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Abstract The suitable surface modification of microflu-

idic channels can enable a neutral electrolyte solution to

develop an electric double layer (EDL). The ions contained

within the EDL can be moved by applying an external

electric field, inducing electroosmotic flows (EOFs) that

results in associated stirring. This provides a solution for

the rapid mixing required for many microfluidic applica-

tions. We have investigated EOFs generated by applying a

steady electric field across a square cavity that has

homogenous electric potentials along its walls. The flow-

field is simulated using the lattice Boltzmann method. The

extent of mixing is characterized for different electrode

configurations and electric field strengths. We find that

rapid mixing can be achieved by using this simple con-

figuration which increases with increasing electric field

strength. The mixing time for water-soluble organic mol-

ecules can be decreased by four orders of magnitude by

suitable choice of wall zeta potential and electric field.

Keywords Lattice Boltzmann method � Electroosmosis �
Mixing � Microscale

1 Introduction

Microfluidic systems used for biochemical analysis, drug

delivery and sequencing or synthesis of nucleic acids,

require rapid mixing (Nguyen and Wu 2005). Since the

molecular diffusivity for most solutes in liquid solvents is

very low, additional transport mechanisms must supple-

ment molecular diffusion. However, it is challenging to

induce advective mixing at microscale lengthscales and

that are associated with relatively small velocities (Hessel

et al. 2005), which has led to the design of passive and

active micromixers (Nguyen and Wu 2005; Chang and

Yang 2007).

Passive micromixers do not require external energy and,

for instance, can enhance diffusion by creating thin adjacent

high-gradient unmixed strips through chaotic advection.

Active micromixers, on the other hand, use disturbances

generated by an external field, e.g. pressure, temperature,

electrokinetic, magnetohydrodynamic or acoustic pertur-

bations. Although active micromixers require external

power and involve more complicated design and integra-

tion, they are able to provide greater mixing control,

particularly for intermittent and on-demand applications.

Microscale mixing is more commonly implemented in

flow-through configurations such as microchannels (Stone

et al. 2004) although some sequential applications also

require mixing to occur in discrete chambers (Lu et al.

2002).

For the low Reynolds number flows (Re � 1) encoun-

tered in microfluidics, the inertia term in the Navier–Stokes

equation can be neglected so that the flowfield is obtained
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by solving the Stokes equation. A linearized model for

three-dimensional microchannel flow can thus be based on

the superposition of one-dimensional axial channel flow

upon the two-dimensional transverse flow along any of its

cross-sections. The latter cross-sectional flow resembles

that in a two-dimensional rectangular cavity.

Specific manufacturing processes and coatings can be

used to induce an electric potential on a surface when it

comes in contact with an ionic liquid. This surface

potential, called the zeta (f) potential, enables a neutral

electrolyte solution to develop an electric double layer

(EDL) very close to a surface. The value of the zeta

potential depends on the surface material (Soong and

Wang 2003) and can be altered by use of specialized

coatings (Towns and Reginer 1991). The EDL thickness,

which is the Debye length, depends on the molarity of the

liquid, the valencies of the ions present, and the permit-

tivity of the medium. Negatively charged liquid ions

within this layer arrange themselves to lie closer to a

positively charged surface and vice versa. The ions con-

tained in the EDL move when an external electric field is

applied, causing liquid motion within it. This induces

motion throughout the domain through viscous shearing.

Such electroosmotic flows (EOFs) (Masliyah and Bhat-

tacharya 2006) have been used to enable mixing in various

microscale applications such as for sample injection,

chemical reactions and species separation (Qiao and Aluru

2003; Paul et al. 1998).

Ng et al. (2004) performed numerical simulations of

EOF and mixing by considering a steady electric field and a

nonuniform surface potential and were able to generate

both in- and out-of-plane vortices, which could be com-

bined to create streamwise vortices. Qian and Bau (2002)

provided closed form solutions for the flow and chaotic

mixing in an electroosmotic stirrer by considering a two-

dimensional conduit with electrodes placed repeatedly in

the flow direction. They found that an unsteady flowfield,

which gave rise to chaotic mixing, could be established by

altering the magnitude and sign of the f-potential provided

by the individual electrodes. Stroock and McGraw (2004)

developed an analytical model by idealizing their config-

uration through a superposition of a pressure-driven axial

flow and an electroosmotic transverse flow for a staggered

herringbone mixer. They demonstrated chaotic mixing that

was produced by two transverse alternating flow patterns.

