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Abstract The oscillatory Couette flow is important for

further advancement of microengineering. In practice the

size of the microfluidics can be so small that it can be

compared with the molecular mean free path. Moreover,

the oscillation frequency can be close to that of the inter-

molecular collisions. Under such conditions the problem

must be solved on the kinetic level. In the present work, the

oscillatory Couette flow is considered on the basis of the

non-stationary kinetic equation. The solution to the prob-

lem is determined by two parameters: the Knudsen number

and the ratio of collision frequency to oscillation fre-

quency. The kinetic equation is solved by the discrete

velocity method over the wide range of both parameters.

Keywords Microfluidics � Rarefied gas � Knudsen

number � Oscillation speed parameter � Damping force

1 Introduction

Many microfluidics contain oscillating parts, which are

subject to a damping force caused by a surrounding gas. To

calculate such a force and other characteristics, such as

velocity distribution around an oscillating part, usually the

non-stationary Navier–Stokes equation is applied. How-

ever, this approach is justified under the following two

conditions. First, the molecular mean free path must be

significantly smaller than a characteristic size of the gas

flow. Second, the molecular mean free time must be sig-

nificantly smaller than a characteristic time of the gas flow.

If at least one of these conditions is not satisfied then the

problem must be solved on the basis of the kinetic equation.

The stationary Couette flow problem have been studied

extensively by solving the time-independent Boltzmann

kinetic equation and its models (see e.g. Cercignani and

Pagani 1966; Gross and Ziering 1958; Loyalka et al. 1979;

Marques et al. 2000; Sharipov et al. 2004; Siewert 2002;

Sone et al. 1990; Willis 1962). As will be shown below

such a solution can be applied at any gas rarefaction, but

only to slowly oscillating surfaces. However, in micro-

fluidics an oscillation can be so fast that the stationary

solution is not valid anymore; but to calculate the damping

force and the velocity distribution the time-dependent ki-

netic equation should be solved. In the open literature there

are very few papers concerning time-dependent cases like

the oscillatory Couette flow.

In our previous work (Sharipov and Kalempa 2007), we

studied the time dependent behavior of gas flow in an

infinite half-space caused by a flat plate oscillating in its

own plane by considering a time periodic solution of the

non-stationary kinetic equation. This solution can be ap-

plied to situations when the oscillating surface is so far

from other surfaces that the distance between them is

significantly larger than the mean free path. However, if

this distance is comparable with the mean free path the

time-dependent solution must take into account the pres-

ence of a fixed surface. Such a situation was considered in

Hadjiconstantinou (2005) and Park et al. (2004), where the

oscillatory Couette flow was studied by applying the direct

simulation Monte Carlo method.

In the present work, we study the oscillatory Couette

flow problem on the basis of the non-stationary kinetic

equation. It is assumed that the oscillation is to be fully

established through the gas flow and, consequently, the

solution is harmonic with respect to the time.
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2 Statement of the problem

We consider a monoatomic gas confined between two

infinite plates parallel to the yz-plane. The plate placed at

x¢ = 0 oscillates harmonically in the y-direction with fre-

quency x, while the other plate is fixed at x¢ = L¢. The

velocity of the oscillating plate can be represented as

Uw ¼ <½Uw0 exp ð�ixt0Þ�; ð1Þ

where < denotes the real part of a complex expression and

Uw0 is the velocity amplitude of the oscillating plate, which

is assumed to be very small when compared with the most

probable molecular velocity v0 of the gas flow, i.e.,

Uw0 � v0; v0 ¼
2kT

m

� �1=2

; ð2Þ

where m is the molecular mass, T is the gas temperature

and k is the Boltzmann constant.

