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Abstract The mapping method is employed as an efficient

toolbox to analyze, design, and optimize micromixers. A

new and simplified formulation of this technique is intro-

duced here and applied to three micromixers: the staggered

herringbone micromixer (SHM), the barrier-embedded mi-

cromixer (BEM), and the three-dimensional serpentine

channel (3D-SC). The mapping method computes a distri-

bution matrix that maps the color concentration distribution

from inlet to outlet of a micromixer to characterize mixing in

a quantitative way. Once the necessary distribution matrices

are obtained, computations are fast and numerous layouts of

the mixer are easily evaluated, resulting in an optimal design.

This approach is demonstrated using the SHM and the BEM

as typical examples. Mixing analysis in the 3D-SC illustrates

that also complex flows, for example in the presence of

back-flows, can be efficiently dealt with by using the new

formulation of the mapping method.

Keywords Micromixer � Chaotic mixing �
Mapping method � Intensity of segregation � Optimization

1 Introduction

Microfluidic devices are used in a wide range of applica-

tions in biological (Hansen and Quake 2003; Beebe et al.

2002) and chemical (Ehrfeld et al. 2000; Reyes et al. 2002)

analyzes. Mixing is of general importance in most micro-

fluidic applications, but is often difficult to achieve since,

in microfluidic devices, flows are generally laminar, and

turbulence, as commonly used in macro-mixing devices, is

absent. Without other means to enhance mixing, mixing by

pure diffusion requires long times or long flow lengths.

Laminar flow can, however, also produce complicated

trajectories of fluid particles, resulting in efficient mixing

via chaotic advection (Aref 1984; Ottino 1989). The prin-

ciples of chaotic advection, which mimic the baker’s

transformation: a continuous repetition of stretching and

folding, are exploited in different static industrial mixing

devices. In microfluidic devices, it is generally difficult to

incorporate complex geometries as used in static macro

mixers. Consequently, different strategies are applied: (1)

to induce transverse flow in pressure driven flows by

adopting a three-dimensional static structure in a channel

geometry in so-called passive micromixers, and (2) to

induce transverse flow by applying external sources for

example pressure drop, temperature gradient, acoustic

pressure, and magnetic fields in active micromixers.

Bertsch et al. (2001) proposed a miniaturized static

micromixer based on a large-scale industrial static mixer

geometry. Other researchers proposed ‘‘split-recombine’’

micro mixers (Schönfeld et al. 2004; Park et al. 2004; Jen

et al. 2003), which mimic the baker’s transformation and

split, stretch, and combine a flow to achieve efficient

mixing and to produce uniform striations and lamella.

Stroock et al. (2002) experimentally investigated mixing in

a three-dimensional staggered herringbone micromixer

(henceforth, SHM) and in a three-dimensional slanted

groove micromixer (henceforth, SGM). The SHM and the

SGM have patterned grooves on the bottom of a rectan-

gular channel to produce helical fluid trajectories inside the

channels. Experiments show that the SHM works well in
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the range of 0 \ Re \ 100 and that it produces chaotic

advection. Kim et al. (2004) proposed an other modifica-

tion of the SGM using simple grooves combined with

barriers on top of the channel known as the barrier-

embedded micromixer (BEM). The SHM and the BEM

make use of a specific three-dimensional structure to

induce a lateral motion of fluids in a periodic manner,

giving rise to chaotic mixing. Liu et al. (2000) use a three-

dimensional serpentine channel (henceforth, 3D-SC) to

achieve chaotic mixing. In this device, mixing depends on

inertia that causes the secondary flow. In the Stokes flow

regime (Re � 1), where inertia is absent, the device

becomes inefficient. Nguyen and Wu (2005) give a com-

prehensive description of all these chaotic micromixers.

Understanding mixing in these micromixers was also

improved by numerical analyzes based on particle tracking

(Kang and Kwon 2004; Aubin et al. 2003, 2005; Stroock

and McGraw 2004). In spite of the accuracy and the

superiority compared to numerical schemes based on the

solution of the mass transport equation (which suffer from

numerical diffusion if mesh resolution is not fine enough to

capture complicated deformations of fluid domains), mix-

ing analysis via particle tracking has several inherent

drawbacks. First, it requires the tracking of a huge number

of particles to generate high-resolution images at far

downstream locations. Second, the time-consuming parti-

cle tracking procedure must be repeated at any change in

the sequence of repeating units of the mixer. Finally, there

is no guarantee that all the space of interest at the desired

location will be completely occupied by particles, due to

the fact that any ordered array of particles at the inlet

become disordered at downstream positions. This leads to

the loss of accuracy in quantification of mixing based on

particle distributions. In this study, therefore, we apply the

mapping method to overcome these inherent disadvan-

tages. Note that the mapping method is only used to

analyze distributive mixing, i.e., flows with high Péclet

number (Pe�1) where diffusive mixing contributions are

negligible. To extend potential applications of the mapping

method, we introduce a new numerical formulation of the

method and apply it to analyze and optimize micromixers.

In fact, the new approach is far more straight forward as

compared to the original mapping approach (Anderson and

Meijer 2000; Galaktionov et al. 1997, 2002, 2003; Kruijt

et al. 2001a, b), and moreover, it is easily implemented.

