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Abstract Interfacial instabilities in an electro-osmotic

micro-film flow are studied by deriving an evolution

equation for the local film thickness and subsequent

numerical integrations. The free-surface electro-osmotic

flow has an inherent instability of the long-wave type,

which generates corrugations on the film surface. These

corrugations may critically affect the transport character-

istics of the flow, and deserve a nonlinear analysis based on

conservation laws. It is shown that the electro-osmotic

instability can cause severe local depression of the film

even in the absence of the van der Waals attraction

between the film surface and the substrate. The electrical

double layer (EDL) then may be penetrated by the film

surface, and film rupture can occur, resulting in loss of the

electro-osmotic driving force. Since the Debye–Hückel

approximation used becomes inadequate as the film thins

locally to a nano-scale, quantitative analysis of the incipi-

ent rupture reported would require a fully coupled system

for fluid flow, ionic concentration, and electric field.

Keywords Electro-osmosis � Interface � Instability �
Microfluidics � Free surface

1 Introduction

Flows induced by the electro-osmosis are studied mostly

for internal flows of micro-scale, such as a channel flow

with the channel width very small but much larger than the

Debye length kD of the electrolytes of the medium, as

explained by Heeren et al. (2007), Hunter (1996), Khan

and Reppert (2005), Nguyen and Wereley (2002), and

Reppert and Morgan (2002) among others. If the channel

wall is negatively charged, as for glass or polymer-based

microfluidic devices, a thin layer, called Stern layer, with

positive charges and no fluid motion is formed adjacent to

the wall. Next to this layer is the diffuse layer, which reacts

to an electrical field due to its charges. Beyond this elec-

trical double layer (EDL) is electrically neutral core with

fluid motions due to viscous diffusion. Under a direct

current (DC) this electro-osmotic flow exhibits a plug flow

except up to a small distance (*3kD) from the channel

wall, where the fluid velocity approaches zero on the

channel wall, or on the Stern layer. A comprehensive

review on the fundamentals of the electro-osmosis and

other related electrokinetic effects can be found in a

monograph by Li (2004).

In microfluidic devices situations may arise where a

liquid with free surface must be transported and the electro-

osmosis is a viable option for a driving force. Free-surface

electro-osmotic flows, however, can become unstable, and

corrugations may develop on the free surface. For a precise

control of the liquid, the free-surface deformations must be

accurately predicted. Severe deformations may lead to local

rupture, which can imply breakup of the liquid film into

isolated pieces. The electric current then will be severed,

resulting in the loss of the electro-osmotic driving force. For

electro-osmotic flows with free surfaces information on the

surface deformation thus can be extremely useful.
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Electro-osmotic flows with free surface, or interface,

are studied previously, in the context of two-fluid electro-

osmotic flow in microchannels, by Gao et al. (2005a, b),

and Ngoma and Erchiqui (2006) to name a few. In some

practical applications, direct electro-osmosis for a target

fluid may be unsuitable due to low mobility or various

undesirable side effects (Gao et al. 2005a), and two-fluid

configuration can be used. In the aforementioned studies,

however, the deformation of the interface between the

fluid fluids is not systematically taken into account. An

experimental study by Lee and Li (2006) for an electro-

osmotic flow with liquid-air interface reports on the

reduced velocity at the interface possibly due to its sur-

face charge, but does not focus on the interfacial

deformation, either.

An electro-osmotic flow with free-surface deformations

is studied by Joo (2007), who identified a flow instability

of the interfacial mode based on the Debye–Hückel

approximation. The linear stability analysis performed

shows that the flow is unstable to long-wave disturbances

and the instability is accompanied by free-surface defor-

mations. The linear electro-osmotic instability thus

appears to have an analogy to the surface-wave instability

of a vertical viscous layer (see Chang 1994 for a review).

The growth rate of the instability increases with the

strength of the electrical field applied and with the

decrease of the layer thickness relative to the Debye

length.