The oscillatory plate motion causes a gas flow in the y-

direction characterized by the bulk velocity Uy and shear

stress Pxy, which depend on the time harmonically as

Uyðt0; x0Þ ¼ < ~Uyðx0Þ exp ð�ixt0Þ
� �

; ð3Þ

Pxyðt0; x0Þ ¼ < ~Pxyðx0Þ exp ð�ixt0Þ
� �

; ð4Þ

where ~Uyðx0Þ and ~Pxyðx0Þ are complex functions completely

determining the gas flow. If one needs to calculate the

damping force one uses just the quantity ~Pxy at x¢ = 0. If

one is interested in the velocity distribution in the gas then

one uses the quantity ~Uyðx0Þ:
As has been mentioned above the problem under ques-

tion is determined by the two parameters. The first is the

gas rarefaction d defined as

d ¼ PL0

lv0

� 1

Kn
; ð5Þ

where P is the gas pressure, l is the shear viscosity of the

gas, and Kn is the Knudsen number. Since the quantity

‘ = l v0/P is the equivalent mean free path, the rarefaction

parameter d characterizes the relation between the char-

acteristic size L¢ and the mean free path ‘, but it does not

contain any information about the oscillation speed.

To characterize the oscillation speed the second

parameter is necessary, which was introduced in Sharipov

and Kalempa (2007), viz.

h ¼ P

lx
: ð6Þ

Since the quantity m = P/l is the intermolecular collision

frequency, the parameter h relates this frequency to that of

the oscillation x. However, this parameter does not contain

any information about the characteristic size L¢.
Thus, one can change d and maintain h varying the

distance L¢. It is also possible to change h and to maintain d
varying the frequency x. In other words, the parameters d
and h are independent.

Sometimes, see e.g., Park et al. (2004), to characterize

the oscillation speed the Stokes number is used, which is

defined as

b ¼
ffiffiffiffiffiffi
x.
l

r
L ¼

ffiffiffi
2

h

r
d: ð7Þ

This criterion represents a balance between the unsteady

and viscous effects. The limit b � 1 represents a

stationary flow, while in the case b � 1 a solution is

essentially different from the stationary one. However, the

Stokes number does not represent a limit of applicability

of the Navier–Stokes equation. In other papers (see e.g.

Hadjiconstantinou 2005), the ballistic Stokes number

defined as

Sb ¼
xL0

v0

¼ d
h

ð8Þ

is used. This parameter is useful to analyze a free molec-

ular oscillating flows like that considered in Sharipov et al.

(2002).

For our purpose it is more convenient to present the

results in terms of the parameters d and h. Once these

parameters are given then the Stokes number and the bal-

listic Stokes number are calculated by Eqs. (7) and (8),

respectively.

Regarding the values of the rarefaction parameter d we

may distinguish the two limits. If it is large, i.e., d � 1,

then the space between the plates is so large that it can be

considered as infinite, i.e., we have the half-space limit. If

the rarefaction parameter is small, i.e., d � 1, then the

distance L¢ is so small that the molecules move between the

plates without intermolecular collisions. This regime is

called as collisionless or free-molecular.

Considering the value of the oscillation speed parameter

h the following limits are distinguished. Large values

(h � 1) correspond to a low oscillation frequency, i.e., the

quasi-stationary flow. If the parameter is small (h � 1)

then very few collisions occur during one oscillation per-

iod. This is the high-speed oscillation regime.

If both parameters are large, i.e., d � 1 and h � 1, then

both conditions of the Navier–Stokes applicability are

satisfied. This regime is called as hydrodynamic. However,

if at least one of these conditions is not satisfied, then the

Navier–Stokes equation is not valid and the problem must

be solved on the basis of the kinetic equation.
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For convenience, the following dimensionless quantities

are introduced

t ¼ xt0; x ¼ x
v0

x0; L ¼ x
v0

L0: ð9Þ

uðxÞ ¼
~UyðxÞ
Uw0

; PðxÞ ¼
~PxyðxÞ
2P

v0

Uw0

: ð10Þ

Note, the dimensionless distance between the plates is re-

lated to the parameters d and h as L = d/h.

Since u(x) and P(x) are complex quantities, they can be

written as

uðxÞ ¼ umðxÞ exp ½iuuðxÞ�; ð11Þ

PðxÞ ¼ PmðxÞ exp ½iuPðxÞ�; ð12Þ

where um(x) and Pm(x) are the amplitudes of the bulk

velocity and shear stress, respectively, and uu(x) and uP(x)

are their phases.