Pacheco et al. (2006) and Kim et al. (2006) simulated

mixing in channel flows by combining axially and trans-

versely generated electrokinetic flows. The former

investigation analyzed time-dependent flows, and the latter

considered steady flows with a relatively complex potential

distribution.

In contrast to these earlier studies, which relied on either

unsteady flows or complex potential distributions, we

present a relatively simpler scheme to achieve rapid mixing

that uses a steady electric potential and a homogeneous zeta

potential in an easily implemented configuration (Fig. 1).

The previous investigations mostly considered flow-

through configurations such as channels and did not address

electroosmotic stirring in cavities whereas our work pri-

marily addresses the latter configuration. In addition, for a

very low Reynolds number, channel flow can be assumed to

result from a superposition of the axial and two-dimensional

cross-sectional flows. Our model, therefore, can also be

used to simulate the electroosmotic flow that is generated

across the channel cross-section, which can be superposed

with the axial flow that is independent of it.

The simulation of EOF requires exceedingly fine grids

in the EDL to simulate the essential features of the flow

and transport phenomena (Qian and Bau 2005). A popular

alternative strategy (Qian and Bau 2002; Pacheco et al.

2006; Kim et al. 2006) simplifies the treatment of the

electroosmotic flow by considering a Helmholtz–Smolu-

chowsky velocity, which is the fluid velocity at the edge

of the EDL. Since the EDL thickness (*10–100 nm) is

much smaller than the channel or cavity dimensions

(*10–100 lm), this approach takes the condition at the

EDL edge and applies it directly to the wall. This elim-

inates the need for the superfine spatial resolution

required for analysing the EDL flow and thus, consider-

ably reduces the computational cost. Besides, the solution

of electrostatic potential distribution is also not required.

However, for smaller geometries, dilute solutions or rel-

atively large EDL dimensions, the approximation is often

questionable.

We have simulated the electroosmotic flow using the

lattice Boltzmann method (LBM), which is linear and
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Fig. 1 Schematic of electroosmotic cavity
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based on a fully explicit scheme, and is easily implemented

on parallel computers (Ladd 1997). These features of LBM

make it an attractive method for analyzing electrokinetic

flows with sufficient spatial resolution in the EDL. The

method has been used to investigate microfluidic (Chen

and Doolen 1998; Succi 2001) and isothermal electroki-

netic problems (Tang et al. 2006; Melchionna and Succi

2004). We have quantified the mixing generated through

the mixing efficiency.

2 Mathematical modeling

2.1 Electroosmosis

The governing relations for EOF represent a coupled fluid-

electrostatic phenomenon. The fluid motion is governed by

the continuity and Navier–Stokes equations (which include

the electroosmotic body force), i.e.,

r:u¼ 0; and q
ou

ot
þ qu � ru¼�rpþ lr2uþ qeEeff ;

ð1a;bÞ

where Eeff denotes the effective electric field (both applied

electric field and that due to the wall zeta potential). For a

static or quasi-static irrotational electric field, it is related to

electric potential U in the form Eeff = –rU. The electric

potential results in a spatial charge distribution following

the Poisson equation

r2U ¼ � qe

e
; ð2Þ

where qe denotes the volumetric free charge density and e
is the permittivity of the medium. The electric charge

distribution depends both on the potential due to the

applied electric field / and the wall zeta potential w (i.e.,

U = / + w). When, (1) the Debye thickness is small

compared with the channel diameter or height (in our case

the ratio of Debye length to channel dimension is 0.01) and

(2) the charge at the walls is not large (i.e., zew/kBT £ 1),

then r/ � rw. At the same time, if the fluid velocity in

the microchannel is very small (generally for microchannel

flows, Re � 1), Eq. (2) assumes the forms (Ng et al. 2004;

Chang and Yang 2004)

r2/ ¼ 0; and r2w ¼ � qe

e
¼ 2n1ze

e
sinh

zew
kBT

� �
;

ð3a; bÞ

when the charge density qe follows the Boltzmann

distribution for a symmetric electrolyte (zi = ±z, ni = n?).

