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Abstract Paramagnetic particles, when subjected to

external unidirectional rotating magnetic fields, form

chains which rotate along with the magnetic field. In this

paper three simulation methods, particle dynamics (PD),

Stokesian dynamics (SD) and lattice Boltzmann (LB)

methods, are used to study the dynamics of these rotating

chains. SD simulations with two different levels of

approximations—additivity of forces (AF) and additivity of

velocities (AV)—for hydrodynamic interactions have been

carried out. The effect of hydrodynamic interactions

between paramagnetic particles under the effect of a

rotating magnetic field is analyzed by comparing the LB

and SD simulations, both of which include hydrodynamic

interactions, with PD simulations in which hydrodynamic

interactions are neglected. It was determined that for

macroscopically observable properties like average chain

length as a function of Mason number, reasonable agree-

ment is found between all the three methods. For

microscopic properties like the force distribution on each

particle along the chain, inclusion of hydrodynamic inter-

action becomes important to understand the underlying

physics of chain formation.

Keywords Magnetorheological fluids � Simulation �
Biochemical sensors

List of symbols

A specified constant in excluded volume force (no unit)

a radius of particle (m)

aij Mobility tensor relating the linear velocity of a

particle to the hydrodynamic force on a particle

Aij Resistance tensor relating hydrodynamic force on a

particle to the linear velocity of a particle
~bij Mobility tensor relating the linear velocity of a

particle to the hydrodynamic torque of a particle
~bij Resistance tensor relating the hydrodynamic force

on a particle to the angular velocity of a particle

cij Mobility tensor relating the angular velocity of a

particle to the hydrodynamic torque of a particle

Cij Resistance tensor relating the hydrodynamic torque

to the angular velocity of a particle

d magnitude of center-to-center distance of two

particles (m)

Fev
i excluded volume force on the ith particle (N)

Fh
i hydrodynamic force on the ith particle (N)

Fm
i magnetic force on the ith particle (N)

M magnetization of a particle (A m–1)

Ma Mason number, Ma ¼ 122gx
l0M2 (no unit)

m mass of a particle (kg)

m̂ direction of magnetic field (no unit)

M mobility matrix
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R resistance matrix

Re Reynolds number, Re ¼ xa2

t (no unit)

rij distance between the ith and jth particles (m)

t time (s)

U? velocity of fluid (m s–1)

vi velocity of the ith particle (m s–1)

Dr displacement of a particle

Dt time step (s)

g shear viscosity of fluid (Pa s)

l dipole moment of a paramagnetic particle (A m–2)

l0 permeability of free space (N A–2)

XðtÞ angular velocity of a particle at time t (rad s–1)

x angular velocity of the rotating magnetic field

(rad s–1)

n specified constant in excluded volume force (no unit)

1 Introduction

Magneto-rheological (MR) fluids can be defined as a class

of fluids in which micron-sized paramagnetic particles are

suspended in a fluid such as water. Under the application of

a magnetic field they form a variety of structures like

columns or chains, depending on various factors like vol-

ume fraction, direction and magnitude of magnetic field,

shear rates, etc. (Vuppu et al. 2003; Melle et al. 2003).

They have been widely used for rheological purposes in the

past because of their field-controllable effective viscosities

and yield stresses (Larson 1999). More recently these MR

fluids have been finding applications in new methods of

sensing techniques for biochemical detection. A number of

investigations in recent years have pursued the develop-

ment of miniaturized devices for detecting biochemical

agents (Vuppu et al. 2003, 2004). Under the influence of a

rotating magnetic field, paramagnetic particles aggregate to

form chains that rotate with the magnetic field. On varying

the frequency of rotation or the strength of the magnetic

field, the lengths of the resulting chains can be controlled.

Coupled with lock-in amplification, such rotating magnetic

chains can form the basis for highly sensitive biochemical

detectors (Vuppu et al. 2004).