We are going to calculate the quantities um(x), Pm(x),

uu(x) and uP(x) over the whole range of both rarefaction d
and oscillation speed h parameters.

3 Hydrodynamic regime

The hydrodynamic regime is characterized by large values

of both rarefaction and oscillation speed parameters, i.e.,

d fi ¥ and h fi ¥, In this limit the Stokes equation can

be applied, which in a general form reads (Landau and

Lifshitz 1989)

�.
oU

ot0
þ lDU ¼ rP; ð13Þ

where . is the mass density and P is the pressure. Then, with

the help of Eqs. (3, 6, 9, 10) and taking into account that the

pressure is constant the Stokes equation (13) is reduced to

2ihuþ d2u

dx2
¼ 0; ð14Þ

where the notations introduced above have been used. If we

assume the non-slip boundary conditions at both walls, i.e.,

u ¼ 1 at x ¼ 0;
0 at x ¼ L;

�
ð15Þ

then Eq. (14) has the following solution

uðxÞ ¼
sin ð1þ iÞ dffiffi

h
p �

ffiffiffi
h
p

x
� �h i

sin ð1þ iÞ dffiffi
h
p

h i ; ð16Þ

and, consequently, the shear stress P of the gas flow is

given by

PðxÞ ¼ � 1

2h
du

dx
¼ ð1þ iÞ

2
ffiffiffi
h
p

cos ð1þ iÞ dffiffi
h
p �

ffiffiffi
h
p

x
� �h i

sin ð1þ iÞ dffiffi
h
p

h i :

ð17Þ

For moderately large values of h and d the solution (16) is

corrected by the slip boundary conditions (Sharipov and

Seleznev 1998), i.e.,

u ¼ 1þ rP

h
du
dx at x ¼ 0;

� rP

h
du
dx ; at x ¼ L;

�
ð18Þ

where rP is the viscous slip coefficient. Note, that the large

value of the parameter h corresponds to the slow oscillation

so that the slip conditions are the same as for a stationary

flow. Then, the solution of Eq. (14) with the boundary

conditions (18) reads

Note, that this expression can be used with any slip coef-

ficient rP obtained rigorously from the different kinetic

equations (Siewert and Sharipov 2002), for different values of

the accommodation coefficients (Sharipov 2003), and even

for a mixture (Sharipov and Kalempa 2003). An expression

similar to Eq. (19) was obtained in Park et al. (2004), where

questionable slip boundary conditions were used.

The shear stress P(x) is obtained as

PðxÞ ¼ � 1

2h
du

dx
¼ ð1þ iÞ

2
ffiffiffi
h
p

cos ð1þ iÞ dffiffi
h
p �

ffiffiffi
h
p

x
� �h i

sin ð1þ iÞ dffiffi
h
p

h i

�
1� ð1þ iÞ rPffiffi

h
p tan ð1þ iÞ dffiffi

h
p �

ffiffiffi
h
p

x
� �h i

1� 2i
r2

P

h þ 2ð1þ iÞ rPffiffi
h
p cot ð1þ iÞ dffiffi

h
p

h i : ð20Þ

uðxÞ ¼
sin ð1þ iÞ dffiffi

h
p �

ffiffiffi
h
p

x
� �h i

sin ð1þ iÞ dffiffi
h
p

h i 1þ ð1þ iÞ rPffiffi
h
p cot ð1þ iÞ dffiffi

h
p �

ffiffiffi
h
p

x
� �h in o

1� 2i
r2

P

h þ 2ð1þ iÞ rPffiffi
h
p cot ð1þ iÞ dffiffi

h
p

h in o : ð19Þ
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It should be noted that to obtain an analogous expression

the authors of Park et al. (2004) used the concept of the

effective viscosity, which is very vague and useless. If one

calculates it from different kinds of flows, e.g., plane

Couette flow, cylindrical Couette flow, plane Poiseuille

flow, etc., one obtains different kinds of the effective vis-

cosity expressions.