For small values of the zeta potential zew/kBT £ 1, using the

Debye–Hückel approximation, Eq. (3b) assumes the form

r2w ¼ 2n1z2e2w
ekBT

¼ j2w; ð4Þ

where j–1 denotes the Debye length. This approach has

been adopted to simulate electrosmotic flows in cavities

(Qian and Bau 2005) and rectangular channels (Kim et al.

2006) when a transverse potential gradient is applied.

Equation (4) can be analytically solved by separating

variables (O’Neil 2003) to determine the electric potential

and charge distribution. The solution is of the form,

w x;yð Þ ¼
X1
n¼1

f1

2 1� �1ð Þnð Þ
np sinh lnLy

� � sin knxð Þ sinh lnyð Þ

þ
X1
n¼1

f2

2 1� �1ð Þnð Þ
npsinh gnLxð Þ sinh cnxð Þ sin gnyð Þ

þ
X1
n¼1

f3

2 1� �1ð Þnð Þ
npsinh lnLy

� � sin knxð Þ sinh ln Ly� y
� �� �

þ
X1
n¼1

f4

2 1� �1ð Þnð Þ
npsinh gnLxð Þ sinh cn Lx� xð Þð Þ sin gnyð Þ;

ð5Þ

where kn ¼ np
Lx
; ln ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

n þ j2

q
; cn ¼ np

Ly
; gn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

n þ j2
p

:
The details of the above solution are provided in the

appendix. Equations (1a, b) are solved to generate the

flowfield using LBM.

2.2 Lattice Boltzmann method

The fundamental concept defining the LBM (Succi 1997) is

the construction of simplified kinetic models that incor-

porate the essential physics of microscopic and mesoscopic

processes so that the averaged macroscopic properties obey

the desired macroscopic equations (Chen and Doolen

1998). The Boltzmann equation with the Bhatnagar–

Gross–Krook (BGK) approximation is (Succi 2001)

o

ot
þ e � rr þ a � re

� �
f r; e; tð Þ ¼ � f � feq

s
; ð6Þ

where f(r, e, t) is a one-particle probability distribution

function, defined such that, [f(r, e, t)�d3r�d3e] is the number

of particles which, at time t, are located within a phase-space

control element [d3r�d3e] about r and e (r is the particle’s co-

ordinate in physical space and e is the particle’s discrete

velocity; Nourgaliev et al. 2003). Here, a is the external

force per unit mass acting on the particle. The last term of the

above equation represents the collision between the two

particles and is known as the ‘‘BGK collision operator’’

(Bhatnagar et al. 1954). The equilibrium distribution feq is

generally taken to be the Maxwell–Boltzmann distribution

for molecules for which ref � refeq ¼ e�u
RT feq: Thus,
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of

ot
þ e � rrf ¼ � f � feq

s
þ a � e� uð Þ

RT
feq: ð7Þ

The velocity space e can be discretized into a finite set of

velocities {ea}. Discretizing in time and space along a

discretized velocity direction, we obtain the discrete

Boltzmann equation on a lattice space or the lattice

Boltzmann equation as follows,

fa ri þ eadt; t þ dtð Þ � fa ri; tð Þ

¼ � 1

s�
fa ri; tð Þ � f eq

a ri; tð Þ
� �

þ a � ea � uð Þdt

RT
f eq
a ri; tð Þ:

ð8Þ

The relaxation time is related to the fluid viscosity through

the relation m ¼ 1
3

s� � 0:5ð Þ dx2

dt : In Eq. (8), fa (ri, t) is the f

distribution corresponding to the ath discrete velocity ea

and fa
eq is the corresponding equilibrium distribution in the

discrete velocity space.