The dynamics of these fluids under various conditions

are still not completely understood, and more powerful

dynamic simulation tools are required for their successful

application to a variety of situations. Although there have

been many previous simulations of MR fluids (Martin

2001; Melle et al. 2003; Yadav et al. 2006), most of these

studies employed a simplified approach to the modeling of

fluid flow (such as neglecting hydrodynamic interactions

between particles), and a simple Stokes drag was used to

calculate the velocities. This approach is referred to here as

the particle dynamics (PD) method. For a detailed analysis,

the reader can refer to Martin (2001), Melle et al. (2003),

and Yadav et al. (2006).

Prior investigations by Parthasarathy et al. (1999) have

reported quantitative but no qualitative difference in the

dynamic response of the dimensionless storage modulus of

electro-rheological (ER) suspensions (i.e. the electrical

counterparts of MR suspensions) under oscillatory shear

conditions based on simulations with and without hydro-

dynamic interactions. Further investigations (Yadav et al.

2004, 2006) using Lattice Boltzmann simulations (LB) on

the effect of hydrodynamic interaction on the dynamics of

paramagnetic particles under the influence of rotating

magnetic field have revealed that neglecting such interac-

tions does not affect macroscopic quantities, but does affect

microscopic quantities like the detailed forces acting on the

particles. In the present study, this investigation is taken a

step further by comparing the results obtained from LB

simulations (Yadav et al. 2004, 2006) with those from the

Stokesian dynamics (SD) method, and with the simpler PD

approach. To our knowledge, this is the first comprehensive

comparison of all three methods—of varying complexity—

reported for the simulation of rotating paramagnetic chains.

In a real colloidal solution, the motion of the particles is

governed by multi-body hydrodynamic interactions, which

are taken into account by the SD method. The hydrody-

namic interaction is considered by a pairwise additive

scheme which can be carried out in two different ways. One

method entails superposing the forces (pairwise additivity in

the resistance matrix) (Bossis and Brady 1984, 1988; Brady

and Bossis 1985; Durlofsky et al. 1987), and the second

method entails superposing the velocity disturbances

(pairwise additivity in the mobility matrix) (Satoh 2003;

Satoh 2001). Though the former method reproduces the

lubrication effect accurately, its application is limited to

small systems as this method involves calculating the

inverse of the resistance matrix. In contrast, although the

additivity of the velocities is inferior in replicating the

lubrication effect, it does not involve inverting the resis-

tance matrix, thus making it applicable to large systems. In

this paper both of the above-mentioned methods are used to

simulate the dynamics of chains, and the results obtained are

compared with those obtained from LB and PD simulations.

2 Model and simulation method

The governing equation of motion for paramagnetic parti-

cles is the Langevin equation (Yadav et al. 2004, 2006; and

references cited therein):

m
d2ri

dt2
¼ Fh

i þ Fm
i þ Fev

i þ Fwall
i þ Fb

i ð1Þ

where m is the particle mass, ri the position of the ith

particle, Fh
i the hydrodynamic force, Fm

i the magnetic force,
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Fev
i the excluded-volume force, Fwall

i the repulsive force, or

the excluded-volume force between the particle and the

wall, and Fb
i the random Brownian force. Since the

magnetic force is predominant in the present simulation,

the Brownian force can be neglected, and it has been

assumed that the particles exist in an infinite fluid which

leads to neglecting wall interaction forces. Furthermore

neglecting the inertia of the particles, Eq. (1) reduces to

Fh
i þ Fm

i þ Fev
i ¼ 0 ð2Þ

The expression for the magnetic force Fm
i , assuming

each particle behaves like a point dipole, is given by (Melle

et al. 2003; Yadav et al. 2006; Ginder 1994):

Fm
i ¼

l0

4p
3l2

XN

j ¼ 1

j 6¼ i

1

r4
ij

1� 5 m̂ � r̂ij

� �2
� �

r̂ij þ 2 m̂ � r̂ij

� �
m̂

h i

ð3Þ

where l is the dipole moment, l0 the permeability of free

space, m̂ the direction of the magnetic field, and rij the

distance between the ith and jth particles. The expression

for the excluded volume force Fev
i is given as (Melle et al.

