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Abstract A non-isothermal rarefied gas flow trough a

long tube with an elliptical cross section due to pressure

and temperature gradients is studied on the basis of the

S-model kinetic equation in the whole range of the

Knudsen number covering both free molecular regime and

hydrodynamic one. A wide range of the pipe section

aspect ratio is considered. The mass flow rate is calcu-

lated as a function of the pressures and temperatures on

the tube ends. The thermomolecular pressure effect has

been modeled and the coefficient of the thermomolecular

pressure difference has been calculated in whole range of

the Knudsen number and in wide range of the pipe sec-

tion aspect ratio.

Keywords Rarefied gas flow � Mass flow rate �
Thermal creep � Microfluidics

1 Introduction

Rarefied gas flows through pipes of different forms are very

important in practice. Many industrial apparatuses such as

microducts, microturbines or vacuum equipment are the

examples of small devices involving the gas flow at an

arbitrary Knudsen number. Recently, various numerical

methods were developed and applied to rarefied gas flows

through capillaries. Such flows through pipe of simple

forms, e.g., circular tube, plane channel, were profoundly

studied by many researchers. A critical review and

recommended data on this topic can be found in Sharipov

and Seleznev (1998).

Recently, some results on gas flows through a rectan-

gular channel obtained by the discrete velocity method

were reported in Sharipov (1999a, b). Numerical schemes

applied in these papers are suitable just only for the specific

pipe cross section, i.e., for circle or for rectangle. However,

the wide diversity of the pipe forms used in practice

requires a further development of the existing approaches

so that it would be possible to calculate gas flows through

pipes of arbitrary form, e.g., ellipse, triangle, trapezoid etc.

Some results obtained by the integro-moment method

based on the linearized BGK equation for tubes with

various cross sections are reviewed in Aoki (1989).

According to this review, a rarefied gas flow through a tube

with an elliptical cross section was calculated in Hasegawa

and Sone (1988) only for one value of the aspect ratio by

the integro-moment method. Some new results related to

internal flows in pipes of various cross sections based on

the numerical solution of the BGK kinetic equation may be

found in Breyiannis et al. (2008), Naris and Valougeorgis

(2008). Recently, an approach based on the discrete

velocity method, but extended to the tubes of the elliptical

cross section, is proposed in Graur and Sharipov (2007),

where only isothermal flow was considered on the basis of

the BGK kinetic equation.

The present paper is the extension of the work

(Shakhov 1968), where the discrete velocity method was

generalized to case of the tubes of the elliptical cross
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sections. Here, non-isothermal flows through pipes of the

elliptical cross section are considered using the S-model

kinetic equation. The mass flow rates due to the pressure

and temperature gradients are calculated over the whole

range of the Knudsen number and in a wide range of the

pipe section aspect ratio. The case of arbitrary pressure

and temperature ratios is simulated. A special attention is

paid to the thermal transpiration effect. The flow driven

only by a temperature gradient is considered and the

corresponding pressure distribution is obtained for sev-

eral values of the section aspect ratio. The coefficient of

the thermomolecular pressure difference is obtained and

the influence of the aspect ratio on this coefficient is

studied.

2 Statement of the problem

Consider a tube connecting two reservoirs containing the

same gas. The tube cross section is elliptical as is shown in

Fig. 1, where 2b is the maximal tube dimension in the y

direction, 2a is the maximal dimension in the x direction.

Without loss of generality, we consider that b B a. The

pressure and temperature in the left and right reservoirs are

equal to p1 and T1, p2 and T2, respectively. We are going to

calculate the mass flow rate through this tube assuming

that:

• The tube length L is significantly larger than the

dimension a of the tube cross section, i.e., a � L. This

assumption allows us to neglect the end effects and to

consider only the longitudinal component of the bulk

velocity and heat flux vector, which depend only on x

and y coordinates.

• The pressure and temperature depend only on the

longitudinal coordinate z0 and their gradients are small,

i.e.,

nP ¼
b

p

dp

dz0
; jnPj � 1; ð1Þ

nT ¼
b

T

dT

dz0
; jnT j � 1: ð2Þ

This assumption allows us to linearize the kinetic equation.

The gas rarefaction is characterized by the parameter

d ¼ bp

lvm
; vm ¼

2kT

m

� �1=2

; ð3Þ

where l is the shear viscosity, vm is the most probable

molecular speed, m is the molecular mass of the gas, and k

is the Boltzmann constant. Since the viscosity is propor-

tional to the molecular mean free path, the rarefaction

parameter d is inversely proportional to the Knudsen

number.

It is convenient to express the final results in terms of

the dimensionless flow rate G* through a cross section

defined as

G� ¼
1

pabp

ffiffiffiffiffiffiffiffi
2kT

m

r
_M; ð4Þ

where _M is the mass flow rate, p = p(z0) is the local

pressure in the cross section and T = T(z0) is the local

temperature in the same section. Since the pressure and

temperature gradients are small the reduces flow rate G*

can be decomposed as

G� ¼ �nPGP þ nTGT ; ð5Þ

where the coefficients GP and GT do not depend on the

gradients nP and nT, but only on the rarefaction parameter

d. The first one GP is called the Poiseuille coefficient, while

the second one GT is called the thermal creep coefficient.