A popular lattice model is the two-dimensional nine-

velocity (D2Q9) model (Fig. 2) for which the discrete

velocities are

ea ¼ 0; 0ð Þ; a ¼ 0; c cos a� 1ð Þ p
4
; sin a� 1ð Þ p

4

n o
;

n

a ¼ 1; 3; 5; 7;
ffiffiffi
2
p

c cos a� 1ð Þ p
4
; sin a� 1ð Þ p

4

n o
;

a ¼ 2; 4; 6; 8; ð9Þ

where c = dx/dt. The equilibrium distributions in the

corresponding directions are

f eq
a ¼ qwa 1þ 3

c2
ea � uþ

9

2c4
ea � uð Þ2� 3

2c2
u � uð Þ

� 	
: ð10Þ

The weights in Eq. (10) are

wa ¼
4

9
; a ¼ 0;

1

9
; a ¼ 1; 3; 5; 7;

1

36
; a ¼ 2; 4; 6; 8


 �
:

ð11Þ

The fluid density and momentum are calculated from the

moments of the distribution function,

q ¼
X

a

fa ¼
X

a

f eq
a and qu ¼

X
a

faea ¼
X

a

f eq
a ea: ð12Þ

The body force per unit mass responsible for the EOF is

a¼qe

q
E�rwð Þ¼�j2ew

q
E�rwð Þ¼�j2e

q
wE�1

2
rw2

� �
:

ð13Þ

where E = –r/ denotes the external electric field. The first

term in parentheses is responsible for fluid flow along the

wall and is used to calculate a. The second term 1/2rw2 is

normally neglected in the literature on electroosmotic flow

in comparison with the first tem in the parenthesis, wE. Our

contribution is through the inclusion of this term which

extends the formulation to cases involving large gradients

in streaming potential. This term, can be added to rp to

obtain an effective pressure gradient rp0 = r(p + 1/2w2),

which increases the pressure near the wall. A similar

inclusion of gradients of scalar potentials has been reported

in the context of buoyancy-driven flows (de Vahl Davis

1983; D’Orazio et al. 2004) and thermomagnetic convec-

tion (Mukhopadhyay et al. 2005) in enclosures. The

pressure can be obtained form the relation p0 ¼ 1
3
qc2:

At all the four walls no-slip boundary condition is

applied as proposed by Zou and He (1997). The boundary

condition is based on bounce back of the non-equilibrium

part of those distribution functions f, which are perpen-

dicular to the wall. Therefore,

f neq
3 ¼ f neq

7 and f neq
1 ¼ f neq

5 ð14a; bÞ

for horizontal and vertical walls, respectively.

For this boundary condition wall velocities are specified

while the density and the unknown f distributions are cal-

culated by using Eqs. (12) and (14a, b).

We consider electroosmotic mixing in a 10 lm · 10

lm cross-section square enclosure where the four walls can

have different but homogenous f potentials (Fig. 1). We

assume that the Debye length *100 nm, which can be

generated in an aqueous monovalent ion solution of 10–6 M

concentration. The electric potential w is normalized by the

term kBT/ze (= 25.69 mV for z = 1). The normalized

electric field E* = E/kBT/zedx). For a square cavity of

10 lm sides with 501 node points (dx = 20 nm), E* = 1 is

equivalent to a dimensional value of 1.28 V/lm. The fluid

properties such as density, viscosity, and permittivity are

assumed to be those of water.

0
1

3

5

7

24

6 8

D2Q9

Fig. 2 Schematic of lattice Boltzmann nodes
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3 Results and discussion

We consider fluid mixing due to different homogeneous

wall zeta potentials in the presence of a steady applied

electric field for which the various cases are listed in

Table 1. At first, the flowfield is obtained by solving the

lattice Boltzmann equation as discussed in the previous

section. Once the steady flowfield is obtained a number of

passive tracer particles are introduced in the flow. The

motion of a tracer particle is obtained by solving the

relation dR
dt ¼ u; where R = (x, y) denotes the particle

position and u the fluid velocity at that location. The above

equation is solved using an explicit Euler method and

selecting the time step dt such that udt & 0.01 dr, where

dr denotes the lattice spacing. Two types of passive tracer

particles, white and black, are introduced into the top and

bottom halves of the cavity, respectively. The resulting

visualization of mixing by observing the motions of the

passive tracers is purely that due to advection.