The objectives of the present study are rather

straightforward. The linearly unstable free-surface electro-

osmotic flow needs to be tested in the nonlinear regime,

and the fate of the unstable flow then must be inspected

through a nonlinear study. As an efficient method of

calculating the surface deformations and understanding

associated fluid dynamics beyond the linear instability, we

apply a long-wave approximation to derive an evolution

for the local liquid thickness, as performed for various

other thin-film instabilities by many researchers, including

Burelbach et al. (1988). The evolution equation is then

integrated numerically to show some interesting flow

behaviors, including the incipient rupture of the liquid

layer.

2 Evolution equation

As shown in Fig. 1, a thin incompressible viscous layer,

bounded below by a rigid substrate and above by its free

surface, is driven by an electro-osmotic force present due

to an electrical field applied along the horizontal x-axis.

The governing system based on continuum hypothesis

would be identical to that for a typical viscous film flow

driven by gravity, as reviewed by Chang (1994), except

that the horizontal component of the momentum equation

here has two new driving-force terms, the van der Waals

and the electro-osmotic body force, in place of the gravi-

tational acceleration. In a nondimensional form, it is

expressed as

ut þ uux þ vuy ¼ � pþ A

h3

� �
x

þ uxx þ uyy þ
Eo

De2
e�y=De;

ð1Þ

where (u,v) and p are, respectively, velocity components

and pressure, scaled by m/d and qv2/d2, respectively, where

d, q,v are mean thickness, density, and kinematic viscosity

of the liquid. The subscripts denote partial differentiations

in time and space in units of d2/m and d, respectively. Here

the Hamaker constant a, made dimensionless as

A ¼ a

dqm2
; ð2Þ

measures the unretarded London–van der Waals forces

modeled, as discussed by Slattery (1990). The local layer

thickness h(x,t), scaled by the mean film thickness, is

unknown a priori, and must be obtained as a solution to the

present moving-boundary problem. The last term in Eq. 1

represents the electro-osmotic force, obtained by applying

the Debye–Hückel approximation to the Poisson–

Boltzmann equation for the electrical potential. This

approximation is basically a Taylor-series-expansion

linearization of a hyperbolic sine term, and is valid for

small surface charge. The Debye length kD of the

electrolyte is defined by

kD ¼
eKT

2z2F2c1

� �1=2

; ð3Þ

where e, K, T, z, F, and c? are, respectively, the dielectric

constant, the Boltzmann constant, absolute temperature,
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Fig. 1 Configuration of electro-osmotic flow with free surface.

Vertical scale is exaggerated. S shear line (divides the stern and the

diffuse layer) and EDL diffusion line (divides EDL and viscous

diffusion region)
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charge number (valence) of each ion, Faraday’s constant,

and bulk concentration of ions. We define electro-osmosis

number

Eo ¼ eEelfd

qm2
ð4Þ

as a measure of the electrical field strength Eel, where the

zeta potential f is the potential at the shear line S. The

nondimensional parameter

De ¼ kD

d
ð5Þ

is defined as Debye number, which measures the Debye

length relative to the mean thickness of the liquid layer.

A complete set of the governing equations are listed in

the work of Joo (2007), and only the free-surface boundary

conditions are repeated here. The normal component of

surface traction across the liquid–gas interface has a jump

due to surface tension, which is expressed by ignoring the

dynamics of the ambient gas phase with much smaller

viscosity as

�pþ 2

N
uxðh2

x � 1Þ � hxðuy þ vxÞ
� �

¼ S

N3
hxx on y ¼ h;

ð6Þ

where N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2

x

p
; and the surface-tension coefficient c

is nondimensionalized as

S ¼ cd

3qm2
: ð7Þ

The interface is assumed clean and free of electrocapillary

complications, and so the tangential component of the

surface traction vanishes:

ðuy þ vxÞð1� h2
xÞ � 4uxhx ¼ 0 on y ¼ h: ð8Þ

The location of the interface is defined by the kinematic

condition

v ¼ ht þ uhx on y ¼ h; ð9Þ

which states that the interface is a material surface.