They are introduced so that to be always positive.

3 Kinetic equation

To calculate the coefficients GP and GT in the transition

regime the Boltzmann equation should be solved. This

equation provides reliable numerical data but requires great

computational effort. To reduce this effort the collision

integral may be simplified remaining its main properties. In

the present paper we apply the S-model kinetic equation

(Shakhov 1968), which provides the correct Prandtl num-

ber. For a steady flow it reads

v � of

or0
¼ f S � f

s
; ð6Þ

where f is the one particle distribution function, r0 is the

position vector, v is the molecular velocity, f S is given asFig. 1 Tube cross section and coordinates

268 Microfluid Nanofluid (2009) 6:267–275

123



f Sðn; T; u0Þ

¼ f M 1þ 2m

15nðr0ÞðkTðr0ÞÞ2
V � q0ðr0Þ mV2

2kTðr0Þ �
5

2

� �" #
;

ð7Þ

and fM is the local Maxwellian distribution function:

f Mðn; T; u0Þ ¼ nðr0Þ m

2pkTðr0Þ

� �3=2

exp �mðv� u0ðr0ÞÞ2

2kTðr0Þ

" #
;

ð8Þ

n is the number density, u0 is the bulk velocity, V = v-

u0(r0) is the peculiar velocity, q0 is the heat flux vector. The

relaxation time expression

s ¼ l
p

ð9Þ

provides the best agreement with the exact Boltzmann

equation. The bulk velocity u0 and the heat flux q0 are

defined as

u0ðr0Þ ¼ 1

n

Zþ1

�1

vf ðr0; vÞdv;

q0ðr0Þ ¼ m

2

Zþ1

�1

VV2f ðr0; vÞdv:

ð10Þ

Under the assumptions of the small local pressure and

temperature gradients (1), (2) the distribution function f can

be linearized as

f ðr; cÞ ¼ f 0 1þ hðx; y; cÞ þ nPzþ c2 � 5

2

� �
nT z

� �
; ð11Þ

where c = v/vm, h is the perturbation function and

f 0 ¼ n0

m

2pkT0

� �3=2

exp �mv2

2kT0

� �
ð12Þ

is the absolute Maxwellian with the equilibrium number

density n0 and the equilibrium temperature T0. In the case

of week nonequilibrium the local Maxwellian distribution

function (8) can be related to the absolute Maxwellian (12)

as

f Mðn;T ;u0Þ ¼ f 0 1þ n� n0

n0

þ m

kT0

v �u0 þT �T0

T0

c2� 3

2

� �� �
:

ð13Þ

The f S distribution function (7) is given as

f Sðn; T ; u0Þ ¼ f 0 1þ n� n0

n0

þ m

kT0

v � u0 þ T � T0

T0

c2 � 3

2

� ��

þ 2m

15n0ðkT0Þ2
v � q0 c2 � 5

2

� �#
: ð14Þ

Substituting the relations (11) and (14) into Eq. (6), using

the notation (9), and after some simplifications one obtains

c � o

or
hðx; y; cÞ þ nPzþ c2 � 5

2

� �
nT z

� �

¼ d 2c � uþ 4

15
c � q c2 � 5

2

� �
� hðx; y; cÞ

� �
;

ð15Þ

where the following dimensionless quantities have been

introduced

x ¼ x0

b
; y ¼ y0

b
; z ¼ z0

b
;

u ¼
ffiffiffiffiffiffiffiffiffiffi

m

2kT0

r
u0; q ¼ 2

n0m

m

2kT0

� �3=2

q0:

ð16Þ

Here we assume the bulk velocity u0 and the heat flow

vector q0 to have the z-component only, so the subscript z is

omitted in the dimensionless notations u and q.

From Eq. (15) and using notations (16) we obtain the

linearized S-model equation in the dimensionless form

cx
oh

ox
þ cy

oh

oy
¼ d 2czuþ

4

15
czq c2 � 5

2

� �
� hðx; y; cÞ

� �

� cz nP þ c2 � 5

2

� �
nT

� �
;