Figure 3 presents the steady-state velocities and equi-

librium tracer particle distributions for Cases I–V.

Figure 3a presents results for Case I, when f = 1 for the top

horizontal wall while f = 0 for all other walls, and an

electric field EX
* = 0.01 is applied in the X-direction. This

produces an EDL very close to the top surface, and the

electric field forces the fluid to circulate clockwise inside

the cavity. The center of the vortex is very close to the top

surface and the circulation loops lie primarily within the

top half of the cavity. Consequently, the tracer particles in

the upper and lower halves of the cavity remain confined in

those portions, although a few, close to the vertical wall,

move between these halves. The white particles are mostly

concentrated in the top half following the fluid circulation

while a few others become sparsely distributed elsewhere.

Figure 3b corresponds to Case II when f = 1 for the

right wall with the other walls at f = 0. An EDL is again

produced close to the right wall. With EY
* = 0.01 applied in

the upward direction, the fluid near the right wall also

moves upwards inducing circulation and good mixing in

the right half of the cavity.

Figure 3c presents similar results for Case III when the

two vertical walls are imparted unit zeta potentials while

the horizontal walls are maintained at f = 0, and an upward

field EY
* = 0.01 is applied. Two EDLs are formed along the

two vertical walls for this case, which induce upward fluid

motion along both interfaces. This results in two symmetric

circulations within the cavity, one clockwise and the other

counter-clockwise. The tracer particles are thus able to

move and mix vertically, except at the center of their

respective vortices, but those that originate within the right

or left halves remain confined to those sections.

The mixing for Case IV is presented in Fig. 3d for

which the right and the left walls are given unit positive

Table 1 The different configurations investigated

Case

no.

Non-dimensional zeta potential Non-dimensional

electric field

f1 f2 f3 f4 EX
* EY

*

I 1.0 0.0 0.0 0.0 0.01 0.0

II 0.0 1.0 0.0 0.0 0.0 0.01

III 0.0 1.0 0.0 1.0 0.0 0.01

IV 0.0 1.0 0.0 –1.0 0.0 0.01

V 1.0 1.0 1.0 1.0 0.01 0.01

c)

d)

a)

e)

b)

Fig. 3 Steady state velocity vector and passive tracer particle

locations for different cases listed in Table 1
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and negative zeta potentials, respectively, while the applied

electric field acts upward. The fluid along the right wall

starts moving upward while that along the left moves

down, creating circulation in the entire cavity. At the end,

particles of both kinds are well mixed throughout the

domain.

Results for case V are shown in Fig. 3e when all walls

have unit positive zeta potentials while the applied field is

along both the X and Y directions (EX
* = 0.01, EY

* = 0.01).

This zeta potential distribution results in the formation of

four EDLs, one along each wall. The fluid along the two

vertical walls moves upward as a result while that along the

horizontal walls moves rightward, which results in two

triangular circulations inside the cavity. The tracer particles

at the centers of vortices remain in the corners while other

particles move diagonally creating two relatively unmixed

triangular regions.

Mixing can be characterized through the mixing effi-

ciency (Xia et al. 2006) or the Shannon entropy

(Camesascal et al. 2005), which are interrelated. To do so,

we divide the entire domain into a number of cells, and

determine the number of white and black particles present

in each of them. The i · j cells (i representing rows and j

columns) in the domain are initially filled with N1 and N2

numbers of white and black particles respectively. Since

the two mixing quantities provide equivalent descriptions,

we present results for the mixing efficiency only.

The uniformity of mixing is measured through the

mixing efficiency, which represents the standard deviation

of mixing. If the kth cell has n1
k and n2

k particles, respec-

tively, of the two types, the mixing efficiency (Xia et al.