2003):

Fev
i ¼ A

3l0m2

4pð2aÞ4
XN

j ¼ 1

j 6¼ i

r̂ij exp �n rij

�
2a� 1

� �� �
ð4Þ

where a is the particle radius, and A = 2 and n = 10 are

specified constants. A is chosen in order to give zero

interaction force when two particles, aligned along the field

direction and interacting via a dipolar force, are in contact.

With n = 10, the ratio between the dipolar and excluded-

volume forces of two particles aligned with the field

reaches the value 10 when the distance between the parti-

cles increases to rij/2a = 1.1. For details regarding the LB

and PD simulations, the reader is referred to Yadav et al.

(2004, 2006).

2.1 Modeling hydrodynamic forces

One of the most common and simplest methods of mod-

eling the hydrodynamic force is the Stokes drag, which

assumes that each particle is moving in an infinite fluid

with a constant velocity:

Fh
i ¼ �6pgavi ð5Þ

where Fi
h is the hydrodynamic force on the ith particle, g

the shear velocity of the fluid, and vi the velocity of the ith

particle. While this method is simple, it neglects the

hydrodynamic interactions between the particles. In other

words, the motion of a particle is independent of the

motion of other particles. Stokesian dynamics is an

extension of the particle dynamics method where the

dependence of the motion of particles on one another is

taken into account at two different levels of approximation,

additivity of velocities (AV) and additivity of forces (AF).

2.2 Additivity of forces

In the additivity of forces (AF) method, the forces acting

on the particles are superposed in a pairwise additive

method to form a resistance matrix.

In the absence of shear flow, the force Fi and torque Ti

exerted on the ambient fluid flowing with a velocity of U1;
by a particle i, is given by (Satoh 2003),

Fi ¼6pgaðvi � U1Þ

þ g

N � 1ð ÞðAii � 6paIÞ � ðvi � U1Þ

þ
XN

j¼1ð6¼iÞ
Aij � ðvj � U1Þ

þ N � 1ð Þ ~Bii � ðwi � XÞ
� �

þ
XN

j¼1ð6¼iÞ

~Bij � ðwj � XÞ

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

9
>>>>>>>>>>>>=

>>>>>>>>>>>>;

ð6Þ

Ti ¼8pga3ðwi � U1Þ

þ g

N � 1ð ÞðBii � ðvi � U1Þ þ
XN

j¼1ð6¼iÞ
Bij � ðvj � U1Þ

þ N � 1ð ÞðCii � 8pa3IÞ � ðwi � XÞ þ
XN

j¼1ð6¼iÞ
Cij � ðwj � XÞ

8
>>>>><

>>>>>:

9
>>>>>=

>>>>>;

ð7Þ

Microfluid Nanofluid (2008) 5:33–41 35

123



where I is the unit tensor, Aij, Bij and Cij are the resis-

tance tensors which are configuration dependent and taken

from Kim and Karilla (1991), and vi, wi are the transla-

tional velocity and angular velocity of the ith particle.

Writing the above two equations for every particle, a

matrix can be formed as (Satoh 2003; Brady and Bossis

1985):

Fh ¼ R � U ð8Þ

where Fh describes the column vector containing the forces

and torques (6N · 1 vector), U describes the column vector

(6N · 1 vector) containing the translational and angular

velocities of all N particles, and R is the resistance matrix

(6N · 6N). In order to make the simulation faster, it has

been assumed that the particles are subjected to high

magnetic fields, and thus the torque exerted by the particles

on the fluid can be assumed to be zero, i.e. the particles do

not rotate about their center as they are subjected to high

magnetic field. Thus neglecting the torque and the angular

velocities, the resistance matrix relating the translational

velocity (3N · 1) to translational force (3N · 1) reduces to

a (3N · 3N) matrix. Since the magnetic and excluded

volume forces are known, U can be solved by calculating

the inverse of the resistant matrix from where the

displacement of the particle can also be determined

(Satoh 2003):

U ¼ R�1 � ðFm þ FevÞ ð9Þ

Dr ¼ R�1ðFm þ FevÞ
� �

Dt ð10Þ

Thus for a system of N particles the simulation requires

inverting the 3N · 3N resistance matrix at every time step.