It is interesting to consider two limit situations. First,

when
ffiffiffi
h
p
� d� 1; i.e. the oscillation is very slow, then

Eqs. (19) and (20) are expanded into the Taylor series with

respect to the small parameter d=
ffiffiffi
h
p

: Retaining just the

main term in this expansion we obtain

uðxÞ ¼ 1� x

L
þ rP

d

� �
1þ 2rP

d

� ��1

; at
ffiffiffi
h
p
� d;

ð21Þ

PðxÞ ¼ 1

2d
1þ 2rP

d

� ��1

; at
ffiffiffi
h
p
� d; ð22Þ

that coincide with the stationary Couette flow in the slip

flow regime, see Eq. (12) of Sharipov et al. (2004). The

other situation is that d�
ffiffiffi
h
p
� 1; i.e. the ratio

ffiffiffi
h
p

=d is

the small parameter. If one expands the expressions (19)

and (20) into the Taylor series with respect to the parameterffiffiffi
h
p

=d and retains the main term one obtains the expressions

corresponding to those given for the semi-infinite space in

Sharipov and Kalempa (2007)

uðxÞ¼ exp ði�1Þ
ffiffiffi
h
p

x
h i

1�ði�1Þ rPffiffiffi
h
p

	 
�1

; at
ffiffiffi
h
p

\\d;

ð23Þ

PðxÞ ¼ 1ffiffiffiffiffi
2h
p exp ði� 1Þ

ffiffiffi
h
p

x� i
p
4

h i
1� ði� 1Þ rPffiffiffi

h
p

	 
�1

;

at
ffiffiffi
h
p

\\d: ð24Þ

4 Kinetic equation

For arbitrary values of both oscillation speed h and rare-

faction d parameters the problem must be solved on the

level of the velocity distribution function f(t¢, r¢, v) which

obeys the time-dependent Boltzmann equation. Here, r¢ and

v are the position and molecular velocity vectors, respec-

tively. For the problem in question the non-stationary

Boltzmann equation reads

of

ot0
þ vx

of

ox0
¼ Qðff �Þ; ð25Þ

where Q(ff*) denotes the collision integral.

Till now, a numerical solution to the Boltzmann equa-

tion with the exact collision integral is a very difficult task;

that is why some simplified models of the integral Q(ff*)

were proposed. Such model equations are the widely used

tools in practical calculations. However, a correct model

should be chosen for each specific problem. As was shown

in Sharipov and Seleznev (1998), isothermal rarefied gas

flows are well described by the model proposed by (BGK)

Bhatnagar et al. (1954). To confirm this claim a compari-

son of the shear stress Pm for the stationary Couette flow

(h = ¥) obtained from the Boltzmann equation (Sone et al.

1990) with that calculated from the BGK model using the

technique described in Sharipov et al. (2004) is performed

in Table 1. The results of Sone et al. (1990) were recal-

culated in our notations. It can be seen that the disagree-

ment between the two solutions does not exceed 1%. So,

the BGK model provides reliable results over the whole

range of the rarefaction parameter d with a significantly

less computational effort.

Thus, like our previous work (Sharipov and Kalempa

2007), here we apply the BGK model representing the

collision integral as

Qðff �Þ ¼ P

l
ðf M � f Þ; ð26Þ

where

f M ¼ n
m

2pkT

� �3=2

exp �m v� Uðt0; r0Þ½ �2

2kT

( )
; ð27Þ

is the local Maxwellian function, n, T and U are number

density, temperature and bulk velocity of the gas,

respectively. Due to the condition (2), the density n and

temperature T can be considered constant, while the bulk

velocity U has only the y-component expressed in terms of

the distribution function as

Table 1 Comparison of shear stress Pm for the stationary Couette

flow (h = ¥) obtained from the Boltzmann equation (BE) in Sone

et al. (1990) and from the BGK model

d Pm

BE BGK

7.874 0.05075 0.05048

3.937 0.08460 0.08391

1.968 0.1272 0.1262

0.7874 0.1844 0.1838

0.3937 0.2194 0.2196

0.1968 0.2445 0.2452

0.07874 0.2645 0.2651

0.03937 0.2726 0.2730
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Uyðt0; x0Þ ¼
1

n

Z
vyf ðt0; x0; vÞdv: ð28Þ

The shear stress of the gas flow is calculated via the

distribution function as

Pxyðt0; x0Þ ¼ m

Z
vxðvy � UyÞf ðt0; x0; vÞdv: ð29Þ

The condition (2) allows us to linearize the kinetic equation

by representing the distribution function as

f ðt0; x0; vÞ ¼ n

ð
ffiffiffi
p
p

v0Þ3
e�c2

1þ hðt; x; cÞUw0

v0

	 

; ð30Þ

where h(t, x, c) is the perturbation function and c = v/v0 is

the dimensionless molecular velocity.