ð17Þ

where

uðx; yÞ ¼ 1

p3=2

Zþ1

�1

cze
�c2

hðx; y; cÞdc; ð18Þ

qðx; yÞ ¼ 1

p3=2

Zþ1

�1

cz c2 � 5

2

� �
e�c2

hðx; y; cÞdc: ð19Þ

Then, the reduced mass flow rate G* defined by (4) can be

calculated via the reduced velocity u(x,y) as

G� ¼ �
2

p
b

a

Z1

�1

Za=b
ffiffiffiffiffiffiffiffi
1�y2
p

�a=b
ffiffiffiffiffiffiffiffi
1�y2
p

uðx; yÞdxdy: ð20Þ

Since the pressure and temperature gradients are supposed

to be small, therefore the solution of the linear equation

(17) can be split in two parts

h ¼ hPnP þ hTnT : ð21Þ

Substituting expression (21) into (18), (19) one can see that

the distribution function moments can be also split as

u ¼ uPnP þ uTnT ; q ¼ qPnP þ qTnT : ð22Þ

Substituting the first relation of (22) into (20) one obtains

the coefficients GP and GT introduced by Eq. (5), expressed

via the bulk velocities uP and uT as
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GP ¼ �
2

p
b

a

Z1

�1

Za=b
ffiffiffiffiffiffiffiffi
1�y2
p

�a=b
ffiffiffiffiffiffiffiffi
1�y2
p

uPðx; yÞdxdy; ð23Þ

GT ¼
2

p
b

a

Z1

�1

Za=b
ffiffiffiffiffiffiffiffi
1�y2
p

�a=b
ffiffiffiffiffiffiffiffi
1�y2
p

uTðx; yÞdxdy: ð24Þ

Using the Onsager relation (Loyalka 1971; Sharipov

1994a, b)

Z1

�1

Za=b
ffiffiffiffiffiffiffiffi
1�y2
p

�a=b
ffiffiffiffiffiffiffiffi
1�y2
p

uTðx; yÞdxdy ¼
Z1

�1

Za=b
ffiffiffiffiffiffiffiffi
1�y2
p

�a=b
ffiffiffiffiffiffiffiffi
1�y2
p

qPðx; yÞdxdy;

ð25Þ

we may express GT via qP as

GT ¼
2

p
b

a

Z1

�1

Za=b
ffiffiffiffiffiffiffiffi
1�y2
p

�a=b
ffiffiffiffiffiffiffiffi
1�y2
p

qPðx; yÞdxdy: ð26Þ

Therefore, to calculate the reduced mass flow rate G*

defined by Eq. (4) it is enough to obtain the solution hP.

Further, we assume that nP = 1 and nT = 0 in Eq. (17),

implying that h = hP, u = uP and q = qP.

Multiplying Eq. (17) by czffiffi
p
p e�c2

z and by
c3

zffiffi
p
p e�c2

z and

integrating it with respect to d cz we obtain two equations

cx
o/
ox
þ cy

o/
oy
¼ d uþ 2

15
q c2

x þ c2
y � 1

� �
� /ðx; y; cx; cyÞ

� �

� 1

2
; cx

ow
ox
þ cy

ow
oy
¼ d

3

2
uþ 1

5
q c2

x þ c2
y

� �
� wðx; y; cx; cyÞ

� �

� 3

4
; ð27Þ

where the functions / and w are introduced in order to

eliminate the variable cz

/ðx; yÞ ¼ 1ffiffiffi
p
p

Zþ1

�1

cze
�c2

z hdcz;

wðx; yÞ ¼ 1ffiffiffi
p
p

Zþ1

�1

c3
z e�c2

z hdcz:

ð28Þ

The Cartesian coordinates in the velocity space (cx,cy) in

Eq. (27) may be replaced by the polar coordinates (cp, u),

i.e.,

cx ¼ cp cos u; cy ¼ cp sin u; 0�u� 2p: ð29Þ

Equations (27) may be now rewritten in the new

variables as

� cp
o/
os
¼ d uþ 2

15
q c2

p � 1
� �

� /ðx; y; cp;uÞ
� �

� 1

2
;

� cp
ow
os
¼ d

3

2
uþ 1

5
qc2

p � wðx; y; cp;uÞ
� �

� 3

4
;

ð30Þ

where s is the characteristic. The bulk velocity and the heat

flux are expressed as

u ¼ 4

p

Zp=2

0

Z1

0

/ðcp;uÞe�c2
p cpdcpdu; ð31Þ

q ¼ 4

p

Zp=2

0

Z1

0

ðc2
p �

5

2
Þ/ðcp;uÞ þ wðcp;uÞ

� �
e�c2

p cpdcpdu:

ð32Þ

So, in order to obtain the reduced mass flow rate the system

of two equations (30) must be solved.

We assume the complete accommodation of molecules

on the tube walls. It means that h(x,y,cp,/) = 0 at the walls

for the reflected particles in Eq. (17). Consequently, the

conditions / = 0 and w = 0 for the reflected particles are

used as the boundary conditions for the system (30).

4 Limit solutions

In the free molecular regime (d = 0) Eq.(17) is signifi-

cantly simplified and can be solved analytically. After its

splitting into two parts according to (21) and assuming

nT = 0 the analytical expression for GP may be easily

found (Graur and Sharipov 2007). The corresponding

numerical values are presented in the first row of Table 1.