We focus on three distinct passive micromixers, the

SHM, the BEM, and the 3D-SC, respectively. The three

chosen micromixers are specifically considered to show the

various aspects of the method as an analysis, design, and

optimization tool. For the SHM, we perform in-depth

analysis of mixing and show use of the mapping method as

an optimization tool. For the BEM, we employ the method

to investigate whether different ordering of mixing

protocols (functional modules) achieve better mixing; for

example, aperiodic sequences can generate better mixing in

some cases (Kang et al. 2007). The 3D-SC differs from the

two other examples mentioned in the sense that inertia at

higher Reynolds numbers induces a back-flow (negative

axial velocity) in the channel, while in the Stokes regime in

some parts of the channel the axial velocity approaches

zero. This specifically requires time-tracking approach to

track particles in the flow field. From this analysis we show

that the method can be applied as an analysis tool to

evaluate mixing in many diverse types of micromixers. We

start with describing the basics of the method, and address

the detailed procedures of implementation for the three

micromixers. For each micromixer, we first introduce the

geometrical parameters associated with the mixer, then

compute the mapping matrices for each of the character-

istic modules of the mixer, and then finally analyze mixing

in qualitative, and quantitative way using the method.

2 Mapping method

2.1 Basics of mapping method and original mapping

approach

Chaotic mixing of viscous liquids in laminar flows is

usually based on the situation where the baker’s transfor-

mation is applied a number of times on a specified volume

of material. Spencer and Wiley (1951) suggested that the

distribution of material in such flows can be handled quite

well by the use of matrix methods. The mapping method

describes the transport of a conservative quantity without

taking into account diffusion from one state to another by

means of a mapping matrix, describing the transport of

fluid from an initial cross section to a final one (for spa-

tially periodic flows) or from an initial time to a final time

(for time-periodic flows). A micromixing device composed

of repetitive sequences (repeating units), the advantage of

using mapping method becomes apparent, since it requires

just a one-time computation of the deformation induced by

the flow during a fixed flow in the time Dt (for time-peri-

odic flows) or fixed flow in the length Dl (for spatially-

periodic flows). The effect of the flow for any number or

combination of cycles (t = n Dt or l = n Dl) can then be

evaluated by a repeated multiplication (n - times) of the

distribution matrix with a prescribed concentration distri-

bution (vector) at the inlet. Since these multiplications take

only few CPU seconds, this brings a huge benefit over

conventional particle tracking techniques in which the

tracking is cumbersomely repeated from the first to the last

period to analyze mixing. In addition, in the mapping

method, a change in the sequence of repetitive units in a

mixer requires just a different order of distribution matrices
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to be multiplied, whereas the conventional approaches

require the full re-computation of the particle tracking. The

method also allows to compute quantitative measures of

mixing, such as the volume- or area-averaged, and flux-

weighted discrete intensity of segregation, and the scale of

segregation (Danckwerts 1952; Galaktionov et al. 2003).

Numerically, the original mapping method (Anderson and

Meijer 2000;Galaktionov et al. 1997, 2002, 2003; Kruijt

et al. 2001a, b) exploits the above idea as follows: a distri-

bution matrix u is formed to store information about the

distribution of fluid from one cross-section to the next due to

a specified flow. To obtain the coefficients of the distribution

matrix, the initial cross section of the flow domain is sub-

divided into a large number of discrete cells (N) of identical

size. During flow, the material from a donor cell is trans-

ferred to different recipient cells. The fraction of material

that is transferred from the donor cell to a recipient cell gives

the distribution coefficient of the donor cell with respect to

the recipient cell. Thus, in total N cells form a distribution

matrix of the order N 9 N. The discrete coefficient uij equals

the fraction of deformed sub-domain Xj at z = z0 + Dz that is

found in the original sub-domain Xi at z = z0:

uij ¼

R
Xjjz¼z0þDz

T
Xijz¼z0

dA
R

Xjjz¼z0

dA
: ð1Þ

Tracking all interfaces of all N cells during a flow over a

distance Dz can be done as we have demonstrated for

different flows (Anderson and Meijer 2000; Galaktionov

et al. 1997, 2002, 2003; Kruijt et al. 2001a, b), but it is

cumbersome to track interfaces experiencing complicated

deformation patterns. Therefore, here we present an alter-

native approach that is much simpler to implement.

2.2 A new formulation of the mapping method

A schematic representation of how the mapping coeffi-

cients are calculated in new formulation of the method is

shown in Fig. 1. To approximate the coefficients of the

mapping matrix (or distribution matrix), K markers inside

all cells are tracked. The markers are uniformly distributed

in the cells. Then, to determine the final distribution of

markers, they are advected during the flow from z = z0 to z

= z0 + Dz. If the number of markers in the donor cell Xj is

Mj at z = z0 and the number of markers found after tracking

in the recipient cell Xi is Mij at z = z0 + Dz, then the

mapping coefficient Uij is calculated as:

Uij ¼
Mij

Mj
: ð2Þ

In other words, the coefficient Uij is the measure of the

fraction of total flux of the cell Xj donated to the cell Xi. If

the number of markers tracked is large enough then Uij

approaches uij.