Substituting (30) into (25) with (26) the linearized BGK

equation is obtained in its dimensionless form

oh

ot
þ cx

oh

ox
¼ h½2cy<ðuÞ � h�: ð31Þ

If we introduce the complex distribution function ~h so

that

hðt; x; cÞ ¼ < ~hðx; cÞe�it
� �

: ð32Þ

then Eq. (31) is written down as

ðh� iÞ~hþ cx
o~h

ox
¼ 2hcyu: ð33Þ

From Eqs. (3, 4, 11, 12, 28) and (29) we obtain

uðxÞ ¼ 1

p3=2

Z
cye�c2 ~hðx; cÞdc; ð34Þ

PðxÞ ¼ 1

p3=2

Z
cxcye�c2 ~hðx; cÞdc: ð35Þ

The diffuse scattering of gaseous particles on both plates is

assumed, i.e.

~h ¼ 2cy at x ¼ 0 and cx[0;
0 at x ¼ L and cx\0:

�
ð36Þ

In order to eliminate the variables cy and cz a new

perturbation function is introduced

Uðx; cxÞ ¼
1

p

Z
cy exp ð�c2

y � c2
z Þ~hðx; cÞdcydcz: ð37Þ

Multiplying Eq. (33) by cy exp(–cy
2–cz

2)/p and integrating it

with respect to cy and cz we obtain

ðh� iÞUþ cx
oU
ox
¼ hu: ð38Þ

The boundary conditions (36) are written in terms of the

new function F as

U ¼ 1 at x ¼ 0 and cx[0;
0 at x ¼ L and cx\0:

�
ð39Þ

The moments defined in (34) and (35) are expressed via the

new perturbation function as

uðxÞ ¼ 1ffiffiffi
p
p
Z

exp ð�c2
xÞUðx; cxÞdcx; ð40Þ

PðxÞ ¼ 1ffiffiffi
p
p
Z

cx exp ð�c2
xÞUðx; cxÞdcx: ð41Þ

If we multiply Eq. (38) by exp[(h–i)x/cx] and integrate it

with respect to x, then taking into account the boundary

conditions (39) we obtain

Uðx;cxÞ¼ exp �ðh� iÞ x

cx

	 

þ h

cx

Zx

0

uðnÞexp ðh� iÞn�x

cx

	 

dn

at cx[0; ð42Þ

Uðx; cxÞ ¼ �
h
cx

ZL

x

uðnÞ exp ðh� iÞ n� x

cx

	 

dn at cx\0:

ð43Þ

5 Collisionless flow

Consider a situation when the rarefaction parameter d tends

to zero, while the oscillation speed parameter h is fixed and

arbitrary. It is possible when the pressure is fixed, but the

distance between the plates L¢ decreases. In this case the

integration interval in Eqs. (42) and (43) will decrease

because it is always smaller than the dimensionless dis-

tance L, i.e., the integrals will vanish at L fi 0. Since

x £ L, then x tends to zero at L fi 0, i.e., the first term in

the right hand side tends to unity. Then, Eqs. (42) and (43)

are reduced to

Uðx; cxÞ ¼
1 at cx[0;
0 at cx\0:

�
ð44Þ

Substituting this solution into the definitions (40) and (41)

we obtain

uðxÞ ¼ 1

2
; PðxÞ ¼ 1

2
ffiffiffi
p
p at d ¼ 0: ð45Þ
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Physically, this result means that in the free molecular

regime d = 0 the stationary solution can be used for any

value of the oscillation speed parameter h.