Furthermore, assuming nP = 0 in Eq. (17) and after the

integration one obtains uT ¼ � 1
2

uP; so

GT ¼
1

2
GP at d ¼ 0: ð33Þ

The values of GT are shown in the first row of Table 2.

In the hydrodynamic flow regime (d ? ?) the gas flow

is described by the Stokes equation. The analytical solution

of this equation for uP with the non-slip boundary condition

may be found in Landau and Lifshitz (1989), Graur and

Sharipov (2007), while the thermal creep velocity uT is

equal to 0. Therefore the mass flow rates take the form

GP ¼
d
2

a2

a2 þ b2
; GT ¼ 0 at d!1: ð34Þ

A moderate rarefaction of the gas can be taken into account

applying the velocity slip boundary condition (Sharipov

2003) to the Stokes equation. In other words, we consider

that the tangential component of the bulk velocity near the
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wall is proportional to its normal gradient and to the

longitudinal temperature gradient, i.e.,

u ¼ rP‘
ou

og0
þ rT

2
‘
o ln T

oz0
; at g0 ¼ 0; ð35Þ

where g0 is the normal coordinate with its origin at the tube

wall and directed toward to the gas, z0 is the coordinate

tangential to the surface in the flow direction, rP is the

viscous slip coefficient, rT is the thermal slip coefficient,

‘ = lvm/p is the equivalent free path.

In Graur and Sharipov (2007) the following expression

of the flow rate due to the pressure gradient was obtained

by the numerical integration of the Stokes equation with

the velocity slip boundary condition (35)

GP ¼
d
2

ða=bÞ2

ða=bÞ2 þ 1

þ rP 1� 0:6976
1� ða=bÞ2

1:951þ ða=bÞ2

" #
at d� 1: ð36Þ

Using the thermal slip boundary condition (second term in

(35)) one obtains the constant velocity over cross section

(Sharipov and Seleznev 1998)

uT ¼
rT

2d
: ð37Þ

Substituting (37) in (24) we obtain the thermal creep

coefficient GT as

Table 1 Reduced flow rate GP

versus rarefaction parameter d
and aspect ratio a/b

d GP, (Sharipov and

Seleznev 1998)

GP, present work

a/b = 1 a/b = 1 1.1 2 5 10 20 100

0 1.5045 1.5045 1.5770 2.0655 2.8888 3.5397 4.1991 5.7390

0.01 1.4800 1.4781 1.5484 2.0160 2.7716 3.3184 3.7994 4.5127

0.02 1.4636 1.4617 1.5307 1.9880 2.7092 3.2043 3.6062 4.0897

0.05 1.4339 1.4330 1.5002 1.9404 2.5997 3.0051 3.2850 3.5241

0.1 1.4101 1.4086 1.4746 1.9015 2.5053 2.8327 3.0231 3.1470

0.2 1.3911 1.3891 1.4549 1.8740 2.4214 2.6721 2.7913 2.8523

0.5 1.4011 1.3996 1.4692 1.9010 2.3898 2.5598 2.6225 2.6483

0.8 1.4425 1.4408 1.5159 1.9741 2.4499 2.5929 2.6405 2.6587

1.0 1.4758 1.4748 1.5539 2.0323 2.5082 2.6421 2.6850 2.7010

2.0 1.6799 1.6772 1.7779 2.3695 2.8843 3.0055 3.0401 3.0532

5.0 2.3666 2.3646 2.5340 3.4901 4.2086 4.3537 4.3932 4.4065

10.0 3.5749 3.5752 3.8623 5.4423 6.5459 6.7551 6.8109 6.8294

20.0 6.0492 6.0484 6.5726 9.4100 11.309 11.658 11.749 11.780

Table 2 Reduced flow rate GT

versus rarefaction parameter d
and aspect ratio a/b

d GT, (Sharipov and

Seleznev 1998)

GT, present work

a/b = 1 a/b = 1 1.1 2 5 10 20 100

0 0.7522 0.7522 0.7885 1.0327 1.4444 1.7698 2.0996 2.8694

0.01 0.7243 0.7223 0.7559 0.9770 1.3203 1.5502 1.7290 1.9008

0.02 0.7042 0.7022 0.7342 0.9427 1.2511 1.4373 1.5602 1.6297

0.05 0.6637 0.6627 0.6919 0.8767 1.1221 1.2400 1.2928 1.2960

0.1 0.6210 0.6206 0.6469 0.8081 0.9965 1.0645 1.0821 1.0749

0.2 0.5675 0.5667 0.5896 0.7231 0.8527 0.8831 0.8850 0.8798

0.5 0.4779 0.4780 0.4953 0.5872 0.6498 0.6558 0.6545 0.6530

0.8 0.4237 0.4240 0.4381 0.5075 0.5450 0.5469 0.5461 0.5454

1.0 0.3959 0.3962 0.4087 0.4676 0.4958 0.4968 0.4962 0.4957

2.0 0.3016 0.3022 0.3095 0.3393 0.3491 0.3492 0.3491 0.3489

5.0 0.1752 0.1759 0.1781 0.1856 0.1873 0.1874 0.1874 0.1874

10.0 0.1014 0.1018 0.1024 0.1044 0.1048 0.1049 0.1049 0.1049

20.0 0.05426 0.05463 0.05480 0.05528 0.05538 0.05540 0.05541 0.05541
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GT ¼
rT

d
at d� 1: ð38Þ

Note, this coefficient does not depends on the aspect ratio

a/b.