Since the scalar functions used in the present method have

been obtained using the boundary collocation method (Kim

and Karilla 1991), in which the lubrication effects have

been well accounted for, the present method is capable of

replicating the physics of the particles motion accurately.

Furthermore in this method the pair interactions appear

indirectly as multi-body hydrodynamic interactions

through the inverse procedure of the resistance matrix

(Durlofsky et al. 1987), which makes it a dynamic method

for simulating such systems.

2.3 Additivity of velocity

Following the same procedure as shown above for the

additivity of forces, the equation for the velocity of particle

i, vi, can be written in a pairwise additive method to form

the mobility matrix. In the absence of a shear flow, vi and

the angular velocity wi of a particle are written as (Satoh

2003):

vi ¼
1

g

1

6pa
Fi þ N � 1ð Þðaii �

1

6pa
IÞ � Fi

XN

j¼1ð6¼iÞ
aij � Fj þ N � 1ð Þ~bii � Ti þ

XN

j¼1ð6¼iÞ

~bij � Tj

8
>>><

>>>:

9
>>>=

>>>;

ð11Þ

wi ¼
1

g

1

8pa3
Ti þ N � 1ð Þ~bii � Fi þ

XN

j¼1ð6¼iÞ

~bij � Fjþ

N � 1ð Þðcii �
1

8pa3
IÞ � Ti þ

XN

j¼1ð6¼iÞ
cij � Tj

8
>>>>><

>>>>>:

9
>>>>>=

>>>>>;

ð12Þ

where aij, bij and cij are the mobility tensors, which are

again configuration dependent and taken from (Durlofsky

et al. 1987; Kim and Karilla 1991). Making the same

assumption as that in the AF method for neglecting the

torque and angular velocities, the translational velocities of

the particles and hence the displacement can be found by

multiplying the mobility matrix 3N · 3N with the force

vector 3N · 1 as shown below,

U ¼MðFm þ FevÞ ð13Þ

Dr ¼ MðFm þ FevÞ½ �Dt ð14Þ

Importantly, the AV approach does not require the

inversion of a matrix Eqs. (9) and (10), while the AF

approach does (Eqs. (13) and (14)).

2.3.1 Lattice Boltzmann method

In the lattice Boltzmann method the hydrodynamic force

on the particles is calculated by summing up the forces on

all the boundary nodes (Ladd and Verberg 2001). At each

of the boundary nodes the hydrodynamic force can be

calculated using Eq. 15:

fi rb; t þ
Dt

2

� 	
¼ Dx3

Dt
2n�bðr; tÞ �

2acbq0ub � cb

c2
s

� 	
cb ð15Þ

where fi is the hydrodynamic force on one boundary node

of the ith particle, rb the position vector of the boundary

node, Dx and Dt the lattice spacing and time step

respectively, n*
b (r,t) the postcollision distribution at (r, t),

q0 the equilibrium fluid density, ub the velocity at particle

surface rb, satisfying the stick boundary conditions, cb the

lattice velocity vector of the boundary node, acb a constant

depending on the type of lattice, and cs the speed of sound

in the fluid. The total force and torque on the ith particle

can be calculated by summing the forces and torques on

each individual node as given below:
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Fh
i ¼

X
fi rb; tð Þ

Th
i ¼

X
rb � fi rb; tð Þ

ð16Þ

Since the momentum space of the fluid in the lattice

Boltzmann method is discrete, it is not possible to match

the velocity of the fluid at the boundary to that of the solid

by directly equating the velocities of the fluid and surface

at the boundary nodes. But if the distribution function at

the boundary node is modified in such a way that the

momentum transfer to the particle is the same as in the case

of a no-slip boundary condition then we can implement the

no-slip boundary condition. This method results in a small

amount of fluid flowing in or out of each boundary node so

that there is a redistribution of fluid mass across the

boundary nodes. The additional mass which is added to or

removed from the particle is exactly recovered when the

particle is moved to its new position in the next timestep.