6 High-speed oscillation

Now consider the solution corresponding to the high-speed

oscillation, i.e., when h tends to zero while the rarefaction

parameter d is arbitrary. In this situation Eq. (38) is reduced to

�iUþ cx
oU
ox
¼ 0; ð46Þ

which satisfies the boundary conditions (39). Integrating

(46) with respect to the coordinate x the analytical solution

is obtained as

Uðx; cxÞ ¼ exp i x
cx

� �
at cx[0;

0 at cx\0:

(
ð47Þ

The bulk velocity and shear stress are obtained by

substituting this solution into Eqs. (40) and (41)

uðxÞ ¼ 1ffiffiffi
p
p I0ð�ixÞ; PðxÞ ¼ 1ffiffiffi

p
p I1ð�ixÞ at h ¼ 0;

ð48Þ

where the special functions In(z) are defined as

(Abramowitz and Stegun 1972)

InðzÞ ¼
Z1

0

cn exp �c2 � z

c

� �
dc: ð49Þ

The same expressions were obtained in our previous work

(Sharipov and Kalempa 2007) considering the semi-infinite

space. At the oscillating plate x = 0 the expressions (48) take

the forms

u ¼ 1

2
; P ¼ 1

2
ffiffiffi
p
p at x ¼ 0 and h ¼ 0; ð50Þ

i.e., the bulk velocity and the shear stress have the same

values as that in the free-molecular regime (d = 0). The

unique difference is that the quantities u and P vary in the

space in the high-speed regime (h = 0), while they are

constant in the free molecular regime (d = 0).

7 Transitional regime

Two methods of solution of Eq. (38), viz. integro-moments

and discrete velocities, are described in our previous work

(Sharipov and Kalempa 2007). The first method works

without the discretization of the velocity space, but it re-

quires a large computer memory. The second method is

based on the discretization of the molecular velocity space.

However, it is necessary to consider a great number of

nodes for the velocity because of the oscillatory behavior

of the perturbation function. Furthermore, the convergence

rate of the iteration procedure is very low when the

parameters d and h are large.

In the present work, the discrete velocity method was

improved so that the number of nodes in the velocity space

was reduced using the split idea given Naris and Valou-

georgis (2005) and the convergence acceleration was

implemented following the algorithm described in Valou-

georgis and Naris (2003). Since the details of the method

are described in Sharipov and Kalempa (2007), here just its

modifications will be given.

To reduce the number of the velocity nodes the pertur-

bation function F is split into two parts as

U ¼ ~Uþ U0; ð51Þ

where F0 satisfies the following equation

ðh� iÞU0 þ cx
oU0

ox
¼ 0 ð52Þ

with the boundary conditions

U0 ¼
1 at x ¼ 0 and cx[0;
0 at x ¼ L and cx\0:

�
ð53Þ

Eq. (52) has the following analytical solution

U0ðx; cxÞ ¼ exp �ðh� iÞ x
cx

h i
at cx[0;

0 at cx\0:

(
ð54Þ

Substituting (51) into Eq. (38) the following equation for ~U
is obtained

ðh� iÞ~Uþ cx
o~U
ox
¼ hu; ð55Þ

which satisfies the boundary condition

~U ¼ 0 at x ¼ 0 and cx[0;
0 at x ¼ L and cx\0:

�
ð56Þ

The moments u(x) and P(x) are also decomposed into two

parts as

uðxÞ ¼ ~uðxÞ þ u0ðxÞ; ð57Þ

PðxÞ ¼ ~PðxÞ þP0ðxÞ; ð58Þ

where
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~uðxÞ ¼ 1ffiffiffi
p
p
Z

exp ð�c2
xÞ~Uðx; cxÞdcx; ð59Þ

~PðxÞ ¼ 1ffiffiffi
p
p
Z

cx exp ð�c2
xÞ~Uðx; cxÞdcx; ð60Þ

u0ðxÞ ¼
1ffiffiffi
p
p
Z

exp ð�c2
xÞU0ðx; cxÞdcx ¼

1ffiffiffi
p
p I0 ðh� iÞx½ �;

ð61Þ

P0ðxÞ ¼
1ffiffiffi
p
p
Z

cx exp ð�c2
xÞU0ðx; cxÞdcx ¼

1ffiffiffi
p
p I1 ðh� iÞx½ �:

ð62Þ

Using such a split the oscillatory behavior was taken into

account by the known function F0, while the unknown

function ~U is quite smoother than the initial function F.