The expressions (36) and (38) are valid for any values of

the slip coefficients rP and rT which depend on the

accommodation coefficients (Sharipov 2003). For the dif-

fuse gas–surface interaction assumed here the slip

coefficients are given by

rP ¼ 1:018; rT ¼ 1:175 : ð39Þ

5 Numerical results

The system of the kinetic equations (30) was solved by the

discrete velocity method and the details of the numerical

algorithm may be found in Graur and Sharipov (2007),

where a non-uniform grid adapted to the elliptic cross

section was introduced in the physical space.

The numerical calculations were carried out in the range

of the rarefaction parameter d from 0.01 to 20 and for

several values of the aspect ratio a/b in the range from 1 to

100. The flow rates GP and GT were calculated with the

numerical error less than 0.1%. The accuracy was esti-

mated by comparing numerical results obtained for

different parameters of the numerical grid. An analysis

showed that to reach the accuracy of 0.1% the grid in the

physical space should be 1,000 9 1,000 points and the

parameter Nu should be equal to 100 for all values of d,

while the parameter Nc depends on d. In the range

0 B d B 0.1 the value Nc = 25 should be used and for

d[ 0.1 the smaller value, viz. Nc = 12, is enough.

The numerical results on the flow rates GP and GT are

presented in Tables 1 and 2, respectively. In the case

a/b = 1, i.e, circular cross section of the tube, the results

of the present work are compared with those obtained

from the S-model equation by the discret velocity

method in Sharipov (1996). It can be seen that the dis-

crepancy with this work does not exceed the numerical

accuracy.

One can see the Knudsen minimum (for the mass flow

rate GP) presenting for all aspect ratio around d*0.2-0.5.

This minimum becomes more apparent for the large aspect

ratio a/b = 100 and is shallow for the circular cross-

section.

In the fourth columns of Tables 1 and 2 the results

corresponding to a small deviation from the circular tube

are shown, i.e., for a/b = 1.1. Note, in the all regimes the

relative difference of the flow rate GP, due to the deviation

in the aspect ratio from unity, is about (a/b - 1), while for

the flow rate GT this relative difference is smaller then

(a/b - 1), especially in hydrodynamic regime.

When the aspect ratio increases, i.e., at a/b ? ?, both

flow rates GP and GT tend to constant values in the

hydrodynamic regime (d � 1). The same conclusion can

be made from the slip solution (36), where GP tends to the

constant value d
2
þ 1:6076rP when a/b tends to infinity, and

the slip solution GT also is given by the constant value (38).

Comparing the values of GP corresponding to d = 20 in

Table 1 with those calculated by Eq.(36) it can be seen that

the relative difference does not exceed 0.5%. Thus, Eq.

(36) can be successfully used for d[ 20. However, a

comparison of the values of GT given in the last row of

Table 2 with the expression (38) shows that the difference

is about 7%.

Near the free molecular regime d � 1 the flow rates

increase by increasing the aspect ratio. If one compares the

values of both GP and GT in the free molecular regime

(d = 0) with the corresponding values at d = 0.01, one

will see that the difference between them is small only for

the small aspect ratios, i.e., at a/b B 2, while for the large

aspect ratios the difference is significant. In other words,

for a/bC5 the flow does not reach the free-molecular

regime even at d = 0.01. In order to be free-molecular the

condition da/b � 1 must be satisfied.

6 Arbitrary pressure and temperature drop

The solutions of the S-model kinetic equation, presented

above, are obtained under the conditions (1) and (2), of the

smallness of the pressure and temperature gradients.

However, in practice these gradients are usually large,

when the pressure and temperature ratios p2/p1 and T2/T1

between inlet and outlet reservoirs are arbitrary. One way

of the application of the developed approach to the arbi-

trary pressure and temperature gradients are proposed in

Sharipov (1996). When the tube length is significantly

larger that its cross section size, i.e., L � b, the pressure

and temperature gradients, estimated as follows

nP�
bðp2 � p1Þ

Lpav
; nT �

bðT2 � T1Þ
LTav

; ð40Þ

where

pav ¼
1

2
p1 þ p2ð Þ; Tav ¼

1

2
T1 þ T2ð Þ; ð41Þ

are obviously small. Hence one can apply the developed

approach to the cases of the arbitrary pressure and tem-

perature ratios using the reduced mass flow rates GP(d) and

GT(d) given in Tables 1 and 2.

