _MD
e Þ

starts to dominate the convective mass flow rate ð _MCÞ:
Knudsen (1909) mentioned that the ‘‘Knudsen paradox’’

will occur for a Knudsen number of approximately 1. But

the above equation shows that the occurrence of the

minimum has a dependence on the physical properties of

the gas and the pressure ratio. This is in agreement with the

results present in Fig. 10, which were computed using the

extended Navier–Stokes equations.

To the best of our knowledge, there is no appropriate

theoretical treatment of micro-channel flows available that

permits the minimum of conductance to be predicted and

also to be physically explained, i.e., theoretical treatments

using linear slip models do not yield the ‘‘Knudsen para-

dox’’ as a result. Though it is appreciated that higher order

slip models capture this phenomenon, e.g., see Beskok and

Karniadakis (1999), Karniadakis et al. (2005) and Dongari

et al. (2007), but at the same time ‘‘higher order Maxwell

slip wall velocity boundary conditions’’ do not result

in convergence for high Knudsen numbers, e.g., see

Karniadakis et al. (2005). On the other hand, the present

treatment shows that the minimum of the conductance is

not really a paradox, but rather a consequence of the dif-

ferent scaling for the convective and diffusive fluxes. In

particular, the diffusive flux begins to dominate for

Kn [ 1. It can be theoretically predicted and the results

also yield the dependence of the minimum on the proper-

ties of the employed gas and pressure ratio, see Figs. 10

and 11. These two figures show that the minimum moves

towards smaller Kn-numbers, if the pressure ratio is

decreased. The considered Knudsen-minimum is also more

pronounced for Helium than for air. It can be explained by

the fact that the Helium molecules diffuse faster compared

to the air molecules for a given pressure ratio.

All the above reported computational results were

obtained for a constant channel height and the pressure

was varied to obtain the Kn-number variation shown in

Figs. 10 and 11. All other parameters employed in the

theoretical predictions can be taken from Table 1. The

results in this section show that the present theory is

consistent with previous experimental data. Further, we
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emphasize the prediction of Knudsen paradox using the

extended Navier–Stokes equations without imposing any

slip boundary condition at the wall could be obtained.

5 Conclusions

In this paper, studies of gas flows through micro-channel

have been carried out theoretically from the continuum to

the Knudsen regime and a uniform treatment is proposed

for all values of Knudsen number. The investigation

employs the continuum Navier–Stokes equations together

with the incorporation of diffusive flux by considering the

Knudsen diffusion phenomenon and the conventional

no-slip boundary condition at the wall. In the current

treatment, the diffusive mode of transport also introduces a

slip-kind of wall velocity but in a somewhat natural way as

the diffusive flux depends only on the axial pressure gra-

dient, which is uniform across the channel cross-section.

Analytical expressions for mass flow rate and normalized

volume flow rate could be derived for this important class

of flows. The results provide a insight into the physics of

the particular behaviors of micro-channel gas flows over

the entire Knudsen number range.

Figures 8 and 9 convey that the predictions based on the

continuum Navier–Stokes equations together with the

incorporation of diffusive flux, but without any wall-slip

postulate, do agree rather remarkably with the experimental

data. Further, the results of such an approach also match the

results of the Boltzmann equations (up to transition regime)

and the DSMC simulations (in all regimes including the free-

molecular regime, i.e., for large range of Knudsen number.

These results not only provide a theoretical treatment for the

underlying physics of micro-channel gas flows, but also offer

a simple analytical scheme that circumvents the difficulties

of precise micro-flow measurements and complex simula-

tions valid over a limited range of parameters. The

theoretical treatment presented here can be readily extended

to other more complex geometries as well and suggests better

design and interpretation of the micro-channel flow studies

as discussed below. Indeed, one has to notice that this

excellent agreement is obtained with the experiments, other

theoretical approaches and simulations without invoking any

kind of complex models and/or adjustable parameters.

The underlying physics of the Knudsen’s minima, or so

called Knudsen’s paradox, has also been clarified based on

the inclusion of axial diffusion. The occurrence of mini-

mum flux is caused by the fact that the diffusive mode of

transport begins to dominate the convective mode at the

higher Knudsen numbers. The dependence of the location

of the Knudsen’s minima on the physical properties of the

gas and the pressure ratio has been derived analytically.

We also show that the normalized volume flow rate reaches

a constant value for Kn ? ? which is in turn in agreement

with the Knudsen’s finding (Knudsen 1909). The new

insights gained through this theoretical approach can be

used to design new sets of experiments in the field

of micro-fluid mechanics to prove (or disprove) results

obtained with the help of the extended Navier–Stokes

equations.
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Appendix: Treatments of molecular diffusion in ideal

gas flows

When diffusion in ideal gas flows is treated in such a way

that the conventional Navier–Stokes equations are derived,

the following is assumed:

_mD
i ¼ 0 no mass diffusionð Þ ð30Þ

This readily suggests that no density and temperature

gradients (or corresponding pressure gradients) are present

in the flow field. Hence this assumption contradicts

Fourier’s law of diffusive heat transport, usually given as

_qi ¼ �k
oT

oxi
ð31Þ

The contradiction arises because every temperature

gradient is related to mass diffusion. The derivations for

_mD
i based on self-diffusion yield, see Durst et al. (2006):
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_mD
i ¼ �qD

1

q
oq
oxi
þ 1

2T

oT

oxi

� �
ð32Þ

With this expression for _mD
i ; the diffusive heat transport

results as

_qi ¼ �k
oT

oxi

� �
þ _mD

i cpT ð33Þ

The corresponding momentum transport for sij, the

molecular momentum transport, reads as follows:

sij ¼�l
oUj

oxi
þ oUi

oxj

� �
þ 2

3
ldij

oUk

oxk
þ _mD

i Ujþ _mD
i Ui

� 2

3
dij _mD

i Uk ð34Þ

This expression can be rewritten to yield

sij ¼ �m
oðqUjÞ

oxi
þ oðqUiÞ

oxj

� 
þ 2

3
mdij

oðqUkÞ
oxk

� l
2T

Uj
oT

oxi
þ Ui

oT

oxj
� dijUk

oT

oxk

� �
ð35Þ

For the considerations in this paper, the above diffusive

transport terms are of importance for the special case of

T = constant. Because of the small Mach number, flows

treated in micro-channel fluid mechanics are isothermal.

Hence we can write, using the equation of state for ideal

gases:

1

P

oP

oxi
¼ 1

q
oq
oxi
þ 1

T

oT

oxi
ð36Þ

Hence, one can derive for isothermal flow:

_mD
i ¼ �qD

1

q
oq
oxi

� �
¼ �qD

1

P

oP

oxi

� �
ð37Þ

It is important to note that in _mD
i derived by Brenner

(2005) is identical with _mD
i derived by Durst et al. (2006)

for T = constant:

Brenner : _mD
i ¼ a � o

oxi
ln qð Þ ð38Þ

Durst : _mD
i ¼ �qD

o

oxi
ln q

ffiffiffiffi
T
p� �h i

ð39Þ

It can be shown that a ¼ k
cp
¼ qDð Þ by Brenner (2005,

2006) is identical with (-qD) by Durst et al. (2006),

where D ¼ 1
3

�uMk and hence, for T = constant. _mD
Brenner ¼

_mD
Durst:
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