Then, the kinetic equation (55) is solved by exactly the

same method as that described Sharipov and Kalempa

(2007).

As has been mentioned above, when the parameters d
and h are large the iteration convergence is very slow, i.e.,

the number of iterations drastically increases by increasing

both parameters. In order to reduce the number of iterations

the algorithm proposed in Valougeorgis and Naris (2003) is

used. Let us introduce the Hermite moments defined as

FnðxÞ ¼
1ffiffiffi
p
p
Z

HnðcxÞ exp ð�c2
xÞ~Uðx; cxÞdcx; ð63Þ

where the functions Hn(cx) denote the nth order Hermite

polynomial. Multiplying Eq. (55) by exp ð�c2
xÞ=

ffiffiffi
p
p

and

taking the first three Hermite moments we obtained the

following accelerated synthetic equations

dF1

dx
¼ 2iF0 þ 2hu0; ð64Þ

dF0

dx
þ ðh� iÞF1 ¼ �

1

2

dF2

dx
; ð65Þ

where u0 is given by (61). Taking into account that F0 ¼ ~u
and combining Eqs. (64) and (65) we obtain the following

second order differential equation

d2~u

dx2
þ 2ð1þ ihÞ~u ¼ �2hðh� iÞu0 �

1

2

d2F2

dx2
: ð66Þ

In the beginning of iterations the bulk velocity ~u is assumed

to be equal to some arbitrary value, say zero. Then each

iteration consists of the following steps:

(1) Kinetic equation (55) is solved to obtain the pertur-

bation function ~Uðx; cxÞ:
(2) The Hermit moment F2(x) is calculated by Eq. (63).

(3) The differential equation (66) is solved to obtain the

moment ~u:

(4) The convergence is checked comparing ~u in two

successive iterations. If the convergence is not

reached the next iteration is done beginning from step

(i) using ~uðxÞ obtained in the current iteration.

The iteration process stops when a convergence crite-

rion is fulfilled.

8 Results and discussion

The numerical calculations were carried out over the wide

range of the parameters d and h with the numerical error

less than 0.1%. The accuracy was estimated by varying the

number of nodes in both physical Nx and velocity Nc

spaces. An analysis of the numerical data for different grids

in the physical and velocity spaces showed that the values

Nx = 10,000 and Nc = 400 provide the accuracy 0.1%.

The amplitude Pm of the shear stress on both plates is

presented in Table 2. In the previous work (Sharipov and

Kalempa 2007) the penetration depth k, which is defined as

the distance x where the velocity amplitude decays up to

1% of that of the plate, was calculated. Its values are given

in Table 2 together with the corresponding values of h.

Since the stationary plate is located at L = d/h there is no

sense in carrying out the calculations for L > k, i.e., for

d > kh, because a further increase of the rarefaction

parameter d does not change the characteristics on the

oscillating plate, while near the fixed plate the gas state

becomes equilibrium.

In the last row of Table 2 the shear stress Pm obtained

from the non-stationary Navier–Stokes equation under the

conditions d fi ¥, i.e. the solution Eq. (24) with

rP = 1.016, is shown. In the 10th and 11th columns of

Table 2 the shear stress calculated by Eq. (20) assuming

h = 50 and rP = 1.016 is given. This value of the slip

coefficient rP was obtained in several papers reviewed in

Sharipov and Seleznev (1998). A comparison of the data

given in the last row and in the 10th and 11th columns with

those obtained from the kinetic equation shows the range of

applicability of the hydrodynamic equations with the slip

boundary condition.

In the 12th column of Table 2 the shear stress corre-

sponding to the stationary Couette flow, i.e. h = ¥, is gi-

ven. These values were obtained from the stationary BGK

equation by the same methodology as that used in Sharipov

et al. (2004) for a mixture. Some of these data can be found

in Cercignani and Pagani (1966) and Loyalka et al. (1979).