When the pressure and temperature ratios are large, d
varies significantly along the channel. This rarefaction

parameter depends on the local pressure and temperature

according to relation (3). Assuming the hard sphere model
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of molecules we can express the local rarefaction para-

meter as a function of the local values of the pressure and

temperature and of their values in the inlet reservoir

dðp; TÞ ¼ d1

pðzÞ
p1

T1

TðzÞ: ð42Þ

Let us introduce a reduced mass flow rate as

G ¼ L

pab2p1

ffiffiffiffiffiffiffiffiffiffi
2kT1

m

r
_M; ð43Þ

which does not depend of the local rarefaction parameter

d(z0), unlike the reduced mass flow rate G* defined by

Eq. (4).

Substituting relations (1), (2), (4) and (43) in (5) we

obtain the following differential equation

G
p1

p

ffiffiffiffiffi
T

T1

r
b

L
¼ �1

p

dp

dz
GPðdÞ þ

1

T

dT

dz
GTðdÞ: ð44Þ

Since the thermal conductivity of the channel wall is

essentially greater than that of the gas, and in addition, the

characteristic dimension of the channel cross section is

usually small compared to its of the channel wall, so the

temperature distribution of the gas along the cannel is

determined by the wall temperature distribution. We sup-

pose here that the wall temperature distribution is linear,

that is a good approximation when the wall thermal con-

ductivity does not depend of the temperature.

When the temperature distribution is known, the fol-

lowing differential equation for the pressure distribution

may be solved

1

p1

dp

dz
¼ pðzÞ

p1

1

T

dT

dz

GTðdÞ
GPðdÞ

� G

GPðdÞ
b

L

ffiffiffiffiffi
T

T1

r
: ð45Þ

At the inlet (z = 0) and outlet (z = L/b) boundaries the

pressure is equal to the inlet p1 and to the outlet p2 reser-

voirs pressure accordingly. The reduced mass flow rate G is

the parameter of the differential equation (45). This equa-

tion is solved numerically, assuming the linear temperature

distribution along the channel, using the expression of the

local rarefaction parameter (42) and the values of GP(d)

and GT(d) given in Tables 1 and 2. The reduced mass flow

rate G for one temperature ratio T2/T1 = 3.8 and two

pressure ratios p2/p1 = 1 and p2/p1 = 100 are given in

Tables 3 and 4. Note, the ratio T2/T1 = 3.8 corresponds to

the typical situation when one reservoir is maintained at the

liquid nitrogen temperature, while the second one is

maintained at the room temperature.

For the first case the pressure ratio is equal to 1

(Table 3), so the flow is driven only by the temperature

gradient from the cold reservoir toward to the hot one (the

mass flow rate is positive). The mass flow rate decreases

when the rarefaction parameter d1 increases. The mass flow

rate remains still constant for d1 greater than 1 when aspect

ratio varies from 10 to 100. Note that, in spite of the

pressure ratio p2/p1 = 1 the pressure gradient still arises in

the channel. The pressure distributions along a channel for

three aspect ratios a/b = 1,10,100 are shown in Fig. 2. It

can be seen that the pressure is 15% higher in the tube

middle compared with its value at the tube ends. It is

explained by the fact that the temperature at z = 0 is lower

than that at z = L/b. Since the first term in the right hand

Table 3 Reduced flow rate G versus rarefaction parameter d1 and

aspect ratio a/b at p2/p1 = 1 and T2/T1 = 3.8

d1 G

a/b = 1 a/b = 10 a/b = 100

0 0.7144 1.5916 2.2323

0.10 0.6324 1.1661 1.2319

1.00 0.4315 0.5897 0.5895

10.0 0.1496 0.1623 0.1623

100.0 0.0197 0.0198 0.0198

Table 4 Reduced flow rate G versus rarefaction parameter d1 and

aspect ratio a/b at p2/p1 = 100 and T2/T1 = 3.8

d1 -G 9 10-2

a/b = 1 a/b = 10 a/b = 100

0 0.738 1.511 1.682

0.10 0.971 1.810 1.846

1.00 3.818 7.216 7.451

10.0 32.82 62.94 65.29

100.0 322.9 620.7 643.8

z/L

P
/P

1

0

0

0.25

0.25

0.5

0.5

0.75

0.75

1

1

1 1

1.05 1.05

1.1 1.1

1.15 1.15

1.2 1.2

a/b=1

100

10

Fig. 2 Pressure distribution along the tube, p2/p1 = 1, T2/T1 = 3.8,

d1 = 0.01
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side of Eq. (45) is inversely proportional to the tempera-

ture, it is larger than the second term at the tube entrance

z = 0. Hence, the pressure derivative is positive at the

entrance, while it is negative at the exit z = L/b, where the

first term becomes smaller than the second one.

In the case of the pressure ratio p2/p1 = 100 the flow

properties changed completely: the reduced mass flow rate

is negative, so the gas flows from the hot reservoir, where

the pressure is higher, to the cold one, where the pressure is

lower. The reduced mass flow rate increases when the

rarefaction parameter d1 increases.