2.4 Nondimensional parameters

A nondimensional parameter which gives the ratio of

magnetic and viscous forces on the particles is the Mason

number (Ma). It is used in this work to characterize the

strength of viscous and magnetic forces. It is derived by

non-dimensionalizing the Langevin equation (Eq. (1)) with

respect to time and distance, upon which a non-dimen-

sional time, s, is defined:

s ¼ 122g
l0lsM

2
ð17Þ

This timescale s, which when multiplied by x (the

angular frequency of rotation of the magnetic field) gives

the Mason number Ma:

Ma ¼ 122gx
l0M2

ð18Þ

where M is the magnetization of the paramagnetic

particles, g the viscosity of the fluid, x the rotational

frequency of the magnetic field and lo the permeability of

free space. M is related to the induced dipole moment, l, of

the particles by:

l ¼ 4

3
pa3M ð19Þ

where a is the radius of the particle. Since the

magnetization of these particles has been found to

saturate at higher magnetic fields (Melle et al. 2002), it

can be assumed that the induced dipole moment is constant

and doesnot vary with magnetic field. The Mason number

gives the ratio of viscous force magnitude and (magnetic) +

(excluded volume force) magnitude when only two

particles are present. In order to avoid the particles from

overlapping in this analysis, an excluded volume force is

also considered. The timescale s can be thought of as the

time required for a particle to move under the influence of

another polarized particle. The time x–1 can be considered

as the shearing time for a particle moving with angular

frequency x. If s is greater then x–1 (or Mason number

[ 1), then the time for shearing of a particle is less than the

time for the particle to move under the influence of a

magnetic field, and hence no stable chains will form as will

be shown later in the Sect. 3. The Reynolds number, Re,

for the particles is calculated from:

Re ¼ xa2

t
ð20Þ

2.5 Computer simulations

Two types of SD simulations, namely additivity of forces

(AF) and additivity of velocities (AV), were carried out to

study the dynamics of chains of paramagnetic particles.

Both of the above-mentioned simulation methods were

applied to a box of size 200 · 200 · 200 (in lm). Periodic

boundary conditions were applied in all three directions

and in order to obtain results quickly, all the particles were

placed in the XY plane. The frequency of the rotating

magnetic field was set to 1 Hz so that the system is in the

low Re regime. The magnitude of Ma was changed by

varying the parameters in the Ma definition given in Eq.

(16), but keeping x constant. The scalar functions required

for including the hydrodynamic interactions between the

particles were tabulated as functions of particle–particle

separation using the numerical scheme suggested by Kim

and Mifflin (1991). A suitable interpolation scheme was

used to obtain the scalar functions for arbitrary separation

from these tabulated values. These scalar functions are

singular in nature, i.e., as the particle–particle separation

increases, the values of the scalar functions increase rap-

idly. In order to ensure the program doesn’t stop as a result

of this singularity, the resistance functions are assumed to

vary linearly between d = 2.001 and d = 2 where d is the

nondimensional particle–particle separation (r/2a).

The PD and LB simulations are described in detail

elsewhere (Yadav et al. 2004, 2006), and so are not repe-

ated here.

3 Results and discussion

Figure 1 shows the variation of chain length as a function

of Ma. The chain length has been non-dimensionalized
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with the diameter of the particle. At low Ma, the magnetic

forces acting on the particles dominate over the viscous

forces as a result of which the particles aggregate to form

chains. Thus as Ma increases, the magnetic forces acting on

the particles tend to decrease which, has the effect of

forming smaller-length chains. This variation can be

clearly noticed in Fig. 1. Though all the simulation meth-

ods predict similar chain lengths for varying Ma, they do

not agree with the experimental results obtained from

Melle et al. (2002a) and Vuppu et al. (2003), which in fact

disagree with each other in magnitude, but not in trend. The

reason for the mismatch between the experimental and

simulation results can be attributed at present to two dif-

ferent factors, the presence of surface groups on the

particles in the experiments whose effect is not simulated

in the current problem, and the assumption of the saturation

of the magnetization of the particles. In reality the satura-

tion occurs non-uniformly around the particle, which can

affect the magnetic interaction force existing between the

particles.