The elegance of this mapping method is that if one

wants to analyze mixing-related scalar quantities, like the

concentration vector C 2 R
N�1 (N is the number of cells)

defined on initial cells, then the concentration evolution C1

after the deformation can be obtained by simply multi-

plying the mapping matrix U with the initial concentration

vector C0:

C1 ¼ UC0: ð3Þ

Note that C represents coarse-grained description of volume

fraction (dimensionless concentration) of a marker fluid

in a mixture of two marker fluids with identical material

properties, and its component Ci describes the concentration

(volume fraction) locally averaged in the cell Xi. For

repetitive mixing, the same operation is repeated multiple

times on the same mass and, hence, the concentration

evolution after n steps is given by Cn ¼ UnC0: For

sufficiently large n, the matrix Un will not be sparse and

it becomes so large that it can even not be stored anymore.

This is due to the fact that after performing the operation n

times, material from one cell is advected to a large part of

the whole cross-section, especially in the case of chaotic

advection. Instead of studying Un; the evolution of the

concentration after n steps Cn is computed in sequence as

follows:

Ciþ1 ¼ UCi; hence Cn ¼ ðUðUð. . .ðU
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

n times

C0ÞÞÞÞ: ð4Þ

Thus, the mapping matrix U is determined only once and is

utilized a number of times to study the evolution of con-

centration in the flow field. The computation of mapping

matrices is expensive, and may take several CPU hours,

but, once calculated, the necessary matrix–vector multi-

plication only takes a few CPU seconds to process the

Fig. 1 Illustration of the computation the mapping coefficient Uij in

the mapping matrix U: The cell Xj at z = z0 is covered with a number

of markers that are tracked during flow in Dz (to arrive at the final

cross section z = z0 + Dz). The ratio of the number of markers

received by the recipient cell Xi to the initial number of markers in Xj

is determined (in this example Uij is 6/25)
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results. The mapping matrix calculations are easily par-

allelized (Galaktionov et al. 1997).

2.3 Measure of mixing

To quantify mixing and to compare the performance of

mixers, we employ the intensity of segregation as a mea-

sure of mixing defined as the second-moment variance of

concentration distribution (Danckwerts 1952):

I ¼ r2
c

�cð1� �cÞ ; ð5Þ

where rc
2 is the variance in the concentration over entire

domain X defined as:

r2
c ¼ cðxÞ � �cð Þ2

D E

X
; ð6Þ

where c(x) denotes the volume fraction (dimensionless

concentration) of a fluid in a mixture of two fluids at a

point x, and �c the average volume fraction of the fluid in

the whole domain. When no diffusion is present, c(x) will

either be 1 or 0. Therefore, I will always be equal to 1,

independent of the distribution. To avoid this situation, the

coarse grain concentration Ci (Welander 1955) on a finite

cell Xi is defined:

Ci ¼ cðxÞh iXi
: ð7Þ

In the coarse grain description of concentration, Ci can take

values between and including, 0 and 1. From Eq. (5), we

define the flux-weighted discrete intensity of segregation

(Id) for distributive mixing without diffusion. The number

of cells (sub-domains) used to compute the discrete

intensity of segregation is chosen equal to the number of

cells used to compute the mapping matrices. If the cells are

uniform in size, and thus the flux-weighted discrete

intensity of segregation can be simplified as follows:

Id ¼
1

�Cð1� �CÞ
1

F

XN

i¼1

ðCi � �CÞ2fi; ð8Þ

where the average concentration �C is

�C ¼ 1

F

XN

i¼1

Cifi; F ¼
XN

i¼1

fi: ð9Þ

The term fi is the volumetric flux through cell number i and

F is the total flux through the mixer. The intensity of

segregation Id is a measure of the deviation of the local

concentration from the ideal situation (perfectly mixed

case), which represents a homogeneous state of the mix-

ture. In a perfectly mixed system, Id = 0, while in a

completely segregated system, Id = 1. As found by Gal-

aktionov et al. (2002, 2003) the flux-weighted definition

(see Eq. (8)) of the intensity of segregation is much better

suited for analyzing continuous mixers than area- or vol-

ume-averaged definitions of the intensity of segregation.

This is due the fact that the real influence of an unmixed

island on the value of Id is proportional to the flux, carrying

this island. Note that the number of cells covering a cross-

sectional plane in the mapping method must be fixed for

comparing various mixers and numerous layouts of a

mixer. This is due to the fact that the coarse graining

mixing measure Id is dependent on the cell size of the

mapping. The cell size tells about the minimum striation

thickness between two mixing fluids which can be

resolved, and below this size the fluids are assumed to be

completely mixed. In our study we have used 200 9 200

grid to cover a cross section of interest to analyze various

layouts.

3 Application to the staggered herringbone micromixer

First, we apply the mapping method to analyze and opti-

mize the design of SHMs. The SHM geometry is

subdivided into four functional mixing modules, and for

each module a mapping matrix is computed. Combining

these four matrices in different ways enables us to inves-

tigate various designs of the SHM.