7 Thermomolecular pressure difference

Let us assume two reservoirs maintained by the tempera-

tures T1 and T2 and the pressures in both reservoirs are

initially the same. This case is different from that consi-

dered in the previous section where the same pressures

p2/p1 = 1 are maintained in both reservoirs. If these res-

ervoirs are connected by a pipe the gas begins to flow from

the cold reservoir to the hot one, then the pressure in the

hot reservoir begins to increase until the mass flow rate

vanishes.

The relation between p1, p2, T1 and T2 in the stationary

state can be written in the following form

p2

p1

¼ T2

T1

� �c

; ð46Þ

where the coefficient c depends on many factors: pipe

length-to-radius ratio, type of the gas, properties of the

gas-surface interaction. In order to calculate this

coefficient, let us consider differential equation (44).

When the reduced mass flow rate G is equal to zero, this

equation is reduced to

1

p

dp

dz
GPðdÞ ¼

1

T

dT

dz
GTðdÞ: ð47Þ

If we introduce the non-dimensional pressure and

temperature as

~p ¼ p

p1

; ~T ¼ T

T1

; ð48Þ

the rarefaction parameter in any section (42) may be

expressed as

dðp; TÞ ¼ d1

~p
~T
: ð49Þ

Then Eq. (47) reads

d~p

d ~T
¼ ~p

~T

GTðd1~p= ~TÞ
GPðd1~p= ~TÞ

: ð50Þ

It is possible to consider Eq. (50) as a differential equation

for a pressure as a function of a temperature ~pð ~TÞ with the

boundary condition ~p ¼ 1 at ~T ¼ 1: The unknown value is

the pressure ratio p2=p1 ¼ ~pðT2=T1Þ: Note that in Eq. (50)

the dimensionless temperature ~T is an independent

variable, so the function ~pð ~TÞ depends only on the ratio

T2/T1 and on the rarefaction parameter d1 and does not

depend of the temperature distribution in the pipe

(Sharipov and Seleznev 1998), unlike the case considered

in Sect. 6. The coefficient c is calculated from Eq. (46) as

c ¼ lnðp2=p1Þ
lnðT2=T1Þ

: ð51Þ

The differential equation (50) was solved numerically. The

calculations have been carried out for the same value of the

temperature ratio T2/T1 as in Section 6. The coefficients

GP(d) and GT(d) as functions of d1 (Tables 1 and 2) have

been used. The results of the calculations are given in

Table 5. In the first column the coefficient c calculated in

Table 5 Thermomolecular

pressure difference exponent c
(Eq. (46)) versus rarefaction

parameter d1 and aspect ratio

a/b

d1 c, Sharipov and

Seleznev (1998)

c, present work

a/b = 1 a/b = 1 1.1 2 5 10 20 100

0 0.4921 0.4915 0.4911 0.4885 0.4822 0.4753 0.4664 0.4419

0.02 0.4857 0.4849 0.4843 0.4799 0.4699 0.4591 0.4457 0.4125

0.05 0.4710 0.4706 0.4696 0.4622 0.4459 0.4300 0.4129 0.3837

0.1 0.4532 0.4531 0.4516 0.4407 0.4182 0.3987 0.3807 0.3590

0.2 0.4273 0.4275 0.4253 0.4099 0.3814 0.3605 0.3448 0.3314

0.5 0.3749 0.3761 0.3727 0.3501 0.3165 0.2985 0.2887 0.2829

0.8 0.3381 0.3389 0.3348 0.3085 0.2747 0.2598 0.2531 0.2496

1.0 0.3179 0.3186 0.3141 0.2863 0.2530 0.2398 0.2342 0.2316

2.0 0.2454 0.2468 0.2415 0.2116 0.1837 0.1756 0.1725 0.1714

5.0 0.1401 0.1423 0.1372 0.1128 0.09631 0.09280 0.09175 0.09135

10.0 0.07295 0.07429 0.07064 0.05499 0.04650 0.04498 0.04456 0.04441

20.0 0.03039 0.03057 0.02858 0.02096 0.01753 0.01700 0.01686 0.01681
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Sharipov (1996) for the tube of the circular cross section

a/b = 1 is presented. To solve Eq. (50) an interpolation of

the coefficients GP(d) and GT(d) at the intermediate points

of d (between the values given in Tables 1, 2) is used.

Therefore, the small difference with the present results

(second column) is due to the fact that in Sharipov (1996)

33 values of GP and GT are used to interpolate these coef-

ficients instead of 12 in the present paper. The coefficient c
depends essentially from the rarefaction parameter: when d1

increases then c decreases. The coefficient c depends also

on the pipe aspect ratio: the smaller values of c correspond

to the larger values of the aspect ratio.