As mentioned above, a possible reason for the discrep-

ancy between the results obtained from Melle et al. (2002a)

and Vuppu et al. (2003) could be because of using particles

with different surface groups. While in Melle et al.’s

experiments (2002a, b) carboxylic groups were attached to

the paramagnetic particles, in Vuppu et al.’s experiments

(2003) amine-functionalized paramagnetic particles were

used. Another particularly important difference between

the two experiments was the presence (or absence) of a

surfactant. Melle et al. (2002a) used paramagnetic beads

that were not only initially coated with surfactant, but in

fact additional surfactant was added to the solution. On the

contrary, Vuppu et al. (2003) removed all traces of sur-

factant from their solution containing the paramagnetic

particles. The chemistry of the solution, such as the pH

value, the type of base fluid (aqueous or organic), and the

aging of solution, will also likely influence the chain for-

mation. The trend of the variation for the simulations and

experimental results, however, are identical. The average

slope of the lines for LB, AF and PD simulations is 0.5,

which is in agreement with that measured in experiments

by Melle et al. (2002a) from a chain length versus x plot

(Melle et al. 2002b, 2003).

Figure 1 shows that the results for chain lengths from

the PD simulations are in excellent agreement with those

from the more comprehensive LB and SD simulations. This

is despite the fact that in the PD simulations, the near-field

and far-field hydrodynamic interactions are neglected. In

order to understand this phenomenon more deeply, a

comprehensive force analysis was performed. A case

where the domain consisted of 9 particles was considered

and the force distribution on each of these particles when

they form a chain and rotate with the magnetic field was

investigated. The simulation for this case was run at a low

Ma of 0.015 to facilitate chain formation, and the results

obtained from all four simulation methods are shown in

Fig. 2. Figure 3 shows the snap shots of these aggregates

for two extreme Mason numbers.

Figure 2 presents the total force experienced by the

particles in the direction of their motion, or in other

words, the total drag force experienced by the particles.

The forces are non-dimensionalized by the Stokes drag

on a 2-particle chain rotating about its axis, which is

given by 6pga(xa). The actual hydrodynamic force will

1

10

100

10-5 0.0001 0.001 0.01 0.1 1 10

PD
LB
SD (AF)
Melle et al
Vuppu et al

L
/2

a

Ma

 (2002a) 
 (2003)

Fig. 1 Comparison of the variation of chain length with Ma from

simulations with experimental data from Vuppu et al. (2003) and

Melle et al. (2002a)

0
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/6
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(1955)

Yadav et al. (2004)

Fig. 2 Comparison of drag forces acting on the particles from

simulations
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be much larger than this tangential component of the

total force. From Fig. 2 it is observed that for the AF

and LB simulations, the force distribution is nearly

identical, with the particles in the periphery subjected to

a maximum force slightly greater than the Stokes drag,

and the particles in the center being subjected to forces

slightly lower than the Stokes drag. This reduction of

forces can be attributed to the shielding effect wherein

the particle interaction is shielded as a result of the

presence of an intervening third particle. But the drag

force experienced by the particles for the AV simulation

is comparatively less than that of the Stokes drag. This is

because the mobility formulation (AV) is based on a

point-force approximation. When two particles come

close to each other, the surfaces of the two spheres tend

to squeeze out all the fluid between them, which results

in high-pressure forces between the two spheres. This

effect is termed as the lubrication effect, and is an

important parameter for simulating physically accurate

systems. When a point-force approximation is made in

the mobility formulation, we are not able to capture the

dominant lubrication effect; as a result the total hydro-

dynamic forces simulated by this method are much lower

than that obtained from LB and AF simulations. Thus the

AV method is inferior to the AF method in reproducing

the lubrication effect.