The derivation procedure for an evolution equation for

the local liquid thickness h(x,t) is quite straightforward and

identical to that used for falling viscous films, detailed by

Joo et al. (1991) among others. By noting q/qt and o=ox�
o=oy and using asymptotic expansions of all dependent

variables except h, solutions are obtained sequentially at

each order. Substitution of these solutions to the free-sur-

face kinematic condition (9), or equivalently

ht þ
Zh

0

uðx; y; tÞdy

0
@

1
A

x

¼ 0; ð10Þ

yields

ht þ Eo 1þ h2

2De2
� h

De
� 1

� �
e�h=De

� �
hx

þ A
hx

h
þ Eo2

De2

5h6

48De2
� 2h5

15De

���

þ h4

24
� 1

2
De2h2 � 2De3h� 3De4

�
e�h=De

þDe3hþ 3De4
�
e�h=Dehx þ Sh3hxxx

o
x
¼ 0:

ð11Þ

For a given surface configuration the evolution equation 11

predicts the subsequent dynamics of the film surface for

small-Reynold number flows (A = O(1) and Eoe-1/De/

De2 = O(1)) with finite surface slopes without the need to

solve a fully coupled nonlinear system. For larger Reynold-

number flows, evolution equation of this type is known to

overestimate nonlinear flow developments but generate

qualitatively useful information, as discussed by

Ramaswamy et al. (1996) with comparisons with fully-

coupled ALE finite-element computations. The left-hand-

side of the equation following the term ht is composed of

two parts. The first part, multiplied by hx, makes surface

waves propagate downstream, and so is related to the

nonlinear phase of the wave. The second part, or the rest of

the left-hand-side, determines their growth or decay, and is

related to the stability. Unlike the constant gravitational

terms in the falling-film instability the electro-osmotic

instability terms vary with the local thickness h, giving rise

to the need for further nonlinear study as the present work.

The first part reveals that the linear phase speed is

Eo[1 + (1/(2De2)-1/De-1)e-1/De], which is Eo for

De ? 0, reaches a maximum for De & 1/4, and

approaches zero for De ? ?. The linear growth rate r
of a disturbance with wavenumber k is obtained by

substituting

hðx; tÞ ¼ 1þ d eikxþrt þ c:c:
	 


; ð12Þ

where c.c. denotes the complex conjugate, and linearizing

for small disturbance amplitude d:

r ¼ k2 Aþ Eo2

De2

5

48De2
� 2

15De
þ 1

24
� 1

2
De2

���

�2De3 � 3De4


e�1=De þ De3 þ 3De4

i
e�1=De � k2S

o

ð13Þ

It is seen that the van der Waals attraction, whose strength

is modeled by A, and the electro-osmosis, proportional to

Eo2/De2, are destabilizing, while the surface tension can

stabilize the flow for small enough wavenumber k. For

films much thicker than their Debye length (De ? 0) the

electro-osmotic instability tends to disappear.
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3 Nonlinear development of the free surface

Flow developments beyond the linear instability are stud-

ied by posing an initial-value problem on Eq. 11 with

hðx; 0Þ ¼ 1þ 0:1 cosðkmxÞ � 2p
km

� x� 2p
km

� �
ð14Þ

and integrating Eq. 11 in time in a periodic domain, where

k = km is the wavenumber corresponding to the maximum

linear growth rate according to Eq. 13 for a given set of

parameters

P ¼ ðA;Eo;De; SÞ: ð15Þ

Setting the disturbance wavenumber to km and the com-

putational domain to a period would restrict the numerical

experiment to a certain narrow scope. For the present

problem with multiple parameters, however, the focus is

put on answering the following important questions:

1. It is well known, as discussed by Burelbach et al.

(1988) among others, that the van der Waals attraction,

which can be a dominant factor for extremely thin

liquid layers, generates incipient rupture. Can electro-

osmotic flows, under appropriate conditions, survive

this rupture mechanism and maintain a continuous

film?