8 Examples of application

In order to illustrate how the present results can be applied

a specific example is given here. Consider a gas flow

through a pipe of the elliptic cross section with the char-

acteristic dimension b = 0.217 lm, the ration a/b = 2, at

the pressure P = 105 Pa and at temperature T = 293 K.

Under such conditions the gas viscosity is l = 19.73� 10-6

Pa s and the most probable speed is vm = 1.10 9 103 m/s.

The rarefaction parameter d defined by (3) is equal to unity.

According to Table 1 for d = 1 and a/b = 2 the coefficient

GP is equal to 2.0323. Let us assume the dimensionless

pressure gradient nP = -0.01, see Eq. (1), to be main-

tained along the pipe and we consider the isothermal flow.

Using Eqs. (4) and (5) the mass flow rate is calculated as
_M ¼ 0:546�10�12 kg/s.

9 Conclusion

The mass flow rate through a tube with the elliptical cross

section driven by both pressure and temperature gradients

is calculated over the whole range of the rarefaction

parameter varying from the free molecular regime to the

hydrodynamic one. Various aspect ratios of the tube axis

a/b are considered. The analysis of the numerical data

shows the significant influence of this aspect ratio on the

mass flow rate due to the pressure gradient. The Knudsen

minimum in the transitional regime exists at any aspect

ratio a/b. It is becomes deeper by the decreasing ratio a/b.

The influence of the section aspect ratio on the mass flow

rate driven by temperature gradient is significant in the

transitional and free molecular regimes, but in the slip and

hydrodynamic regimes the aspect ratio practically does not

influence the mass flow rate.

The case of the arbitrary pressure and temperature ratios

is considered. The thermomolecular pressure difference is

calculated and its dependence on the rarefaction parameter

and on the aspect ratio of the pipe cross section is shown.

Acknowledgments This work was realized in the frame of Coop-

eration Agreement between Conselho Nacional de Desenvolvimento

Cientı́fico e Tecnológico (CNPq, Brazil) and Centre National de la

Recherche Scientifique (CNRS, France), Projet ARCUS ESPACA

(France). The authors acknowledge the support of their research by

these foundations.

References

Aoki K (1989) Numerical analysis of rarefied gas flows by finite-

difference method. In: Muntz EP, Weaver DP, Campbell DH

(eds) Rarefied gas dynamics, 16th international symposium.

American Institute of Aeronautics and Austronautics, Washing-

ton, pp 297–322

Breyiannis G, Varoutis S, Valougeorgis D (2008) Rarefied gas flow in

concentric annular tube: estimation of Poiseuille number and the

exact hydraulic diameter. Eur J Mech B/Fluids (in press)

Graur I, Sharipov F (2007) Gas flow through an elliptical tube over

the whole range of the gas rarefaction. Eur J Mech B/Fluids

27(3):335–345

Hasegawa M, Sone Y (1988) Poiseuille and thermal transpiration

flows of rarefied gas for various pipes (in Japanese). J Vac Soc

Japan 31:416–419

Landau LD, Lifshitz EM (1989) Fluid mechanics. Pergamon,

New York

Loyalka SK (1971) Kinetic theory of thermal transpiration and

mechanocaloric effect. I. J Chem Phys 55(9):4497–4503

Naris S, Valougeorgis D (2008) Rarefied gas flow in a triangular duct

based on a boundary fitted lattice. Eur J Mech B/Fluids (in press)

Shakhov EM (1968) Generalization of the Krook kinetic equation.

Fluid Dyn 3(1):142–145

Sharipov F (1994a) Onsager-Casimir reciprocity relations for open

gaseous systems at arbitrary rarefaction. I. General theory for

single gas. Physica A 203:437–456

Sharipov F (1994b) Onsager-Casimir reciprocity relations for open

gaseous systems at arbitrary rarefaction. II. Application of the

theory for single gas. Physica A 203:457–485

Sharipov F (1996) Rarefied gas flow through a long tube at any

temperature difference. J Vac Sci Technol A 14(4):2627–2635

Sharipov F (1999a) Rarefied gas flow through a long rectangular

channel. J Vac Sci Technol A 17(5):3062–3066

Sharipov F (1999b) Non-isothermal gas flow through rectangular

microchannels. J Micromech Microeng 9(4):394–401

Sharipov F (2003) Application of the Cercignani-Lampis scattering

kernel to calculations of rarefied gas flows. II. Slip and jump

coefficients. Eur J Mech B/Fluids 22:133–143

Sharipov F, Seleznev V (1998) Data on internal rarefied gas flows.

J Phys Chem Ref Data 27(3):657–706

Microfluid Nanofluid (2009) 6:267–275 275

123


	Non-isothermal flow of rarefied gas through a long pipe�with elliptic cross section
	Abstract
	Introduction
	Statement of the problem
	Kinetic equation
	Limit solutions
	Numerical results
	Arbitrary pressure and temperature drop
	Thermomolecular pressure difference
	Examples of application
	Conclusion
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