Since the drag forces acting on the particles are identical

for the AF, LB and PD simulations, the predicted chain

lengths are similar for each of these methods. This vali-

dates that Stokes drag is a very good approximation for

computing the drag force acting on the particles in a

rotating chain. The drag force calculated on a cylinder

according to Takaisi (1955) has also been plotted in Fig. 2.

As expected, it is much less than the Stokes drag, and

shows that the chain does not behave like a cylinder

rotating about its axis, although intuitively one might think

so. The higher drag force experienced by the particles in a

chain is due to the large hydrodynamic forces acting on the

particles in the chain. As a result the tangential component

of this force (drag force) is much higher than the drag

experienced by the cylinder.

The next question which arises as a result of the above

discussion is that if the hydrodynamic forces are neglected

in a PD simulation, how does one account for the balance

between the magnetic and excluded volume forces?

Detailed discussion on this front has been covered in Ya-

dav et al. (2004, 2006); here this issue will be discussed

qualitatively. The excluded volume forces used in the

present simulations increases exponentially with a decrease

in the separation distance between the particles, as a result

preventing the particles from overlapping with each other.

But since this force is short range in nature (exponential

function), its main contribution is from particles close to it

and contributions from far-field particles diminish with

increasing distance. On the other hand the magnetic force

is still a long-range force with contributions from far-field

particles. Thus in PD simulations, there is a slight (3%)

overlap between the particles which is evident in Fig. 4

where the distance between neighboring particles (i.e. the

distance between particles 1 & 2, 2 & 3,…,8 & 9) is plotted

versus the particle number of the first particle (1, 2,…,8).

Since the overlap is relatively small, the chain lengths do

not change appreciably. Figure 4 also shows that there is

overlap between the particles in the AV formulation, with

again the reason for this being that the AV formulation is

inferior to the other methods (LB and AF) in simulating the

lubrication effect. On the other hand, the LB and AF

simulations are able to simulate the lubrication effect

effectively, as the particles do not overlap in these

methods.

Fig. 3 Chain Formation at a
Ma = 0.015 and b Ma = 0.15
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Due to the presence of the fluid, the paramagnetic chain

will lag the magnetic field. Figure 5 shows the variation of

this phase difference of neighboring particles with mag-

netic field as a function of particle number for the AF, AV,

LB and PD simulations. It can be seen from the graph that

the phase difference is higher at the center of the chain than

that observed at the outer edges of the chain. This is as a

result of the higher drag force acting on the particles at the

periphery evident in Fig. 2. This has the effect of dragging

the particles in the opposite direction of their motion, as a

result of which a larger phase angle is observed in the

center. The phase angle for the particles at the periphery for

the AF simulations is found to be more than the phase

angle for Stokes drag. This can be attributed to the fact that

the drag force acting on these particles is greater than the

Stokes drag. It can be noticed that the phase angle varies

along the length of the chain. This information on phase

angle can be used to predict the shape of the rotating chain,

which is S-shaped in this case. The phase lag for the AV

method is lower than that observed from the AF method,

because the drag force predicted by the AV method is less

than other methods as is evident in Fig. 2.

Finally, Fig. 6 presents the variation of chain phase lag

with Ma for the PD and AF simulations. To calculate the

chain phase lag, we follow the method implemented by

Melle et al. (2002a, b), where the averaged chain phase lag

distribution is weighted by the chain size:

h ¼

P
j

Njhj

Na
ð21Þ

where Na is the number of aggregated particles, hj the

phase angle of the jth chain, and the sum is done over j with

Nj[ 1. As Ma increases, the phase angle increases, and the

viscous forces start dominating over magnetic forces,

which results in long chains breaking into shorter chains.