3.1 Mixer geometry

Figure 2 shows, schematically, a two-dimensional view of

the grooves on the bottom of the rectangular channel in a

SHM. Their presence induces transverse flows inside the

channel. Every groove is composed of two parts, a long

arm and a short arm (length ratio of arms considered here is

2:1), both at 45� to the axial direction; two series of

grooves comprise a single cycle. We apply the geometry of

the SHM used in the study of Kang and Kwon (2004) with

a channel height h = 77 lm and a channel width w =

200 lm, the depth of the grooves gd = 17.7 lm, their width

gw = 70.7 lm and the offset distance between two con-

secutive grooves in a half cycle also equals 70.7 lm. The

original SHM consists of six grooves per half cycle. Five

different SHM geometries are investigated with groove

depths gd of 10, 20, 30, 40, and 50 lm. Fluent V6.1.22 is

used to obtain the periodic velocity field. Structured

hexahedral meshes are constructed by using Gambit

V2.1.2. The material properties of a mixture of glycerol

(80%) and water (20%) with a density q = 1,200 kg/m3

and viscosity l = 0.067 kg m/s, are prescribed for all the

simulations. The fluid is assumed to be Newtonian and

incompressible. To obtain a fully developed velocity field

for one cycle, periodic boundary conditions are prescribed

with the mass flow rate corresponding to an average inlet
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velocity u of 0.2 cm/s. The Reynolds number Re (=qu Dh/

l, where Dh is hydraulic diameter) is found to be below

10-2 for all simulations.

3.2 Defining the mapping matrices of the SHM

To implement the mapping approach for optimization, the

SHM is subdivided into four independent functional mixing

modules for which the mapping matrices are denoted by

UL;UtLR;UR and UtRL (see Fig. 2). The mapping matrix

for a single groove in the first half cycle is denoted by UL

(index L for left). Similarly, mapping matrix in the second

half cycle is denoted by UR (index R for right). Both are

computed based on a fully developed velocity field. The grid

used to obtain the periodic velocity field for one cycle con-

sists of 567,840 hexahedral cells and 609,070 nodes. When

the grooves of the SHM switch symmetry, a transition region

occurs: first, halfway a cycle, and second, between cycles

(see Fig. 2b). In the transition regions, the velocity field is

not developed and comprises all exit and entrance effects

when two types of grooves in the SHM switch symmetry.

Transition regions can play an important role in mixing

(Galaktionov et al. 2002, 2003), and hence, they must be

included in the analyzes. The mapping matrix for the first

transition is denoted by UtLR (index small t for transition),

and the one for the second transition is denoted by UtRL:Any

SHM can be mapped by a combination of these four matrices

UL;UtLR;UR and UtRL: Since the two sets of grooves in two

half cycles and the two transitions are mirror images, there is

no need to calculate UR and UtRL via mapping, since they

can be computed via mirroring UL and UtLR; respectively.

In the mapping computations, the cross section of interest

is covered with a 200 9 200 grid, and each cell is filled with

256 uniformly distributed (in a 16 9 16 pattern) passive

markers (compare with Fig. 1). For a fixed number of cells

covering a cross-sectional plane in the mapping method, the

mixing index Id should converge with the increase in the

number of particles per cell (NPPC). In case of the SHM, we

show the dependence of flux-weighted intensity of segre-

gation on the NPPC (see Fig. 3). From this plot, it is clear

that the NPPC above a critical value (in this case 64) pro-

vides converged mixing measure. In our computations, we

used 256 number of particles per cell. The critical value of

the NPPC may be effected by nature of flow, whether it is

chaotic or regular, and how a mixer is subdivided into var-

ious mixing modules to compute separate individual

matrices representative of the mixing modules.

The trajectory of markers is tracked by using the axial

co-ordinate, rather than time. This can be realized by

dividing the transversal velocity components ux and uy by

the axial velocity component uz:

dx

dz
¼ ux

uz
;

dy

dz
¼ uy

uz
: ð10Þ

This axial integration approach is useful because integra-

tion is done with respect to the spatial increment along the

axial direction rather than time, eliminating the effects of

different residence time distributions. Note that this

approach is only valid for the systems where back-flows

are not present. It turned out to be advantageous to use the

backward (reverse) particle tracking (BPT) to track the

tracers to obtain the mapping coefficients. In other words,

tracers originally filling the recipient cell are tracked

backward against the flow direction. Equation (10) is

integrated by the fourth order Runge–Kutta Bulrish Store

scheme with the adaptive step size selection of Press et al.

(1992). To find the velocity at any arbitrary point, inter-

polation using the basis function is applied (Galaktionov

et al. 1997, 2002, 2003).
(a)

(b)

Fig. 2 Schematic representation of the grooves in the bottom of a

rectangular channel of a SHM. a Definition of a cycle. The mapping

matrices UL and UR cover a single groove applying a fully developed

velocity field. b The mapping matrices UtLR and UtRL cover the two

transition regions, where flow is not developed due to entrance and

exit effects caused by changing symmetry of two types of grooves

(the geometrical features used are: h = 77 lm, w = 200 lm and

gd = 17.7 lm, gw = 70.7 lm, and length of one periodic unit

(cycle) = 1,992 lm)
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Fig. 3 The dependence of mixing index Id on the NPPC (up to 10th

mixing cycle) for the SHM (the geometrical features used are: h =

77 lm, w = 200 lm and gd = 17.7 lm, gw = 70.7 lm, and length of

one periodic unit (cycle) = 1,992 lm)
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3.3 Combining mapping matrices to achieve various

designs

The computed mapping matrices UL;UtLR;UR and UtRL

are combined to obtain the concentration distribution for a

SHM with a desired number of grooves per half cycle for a

number of cycles. This provides a simple and a computa-

tionally inexpensive way to evaluate different designs. To

analyze the concentration evolution in a SHM with 10

grooves per half cycle, the first cycle, C1, is obtained with:

C1 ¼ ðULðULð. . .
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

8 times

ðUtLR ðURðURð. . .ðUR|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
8 times

C0ÞÞÞÞÞÞÞÞ;