2006)

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXi�j

k¼1

xk
nk

1

nk
1 þ nk

2

� N1

N1 þ N2

� 	2

vuut ; ð15Þ

where, xk = (n1
n + n2

k)/(N1 + N2) denotes the weighting

factor. For binary mixing with the material ratio 1:1 (i.e.,

N1 = N2 = N), the standard deviation r ranges from 0 for

complete mixing to 0.5 for nonmixed particles.

The accuracy of these mixing parameters depends on the

numbers of tracer particles and cells used in their deter-

mination. Considering a large number of cells increases the

resolution but also increases the probability of finding

spurious local nonhomogeneities, e.g., when only a single

particle is present in a cell. It is therefore important to

optimize the number of cells and particles used. We found

that 104 particles and 20 · 20 cells provided useful mea-

sures of the mixing parameters for our simulations.

The temporal evolution of the mixing parameter is

normalized by the time scale, tH-S = L/UH-S where UH-S

= lEOE is the Helmholtz–Smoluchowski electroosmotic

velocity, Here, E denotes the applied electric field and lEO

the electroosmotic mobility of the ions. The ion mobility

depends on the wall f potential, the permittivity of

the medium, and the fluid viscosity through the rela-

tion lEO = ef/l.

The tracer particles are initially entirely unmixed, i.e.,

r = 0.5. The evolution of mixing efficiency is presented in

Fig. 4. With the progression of mixing, the value of r
decreases. The mixing efficiency is overall poor for Cases I

and V, reaching the minimum values rmin* 0.33. This

result concurs with Fig. 3, which shows that for Case I most

particles remain in their respective halves of the cavity, and

form two discrete triangular regions for Case V. Mixing

improves for Cases II, III and IV. Case II produces the most

rapid mixing (rmin * 0.12), while Cases III and IV produce

slower but marginally better mixing (rmin * 0.11).

Next, we investigate the influence of varying EY
*

between 0.01 and 1 for Case III. Figure 5 presents the

corresponding changes in r. The plots for the variation of r
over t* collapse on each other, yielding the relation

r = 0.67t*–1/4. This implies that the quality of mixing (i.e.,

the minimum value of r) can be described by considering

the normalized time alone. When the value of E increases

but t* is held constant, the dimensional time t required to

achieve a specific r value decreases, i.e., mixing occurs

more rapidly. Decreasing the mixing time involves

decreasing the channel length thus aiding miniaturization.

According to Fig. 5, the equilibrium value of r is reached

at t* * 1,000. The actual mixing time can be calculated by

using the relation t* = t/tH-S, as previously discussed. A

time t* = 1,000 corresponds to t * 73 s for EY
* = 0.01,

while for EY
* = 0.1 and 1.0, the value of t * 7.3 and 0.73 s,

respectively. On the other hand, the diffusion time scale tD
= L2/D * 103–104 s for L = 10 lm and diffusivity D of

water-soluble organic molecules *10–14–10–13 m2/s (Elias

1983).

0

0.1

0.2

0.3

0.4

0.5

0.6

0

Normalized Time, t* = t/tH-S

 ,ycneiciff
E gnixi

M
σ

Case I Case II Case III Case IV Case V

15001200900600300

Fig. 4 Variation in the mixing efficiency with respect to the

normalized time for the different cases listed in Table 1
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Similar effects of electric field strength (EX
* and EY

*) on r
were observed for all other configurations in Table 1.

Consequently, similar to the analysis of Case III, it is

possible to generate different power series correlations

between r and t* for other configurations.