During this breakup, the phase angle increases. As Ma is

increased, this phenomenon occurs more frequently,

resulting in the increase in phase angle ultimately saturat-

ing once all the chains are broken. It can be further noticed

that the chain phase lag for the AF simulation is less than

that obtained from the PD simulation, which is due to the

drag experienced by particles in AF simulations being less

than the Stokes drag. This difference reduces with an

increase in Ma because shorter chains are formed at higher

Ma, and as a result the drag force experienced by these
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particles becomes closer to the Stokes drag. Comparison

with experimental data (Melle et al. 2002b) in Fig. 6 shows

better agreement with the AF simulations compared to the

PD simulations.

The quantitative comparisons among the three compu-

tational approaches for predicting the dynamics of rotating

chains of paramagnetic particles—particle dynamics, a

complete Navier–Stokes solution including two-way cou-

pling between the particles and the fluid based on the lattice-

Boltzmann approach, and Stokesian dynamics—reveals that

in large part the simplest method, particle dynamics, is able

to predict the relatively gross dynamics of the particle

chains with acceptable accuracy. For detailed computations

of finer details, such as the angle between particles or (to a

lesser extent) the phase lag between a particle chain and the

rotating magnetic field, the more numerically intensive

computational approaches are required.

4 Conclusions

The dynamics of rotating paramagnetic particle chains using

three different levels of approximation are quantitatively

compared. It is observed that all three methods—particle

dynamics (PD), Stokesian dynamics (SD), and lattice

Boltzmann (LB)—capture the dynamics of the rotating chain

effectively. While the SD and LB methods take into account

the important hydrodynamic interactions between particles,

the PD method neglects these interactions. Despite this

assumption, it is found that the macroscopic chain dynamics

is predicted rather accurately by the comparatively simple

PD method. On comparing the forces acting on the particles

using the three simulation methods, it was found that the

Stokes drag is a good approximation for the drag acting on

these particles. The results showing the variation of chain

length with Mason number, Ma, for each of these methods

validate this assumption. But the differences in drag forces

acting on these particles in each of these methods has been

shown to affect the phase angle between the particles. The

variation of phase lag with Mason number suggests that

accounting for hydrodynamic interaction predicts the phase

angle more accurately. While the particles do not overlap in

the LB and SD simulations due to the inclusion of the

hydrodynamic interactions in these methods, in the PD

method, the particles do in fact overlap hydrodynamic

interaction is neglected. The excluded volume forces com-

pensate for the absence of normal hydrodynamic forces in

the PD simulations, and cause overlap between particles. But

avoiding the calculation of hydrodynamic force, makes this

method the fastest among the other methods investigated in

this paper. Hence, particle dynamics is able to predict the

dynamics of the chain formation effectively despite the fact

that it neglects the important hydrodynamic interactions.

Acknowledgment The authors gratefully acknowledge the support

of the National Science Foundation, through a Nanoscale Exploratory

Research (NER) grant (Award Number 0303883). This material was

based in part on work supported by the National Science Foundation,

while working at the Foundation. The authors would also like to thank

Dr. A.J.C. Ladd for helpful discussions and providing his LB code.

References

Bosis G, Brady JF (1984) Dynamic simulation of sheared suspen-

sions. 1 General method. J Chem Phys 80:5141

Brady JF, Bossis G (1985) The rheology of concentrated suspensions

of spheres in simple shear flow by numerical simulations. J Fluid

Mech 155:105

Brady JF, Bossis G (1988) Stokesian dynamics. Annu Rev Fluid

Mech 20:111

Durlofsky L, Brady JF, Bosis G (1987) Dynamic simulations of

hydrodynamically interacting particles. J Fluid Mech 180:21

Ginder JM, Davis LC (1994) Shear stresses in magnetorheological

fluids: role of magnetic saturation. Appl Phys Lett 65:3410–12

Kim S, Karilla SJ (1991) Micro hydrodynamics. Butterworth-

Heinemann, Boston

Ladd AJC, Verberg R (2001) Lattice-Boltzmann simulations of

particle-fluid suspensions. J Stat Phys 104:1191–1251

Larson RG (1999) The structure and rheology of complex fluids.

Oxford Publications, New York

Martin JE (2001) Thermal chain model of electrorheology and

magnetorheology. Phys Rev E 63:011406
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