ð11Þ

where C0 is the prescribed initial concentration

distribution. We neglect the inlet and outlet effects of the

total system. This simplification is obviously less severe for

longer SHM geometries (e.g., 20 cycles). Note that the

transition regions UtLR and UtRL contain two UL and two

UR grooves to compensate for local entrance and exit

effects at these transitions. These contributions must be

taken into account and hence the equation for C1 contains

only 8 (rather than 10) grooves per half cycle. To increase

readability we introduce a simpler notation:

UnL ¼ ðULðULð. . .
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

n times

; ð12Þ

where UnL represents the matrix-vector multiplication of

matrix UL in sequence for n-times on a given initial

concentration distribution. Note that here notation UnL is

used instead of UnL to describe the matrix-vector

multiplication in a sequence (recall Eq. (4)). Similarly,

UnR is defined. In calculating the concentration evolution

for the second cycle C2, three contributions from transition

regions are met: two UtLR and one UtRL: Hence, the

number of grooves per half cycle in intermediate parts (6)

is calculated by taking into account the number of grooves

(2) that are part of these (2) transition regions.

Consequently, the concentration evolution for cycle 2,

C2, and that of cycle 3, C3, can be obtained as follows:

C2 ¼ ðU8L ðUtLRðU6RðUtRLðU6L|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
repeating unit

ðUtLRðU8RC0ÞÞÞÞÞÞÞ;

ð13Þ

and

One easily recognizes the repeating unit, which we denote

by URU (index RU for repeating unit). To calculate con-

centration evolutions of other cycles, this notation can be

used. For example, C3 can be re-written, and C4 can be

expressed using the repeating unit as follows:

C3 ¼ ðU8Lð2�URUðUtLRðU8RC0ÞÞÞÞ; ð15Þ

C4 ¼ ðU8Lð3�URUðUtLRðU8RC0ÞÞÞÞ; ð16Þ

where, 2�URU and 3�URU represents two- and three-

times repetition of the repeat unit URU: Hence, from the

above, it is clear that one can calculate concentration

evolutions in the SHM with 10 numbers of grooves per half

cycle for any number of cycles. The concentration evolu-

tion for other designs of the micromixer with a different

number of grooves per half cycle can be obtained in a

similar way (basically only changing the numbers 8 and 6

in above equations) and mixing quality can be character-

ized quantitatively using the intensity of segregation. This

is our basis of optimization the number of grooves later.

From the above it is clear that the minimum number of

grooves per half cycle that can be analyzed equals 4, since

that equals the number of grooves involved in the entrance

and exit regions of the transition regions. To clarify the

above steps, here we show mixing evolutions in a simple

SHM consisting of only one type of groove whose mapping

matrix is represented by UL (as shown in Fig. 2a). The

concentration distribution C1 after 1 groove is obtained by

multiplying the matrix UL with the concentration vector

C0, next C2 is found multiplying UL with C1, etc. In this

way, the mixing evolutions obtained are shown in Fig. 4,

illustrating the basic cross-sectional deformation induced

by the presence of the asymmetric grooves.

Now the procedure has become clear, we show next the

mixing analyzes results in detail for various SHM designs.

3.4 Validation of the mapping method

To validate the method, we compare the mixing results

obtained by mapping with those of numerical mixing

results of Kang and Kwon (2004) and experimental mixing

patterns of Stroock et al. (2002). To diminish numerical

diffusion, and to simplify comparison with results reported

in Kang and Kwon (2004), in this sub-section we compute

only one mapping matrix U representative of one whole

cycle (repeating unit). The concentration distributions after

each cycle are given by C1 ¼ UC0;C2 ¼ UC1; etc.

C3 ¼ ðU8L ðUtLRðU6RðUtRLðU6L|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
repeating unit

ðUtLRðU6RðUtRLðU6L|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
repeating unit

ðUtLRðU8RC0ÞÞÞÞÞÞÞÞÞÞ: ð14Þ
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Figure 5 depicts the evolution of mixing for five cycles,

comparing the results from mapping with the numerical

results of Kang and Kwon (2004) and the experimental

results of Stroock et al. (2002). Excellent agreement is

found.

3.5 Effect of groove depth and groove number

on mixing

It is known that mixing in the SHM is sensitive to the

groove depth and even an increase or decrease by 10% can

affect mixing (Aubin et al. 2005; Bennet and Wiggins

2003). Here, five groove depths, gd = 10, 20, 30, 40, and

50 lm, are chosen and the Reynolds number is fixed to be

0.004 for all the five cases. To obtain concentration evo-

lutions, for each groove depth a mapping matrix is

computed, representative of the repeating unit. Figure 6

shows the results of mixing and reveals that deeper grooves

provide better mixing, especially at the initial stage of

mixing. To quantify mixing, we compute the flux-weighed

intensity of segregation vs. the pressure drop up to 20

mixing cycles. The pressure drops per cycle for gd = 10,

20, 30, 40, and 50 lm are found to be 675, 660, 654, 651,

and 649 Pa (N/m2), respectively, revealing that as groove

depth increases the pressure drop per cycle slightly

decreases. Figure 7 shows the logarithm of intensity of

segregation vs. pressure drop for the five SHMs and, in

accordance with the literature (Aubin et al. 2005; Bennet

and Wiggins 2003), the fastest decrease in intensity of

segregation (for a given pressure drop) is found for the

50 lm deep groove, but the 20, 30, and 40 lm depths are

quite equivalent to 50 lm, especially at longer mixer

lengths (or pressure drops). At gd = 10 lm, mixing is the

poorest even at longer mixer lengths, indicating that a

minimum groove depth is necessary to induce chaotic

advection. We conclude that the groove depth should

exceed a critical value of roughly 20% of the channel depth

to induce chaotic mixing. Once this critical value is

exceeded, the effect of groove depth on mixing becomes

insignificant, although, in the initial stages of mixing,

slightly better mixing for the deeper grooves is achieved.