2. In the absence of the van der Waals attraction, can the

electro-osmotic instability by itself cause rupture,

making it necessary to replace the Debye–Hückel

approximation with a fully coupled model for fluid

flow, ionic concentration, and electric field?

We will simply try to answer these questions here, leaving

the precise determination of parametric ranges for each

different evolution for future studies.

The integration of Eq. 11 is performed with a fourth-

order central finite difference in space and a fully implicit

second-order Euler time-marching scheme with an absolute

error bound of 10-9. Rather extensive parametric study has

been performed, but only a few cases necessary in drawing

conclusions are presented. Considering that the Debye

length of most common aqueous solutions is no greater

than 102 nm order, we acknowledge that the Debye number

chosen in some of the cases represents extremely thin

layers, beyond the scope of the present study. They are

nevertheless invaluable in logical reasoning for physical

insights into the phenomena studied here.

We first present an evolution where a linear instability

leads to a nonlinear traveling wave on the free surface. In

the absence of the van der Waals attraction, it occurs for a

wide range of layer thickness until it becomes inappropri-

ately small. Figure 2 shows the changes in free-surface

configuration in time for an extreme case of small thick-

ness, P = (0, 1, 0.5, 1). The van der Waals attraction is set

to zero, while a strong electrical field is applied. Initial

sinusoidal wave with amplitude 0.1 travels downstream

due to the action of the electro-osmotic force with an

increase in the amplitude. As the disturbance wave grows,

higher harmonics are excited and the wave changes its

form from a simple sinusoidal shape. The growth rate of

the wave diminishes as the re-shaping is completed, and a

saturated wave with a permanent form develops and flows

down stream with a constant speed. The figure for the

maximum and minimum thickness clearly shows the sat-

uration process to a permanent wave. This case shows the

possibility of an open electro-osmotic flow of nano-scale

layers in the absence of other destabilizing effects, such as

the van der Waals attraction. For films with smaller De

(thicker films, not shown), similar evolutions are observed

but with reduced wave amplitude.

In Fig. 3 an evolution beyond the limit of the nonlinear

saturation is provided as a reference for future study. The

layer thickness is taken to be half of that for Fig. 2 by

setting P = (0, 1, 1, 1). The evolution shows that the

trough thins substantially while it travels downstream. In a

short period of time (t = 12.1) it reaches below the abso-

lute error bound, at which time step the computation is

terminated assuming that the layer has ruptured. Beyond

the rupture the electro-osmotic force will no longer be

effective due to the breakup of the layer. A capillary-force-

driven rewetting of the dry patches can be a possibility, but

we will not attempt to simulate this complex phenomenon

in the present study. It suffices to state here that the electro-

osmotic flow with a free surface can be sustained with a

traveling surface wave and there exists a critical layer

thickness below which breakup of the layer occurs even in

the absence of the van der Waals attraction. In the absence

of other destabilizing dynamics, the incipient rupture

appears for nano-scale films. Micro-scale films seems to be

free from the rupture unless a severe local depletion occurs

due to other driving forces. If one wishes to analyze the

rupture process in further detail or to determine the

boundary between the permanent travel wave and the

rupture, a more appropriate model than the Debye–Hückel

approximation or the Poisson–Boltzmann equation must be

applied.