4 Conclusions

Stokes flow through a microchannel can be considered as

the result of the superposition of a one-dimensional axial

flow upon the two-dimensional transverse flow along any

of its cross-sections. We have simulated the corresponding

two-dimensional transverse EOF using LBM. Instead of

the commonly used Helmholtz-Smoluchowski (H-S) slip

velocity formulation, we have spatially resolved the EDL

to determine the local EOF velocity. Our simulations show

that rapid mixing can be achieved by using a homogeneous

zeta potential and a steady electric field. The quality of

mixing depends on the choice of wall which is provided

with a zeta potential and the corresponding direction of the

electric field. Mixing is enhanced when a f potential is

imparted to the channel wall that is perpendicular to the

initial particle distribution and when an electric field is also

applied along the direction of this potential. The rapidity of

mixing can be characterized by a normalized time that

depends upon the electroosmotic time scale. In general, a

stronger electric field induces more rapid mixing. This

configuration decreases the mixing time for water-soluble

organic molecules by four orders of magnitude.

5 Appendix

The governing equation for the electric potential distribu-

tion, Eq. (4), is

r2w ¼ 2n1z2e2w
ekBT

¼ j2w: ðA1Þ

The boundary conditions (cf. Fig. 1) are

w 0;yð Þ ¼ f4; w Lx;yð Þ ¼ f2; w x;0ð Þ ¼ f3; w x;Ly

� �
¼ f1:

ðA2Þ

This single problem containing four non-zero boundary

conditions can be divided into four simpler problems, each

with a single non-zero boundary condition as shown in

Fig. 6 (O’Neil 2003). If wj is the solution of the jth problem

(j = 1, 2, 3, 4) then the solution of Eq. (A1) with boundary

condition (A2) is

w x; yð Þ ¼
X4

j¼1

wj x; yð Þ: ðA3Þ

Considering one of these four new problems (namely,

j = 1) in the context of Eq. (A1), the relevant boundary

conditions are

w1 0;yð Þ¼ 0; w1 Lx;yð Þ¼ f2; w1 x;0ð Þ¼ 0; w1 x;Ly

� �
¼ 0:

ðA4Þ

We separate variables by substituting w1 (x,y) = X(x)Y(y)

in Eq. (A1) to obtain

Y 00

Y
¼ j2 � X00

X
¼ �c2; ðA5Þ

where c is a real constant. The negative sign before c2

ensures a Sturm–Liouville system in the Y-direction. The

general solution to Eq. (A5), therefore, becomes

w1 x; yð Þ ¼
X4

j¼1

An sin cnyð Þ sinh gnxð Þ; ðA6Þ

where gn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

n þ j2
p

and cn = np/ Ly, for n = 1, 2,….

The constants An are obtained using the remaining

boundary condition upon Fourier expansion, i.e.,

 = 0.67(t*)P

 1/4
P
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Fig. 5 Variation of mixing efficiency with normalized time t* = t/tH-S

for different electric field strengths
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Fig. 6 One problem with four non-zero boundary conditions is

divided into four problems with each having one non-zero boundary

condition. The solution of the original problem is the sum of the

solution of the four problems
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An ¼
2f2 1� cos npð Þð Þ
cnLy sinh gnLxð Þ ¼

2f2 1� �1ð Þnð Þ
np sinh gnLxð Þ : ðA7Þ

Therefore, the solution for this problem is

w1 x; yð Þ ¼
X1
n¼1

An sin cnyð Þ sinh gnxð Þ: ðA8Þ

Likewise, we can solve the other three problems.

Following Eq. (A3) the solution of the original problem,

Eq. (A1) with boundary condition (A2), is

w x;yð Þ ¼
X1
n¼1

f1

2 1� �1ð Þnð Þ
np sinh lnLy

� � sin knxð Þ sinh lnyð Þ

þ
X1
n¼1

f2

2 1� �1ð Þnð Þ
npsinh gnLxð Þ sinh cnxð Þ sin gnyð Þ

þ
X1
n¼1

f3

2 1� �1ð Þnð Þ
npsinh lnLy

� � sin knxð Þ sinh ln Ly� y
� �� �

þ
X1
n¼1

f4

2 1� �1ð Þnð Þ
npsinh gnLxð Þ sinh cn Lx� xð Þð Þ sin gnyð Þ;

ðA9Þ

where kn ¼ np
Lx
; ln ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

n þ j2

q
; cn ¼ np

Ly
; gn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

n þ j2
p

:

Eq. (A9) is Eq. (5) in the main text.
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