Apart from groove depth, the number of grooves per

half cycle is a design parameter that can be optimized.

Periodic alternation of groove patterns in the SHM after

each half cycle results in crossing streamlines and chaotic

mixing. In general there is an optimum interval such that

the total length stretch is maximum for a fixed length

(spatially periodic flows) or time (time-periodic flows) of

mixing. For example, in time-periodic 2-D cavity flows,

Ottino and co-workers (Ottino 1989) found an optimal time

period which maximizes mixing. In the SHM, optimization

concerns the amount of stretching during the flow in half a

cycle.

We used the geometrical parameters as mentioned in

Sect. 3.1 to compute the mapping matrices for four mixing

modules (see Fig. 2) as described in Sect. 3.2. Using these

matrices, the concentration evolution and the correspond-

ing intensity of segregation in SHMs with different number

of grooves per half cycle is computed by the technique

described in Sects. 3.2 and 3.3, respectively. To calculate

the pressure drop per cycle, we first calculate the pressure

drop across a single left groove (DPL), using the fully

developed velocity field as used for the calculation of UL;

and the pressure drop across the left transition region

(DPtLR), as used for the computation of UtLR: Next, DPR is

found equal to DPL, and DPtRL equal to DPtLR. By adding

the individual contributions, the total pressure drop for the

whole series of micromixers with different number of

grooves per half cycle is obtained. Next, to find the opti-

mum design, we plot the logarithm of the discrete intensity

of segregation versus pressure drop in Fig. 8, which shows

the results for SHMs with 6, 8, 10, and 14 numbers of

grooves. From this plot, the smallest value of the intensity

of segregation at a given pressure drop (a vertical line in

Fig. 4 Evolution of the concentration distribution Ci in a SHM with

only one groove type, shown after the ith groove and computed by

repeated multiplication of matrix UL with evolved concentration

vectors, Ciþ1 ¼ ULCi (the geometrical features used are: h = 77 lm,

w = 200 lm and gd = 17.7 lm, gw = 70.7 lm, and length of one

periodic unit (cycle)= 1,992 lm)
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Fig. 8) is found for 10 grooves per half cycle. Alterna-

tively, a given mixing quality of e.g., log10Id = -2.5 (a

horizontal line in Fig. 8) is obtained with pressure drops

close to 10.4, 9.5, 8.3, and 10.7 KN/m2 for SHMs with 6, 8,

10, and 14 grooves per half cycle, respectively, yielding the

same optimum of 10 grooves (lowest energy used). This

analysis reveals that for a fixed value of the transverse to

axial velocity (which is decided by the geometrical

parameters of a given SHM), there exists a minimum

number of grooves per half cycle where mixing is opti-

mum, and for the analyzed geometry this minimum proves

to be 10.

From the above analyzes, we conclude that various

designs of the SHM can be analyzed using the mapping

method in an efficient way and that the optimum design can

be found.

(a) (b) (c)

Fig. 5 Evolution of the concentration distribution in a SHM during 5

total cycles a mapping results, b experimental results (confocal

micrographs) from Stroock et al. (2002), and c numerical results from

Kang and Kwon (2004). The geometrical features used are:

h = 77 lm, w = 200 lm and gd = 17.7 lm, gw = 70.7 lm, and

length of one periodic unit (cycle)= 1,992 lm

(a) (b) (c) (d) (e)

Fig. 6 Effect of groove depth on the evolution of the concentration distribution in a SHM for designs with grooves depths of a 10, b 20, c 30,

d 40, and e 50 lm, respectively (Channel depth is 77 lm; channel width 200 lm and length of one periodic unit (cycle) 1,992 lm)
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4 Application to the barrier-embedded micromixer

Various combinations of two mixing protocols (functional

modules) of the BEM provide numerous competitive

designs. In this section, we demonstrate that the mapping

method can be used as an efficient tool to analyze various

layouts of these micromixer.

4.1 Mixer geometry

Figure 9a shows one periodic unit of the BEM with a

barrier on the top-mid surface of a rectangular channel. The

BEM can be thought of composed of two repeating units,

say protocol P1 and P2, as shown in Fig. 9b. The first

repeating unit P1 is a simple rectangular channel with six

slanted grooves on the bottom surface inducing an overall

rotational flow and the second repeating unit P2 has the

same channel geometry as P1 except for a barrier on top-

mid surface inducing two co-rotating flows. We choose the

same geometrical features as used in the SHM (gd =

17.7 lm, gw = 70.7 lm, h = 77 lm, and w = 200 lm).

The barrier height is 2/3 h, its thickness is 50 lm, and its

length corresponds to the length of six grooves. To solve

the periodic velocity field for P1 and P2, the same

boundary conditions, and material properties as used for

the SHM mentioned in Sect. 3.1 are applied. The grid used

for P1 consists of 469,800 hexahedral cells and 498,318

nodes and for P2 it consists of 421,400 hexahedral cells and

454,518 nodes.