For very thin layers considered above the van der Waals

attraction can be important. In Fig. 4, the case of Fig. 2 is

examined with a significantly large van der Waals force by

choosing P = (0.1, 1, 0.5, 1). As the disturbance wave

travels downstream its growth in amplitude has increased

substantially from the case without the van der Waals

attraction. The slope following the trough steepens con-

tinuously while the region near the trough sharpens, and the

computation is terminated at t = 86 in view of the long-

wave approximation made in Eq. 11. It can be speculated

that the layer tends to rupture since the van der Waals force
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strengthens itself as the local minimum thickness decrea-

ses. The van der Waals attraction indeed can hinder or

destroy an electro-osmotic flow which otherwise can be

sustained. An experiment for a thinner layer with P = (0.1,

1, 1, 1), not presented here, shows similar evolution to that

for Fig. 3, but with conspicuously increased growth rate

and subsequently reduced rupture time (t = 8.1).

If we weaken the electrical field for the case of Fig. 3 by

setting P = (0, 0.5, 1, 1), the incipient rupture appears to

disappear (figures not shown), which obviously indicates

that the critical layer thickness for rupture increases with

the electrical field applied. Again, parametric ranges for the

rupture is not pursued with the present Debye–Hückel

approximation. Figure 5 shows evolutions at some final

moments for P = (0.1, 0.5, 0.5, 1), a case with a reduced

electrical field from that of Fig. 4. The rupture process in

Fig. 4 is not of the electro-osmotic but of the van der Waals

origin. Reduction in electro-osmotic effects thus does not
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seem to prevent the rupture but can substantially delay it.

The electro-osmotic flow tends to reinforce the van der

Waals rupture mechanism rather than sweeping it off.

Computations performed so far for layers with thickness in

the order of the Debye length indicate that the van der

Waals attraction, if present, tends to destroy a continuous

electro-osmotic flow.

Now it is logical to question the fate of the rupture-free

micro-scale films in the presence of the van der Waals

attraction. One might expect that the van der Waals rupture

would disappear for a sufficiently thick layer. However,

Eq. 11 indicates that as De ? 0 electro-osmotic effects

disappear exponentially regardless of the electrical-field

strength except for a linear phase speed Eo. The van der

Waals attraction, albeit inversely proportional to layer

thickness, persists, and can drive the layer to rupture.

Figure 6 shows a case in which an apparent saturation to a

permanent wave is seen during early time steps. As shown

in the figure for a much later time, the trough eventually

sharpens, and the rupture due to the van der Waals

attraction seems imminent. It is thus speculated that open

electro-osmotic flows are always susceptible to the van der

Waals rupture and so a continuous or steady flow of the

layer is not to be expected.

4 Concluding remarks

The flow of thin viscous layer driven by the electro-

osmotic force is examined. A previous linear stability

analysis suggests that the flow is unstable and corrugations

would develop on the free surface of the layer. In this

study, the predictions of the linear analysis is confirmed

and nonlinear evolutions of the resulting corrugations are

studied by deriving an evolution equation for the local

layer thickness and numerically integrating it with a spe-

cific interest in the potential effect of interface dynamics on

the transport capability of the electro-osmosis with

interfaces.

It is seen that the electro-osmotic force by itself does not

cause rupture for layers with micro-scale thickness. The

dormant rupture mechanism with reduction in thickness

has yet to be confirmed by a more appropriate analysis in

nano-scale. In the presence of the van der Waals attraction,

however, rupture seems unavoidable, although it can be

postponed with the increase in the layer thickness. If one

wishes to transport a fluid layer via electro-osmosis, one

must carefully calculate the van der Waals force applicable

and compare the rupture time and the time required for the

transport distance.
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The present study is limited in scope. More realistic

investigations would require other physical effects than

those considered here and more rigorous nonlinear mod-

eling than the long-wave approximation used here. The

Debye–Hückel approximation must be replaced by a fully

coupled electro-hydrodynamic system, including the

Nernst–Plank equation for the ionic concentration and the

Poisson equation for the electric potential. The present

work nevertheless appears to be the first attempt to predict

free-surface evolutions based on the first principle in

electro-osmotic flows, and can be a useful base for further

studies.
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