4.2 Defining mapping matrices for the BEM

Different ordering of the mixing protocols of the BEM, P1

and P2, results in different designs of the micromixer. Two

mapping matrices U1 and U2 are computed, representative

for the mixing protocols P1 and P2. Next, any specific

design with a periodic or aperiodic sequence can be eval-

uated using sequential multiplication of respective matrices

(as specified in a given sequence of the two protocols) with

a prescribed concentration vector. The number of tracers

per cell and the number of mapping cells used to compute
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Fig. 7 The intensity of segregation versus pressure drop (up to 20th

mixing cycle) for designs with groove depths of 10, 20, 30, 40, and

50 lm
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Fig. 8 The intensity of segregation versus pressure drop (up to 20th

mixing cycle) for SHM designs with 6, 8, 10, and 14 grooves per half

cycle. Clearly the optimum number of grooves is 10 given the lowest

pressure drop (energy used) for the same mixing quality

(a)

77
17.7

200

45°

b

P1 P2

h

1w
2

h2
3

(b)

Fig. 9 BEM. a A typical periodic unit of a barrier embedded mixer

(BEM) with 12 grooves on the bottom surface and the barrier on the

top. The barrier length corresponds to that of six grooves, b
schematics of mixing protocols of BEM, P1 and P2, seen from the

top and front. The first protocol, P1, is a rectangular channel with

slanted grooves, while the second protocol, P2, consists of a barrier

located exactly at mid of the top surface. The gray and black areas
represent grooves and a barrier, respectively
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mapping matrices are same as for the SHM (see section 3.2

and schematically Fig. 1).

4.3 Mixing analysis in the BEM

Only three representative designs are considered as illus-

trative examples. The first design is periodic sequence

composed of only P1, the second one is the periodic

alternation of P1 and P2, and the third is an aperiodic

(random) sequence of P1 and P2, as used by Liu et al.

(1994) in cavity flows:

P11 : 1 1 1 1 1 1 � � � 1 1 1 1 1 1; ð17Þ
P12 : 1 2 1 2 1 2 � � � 1 2 1 2 1 2; ð18Þ
AP12 : 12|{z} 21|{z} 2112|ffl{zffl} 21121221|fflfflfflfflfflffl{zfflfflfflfflfflffl} 2112122112212112|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl};

ð19Þ

where a boldface number 1 represents the protocol P1, 2

the protocol P2, (see Fig. 9b). All the sequences consists of

30 mixing protocols. The sequence P11 is the SGM, P12 is

the BEM, and AP12 is the variation of the BEM, which is

composed of P1 and P2 in a recursive way.

Figure 10 shows the mixing evolution at down-channel

positions z = 4, 10, 20, and 30L, where L is length of a

mixing protocol (=1,078 lm). Figure 11 shows the quan-

titative characterization of mixing using the flux-weighted

intensity of segregation. In the case of P11, the flow is only

able to rotate fluid in monotonic way around the elliptic

point without significant increase in mixing, while mixing

in the protocol P12 is almost chaotic except for several tiny

unmixed islands dispersed in whole cross-section (see

Fig. 10). The aperiodic sequence AP12 also reveals chaotic

mixing in most of the domain, far better than P11 from the

viewpoint of mixing, but not better than P12. Further

optimization of the designs, however, still seems to be

possible, but it is beyond the scope of this paper.

5 Application to the three-dimensional serpentine

channel

Finally, we consider the 3D-SC to show that the method

can also work as an analysis tool in devices producing

complicated flows. In this mixing device, due to the pres-

ence of back-flows, it is necessary to employ time-tracking

rather than axial tracking, as adopted for the SHM and the

BEM, to compute particle distributions at down-channel

positions.

5.1 Mixer geometry

Figure 12 shows one periodic unit of the three-dimensional

serpentine channel used in the experimental study of Liu

et al. (2000). The basic building block is a ‘‘C-shaped’’

section. The geometrical features adopted are as follows:

the inlet and outlet cross-sections are all 300 lm wide and

150 lm high, the length of C-shaped section is 900 lm and

in total the length of the channel is 1,200 lm. Four

Fig. 10 Evolution of mixing

patterns at several down-

channel positions, z = 4, 10, 20,

and 30 L, for the two periodic

sequences and one aperiodic

sequence. The initial

concentration at z = 0 is shown

on the top of a. a P11, b P12,

and c AP12 (the geometrical

features used are: h = 77 lm,

w = 200 lm and gd = 17.7 lm,

gw = 70.7 lm, and length of

one periodic repeat unit

= 1,078 lm)
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Reynolds numbers, Re = 0.01, 10, 50, and 70, are consid-

ered to analyze dependence of mixing on inertia in the

channel. To obtain the fully developed velocity field for

one cycle of the channel at each Reynolds number, periodic

boundary conditions with mass flow rate are prescribed to

solve the Navier-Stokes equations. The grid used to obtain

the periodic velocity field for the channel consists of

500,000 hexahedral cells and 529176 nodes.

5.2 Defining mapping matrix for the 3D-SC

Since the fluid flow at higher Reynolds numbers induces

back-flows (uz \ 0), while in Stokes flow regime the axial

velocity approaches to zero when fluid moves in perpen-

dicular to the axial direction (z-direction), the axial

integration Eq. (10) to track tracer positions fails. There-

fore, to compute the coefficients of the mapping matrix U
(see Eq. (2)), we apply time integration to find the position

of the tracers:

dx

dt
¼ ux;

dy

dt
¼ uy;

dz

dt
¼ uz: ð20Þ

Time-tracking approach is computationally more expen-

sive as compared to axial tracking. This is due to the two

facts. First, instead of solving two equations as in axial

tracking (see Eq. (10)), one is required to solve three

equations. Second, the large variations in axial velocity in

the channel brings different residence time distributions of

tracers according to their cross-sectional positions and,

hence, tracers reach to final position at different times. A

tracer close to walls requires much more time steps than

one in the center. Therefore, to track a huge number of

tracers using time integration (see Eq. (20)) to the end

period of the mixer is cumbersome. However, using the

mapping method is a better option since it requires time

integrations to be performed only once for the representa-

tive repeat unit.

5.3 Mixing analysis in the 3D-SC

We study the progress of mixing for four Reynolds

numbers, Re = 0.01, 10, 50, and 70. Liu et al. (2000)

demonstrated experimentally that chaotic mixing can be

achieved in this device, once inertia is significant.

Figure 13 shows the mixing evolutions along the down-

channel positions after 1, 2, 3, 4, and 10 mixing cycles for

Re = 0.01, 10, 50, and 70. As the Reynolds number increa-

ses, stretching and folding of interfaces becomes more

vigorous and it is evident that the flow at Re = 70 is capable of

producing the best mixing, while in Stokes flow regime

(Re = 0.01) the flow is totally incapable to mix the two fluids.

The onset of chaos in the whole cross-section requires a

minimum cross-over Reynolds number. Figure 14 shows the

quantitative comparison of mixing, using the flux-weighted

intensity of segregation for the four Reynolds numbers.

Higher Reynolds numbers provide better mixing, and

between Re = 10 and Re = 50 we detect a change from

regular to chaotic mixing. The mixing rate at the highest

Reynolds number is best, but of course requires more energy.

This analysis shows that the mapping method is capable

of analyzing mixing in quite complicated types of flow.

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

down channel position [L]

I d

P11

P12

AP12

Fig. 11 The intensity of segregation to quantify mixing in periodic

and aperiodic sequences P11, P12, and AP12 composed of P1 and

P2 protocols. Here, L is length of the one periodic repeat unit

(=1,078 lm)

Fig. 12 Schematic of periodic unit of three-dimensional serpentine

channel consisting of C-shaped building block. The inlet and outlet

cross-sections are all 300 lm wide and 150 lm deep. The length of

C-shaped section is 900 lm and in total the length of the channel is

1,200 lm
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6 Conclusions

In this paper, we developed a new approach to compute the

distribution matrices in a mapping method, and showed the

importance of the method as an efficient toolbox to ana-

lyze, design, and optimize micromixers. The concentration

distribution evolution can be computed and quantified

via the use of the discrete flux-weighted intensity of

segregation. To show the capabilities of the method, we

investigated mixing in three well known micromixers: the

SHM, the BEM, and the 3D-SC.

To map the SHM, the geometry was subdivided into

four functional modules, for each of which a mapping

matrix was computed. Different combinations of matrices

result in concentration evolutions and the corresponding

mixing measures for different lengths and lay-outs. This

was the basis for the optimization of an important design

parameter like the groove number per half cycle. In the

SHM investigated (with channel height 77 lm and channel

width of 200 lm), a groove depth of 10 lm is clearly

insufficient to induce chaotic advection, while for the other

four depths investigated, gd = 20, 30, 40 and 50 lm, the

deepest one gives the best mixing performance. However,

at a sufficiently long distance from the inlet, differences

among these four groove depths disappear. The optimum

number of grooves per half cycle proves to be 10. Various

designs of the BEM can be realized by combining different

sequences of the two mixing protocols. The mixing anal-

ysis by the multiplication of respective matrices with the

specified concentration at the inlet proves to be a very

efficient way to predict the best possible design. This

example, and the SHM analyzes, showed that the mapping

method can work as an engineering design tool to find out

an optimal design for numerous micromixers.

As for the 3D-SC, the flow characteristics are different,

as compared with the above two examples, due to the

presence of back-flows. This requires equation of motions

to be integrated with respect to time, which is time

(a) (b) (c) (d)

Fig. 13 Effect of increasing

Reynolds number on the

evolution of mixing patterns in

the serpentine channel at several

down-channel positions after 1,

2, 3, 4, and 10 cycles of mixing

for a Re = 0.01, b Re = 10, c
Re = 50, and d Re = 70. The

initial concentration at z = 0 is

shown on the top of a, and the

length of one cycle is 1,200 lm
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Fig. 14 The intensity of segregation plot up to the 10 cycles of

mixing in the serpentine channel for four Reynolds numbers

Re = 0.01, 10, 50, and 70
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consuming. However, mapping method requires this com-

putationally expensive tracking step to perform only once

for a repetitive unit. The outcome of mixing analysis in the

channel using this approach indicates that the mixing

quality is highly dependent on inertia, and as inertia

increases mixing improves. In the analyzed range of Rey-

nolds numbers, only flows at Re = 50 and 70 induce

chaotic mixing, while flow at Re = 10 induces regular

mixing, and at Re = 0.01 produces no mixing at all.
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