A comparison of the non-stationary results with those ob-

tained for the stationary flow will indicate the range of the

applicability of the time-independent solution. In the 13th
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column of Table 2 the shear stress obtained from the sta-

tionary Navier–Stokes equation (h fi ¥) with the slip

boundary condition, i.e. the solution (22), is presented.

The shear stress phase uP is given in Table 3. In the

10th and 11th columns the phase calculated from

Eq. (20) assuming h = 50 and rP = 1.016 is presented. In

the last row of Table 3 the phase obtained from Eq. (24)

is shown.

From the data showed in Tables 2 and 3 we conclude

that

(1) The solution (20) based on the Navier–Stokes equa-

tion (14) with the slip boundary condition (18) is in

agreement with the numerical solution of the kinetic

equation if both conditions d � 1 and h � 1 are

satisfied. In other words, if at least one of the two

parameters d and h is not large the Navier–Stokes

equation cannot be applied.

(2) The shear stress Pm(x) at the oscillating plate tends to

its free molecular value 1=ð2
ffiffiffi
p
p
Þ if at least one of the

two conditions d fi 0 or h fi 0 is satisfied. In this

sense, the regime can be called as free-molecular if

d = 0 or h = 0.

(3) At any fixed value of the rarefaction parameter d > 0

the shear stress Pm(0) at the oscillating plate de-

creases by increasing the oscillation speed parameter

h, while the shear stress Pm(L) at the fixed plate in-

creases.

(4) For a fixed value of oscillation parameter h the

amplitude Pm(0) at the oscillating surface has a non-

monotonical dependence on rarefaction parameter d,

i.e. there is a minimum at the transition value of h. To

see better this minimum the shear stress is plotted

versus d/h in Fig. 1. It can be seen that the shear stress

Pm undergoes a minimum in the interval 0.1h
< d < h. Then, a constant value of Pm is established

by further increasing the rarefaction parameter d. The

velocity amplitude um plotted in Fig. 2 has a maxi-

mum in the same interval of d.

(5) The phase uP on the oscillating plate is always neg-

ative and tends to zero in the free-molecular regime

(d = 0).

(6) The phase uP decreases by increasing the rarefaction

parameter d when the oscillation speed parameter h is

fixed, i.e. for large values of d the shear stress be-

comes later when compared with the plate velocity

phase.

Figures 3, 4, 5 show the dependence of the amplitude

Pm and phase uP on the dimensionless distance x/L. It can

be seen that the behavior of the shear stress Pm changes

qualitatively by increasing of the rarefaction parameter d,

Table 2 Amplitude of shear stress Pm versus d and h at x = 0 and at x = L

d Pm

h = 0.1 h = 1 h = 10 h = 50 Eq. (20) at h = 50 h = ¥

k = 7.5355 k = 3.6010 k = 1.3080 k = 0.6210 Kin.eq (Cercignani

and Pagani 1966;

Loyalka et al. 1979;

Sharipov et al. 2004)

Eq. (22)

x = 0 x = L x = 0 x = L x = 0 x = L x = 0 x = L x = 0 x = L

0. 0.2821 0.2821 0.2821 0.2821 0.2821 0.2821 0.2821 0.2821 0.2461 0.2461 0.2821 0.2461

0.01 0.2801 0.2754 0.2797 0.2796 0.2797 0.2797 0.2797 0.2797 0.2449 0.2449 0.2797 0.2449

0.05 0.2788 0.2351 0.2714 0.2697 0.2709 0.2708 0.2708 0.2708 0.2402 0.2402 0.2708 0.2402

0.1 0.2813 0.1819 0.2634 0.2580 0.2612 0.2611 0.2612 0.2612 0.2345 0.2345 0.2612 0.2345

0.5 0.2819 0.0383 0.2521 0.1797 0.2093 0.2078 0.2084 0.2083 0.1975 0.1975 0.2083 0.1975

1 0.2819 0.0073 0.2665 0.1114 0.1741 0.1679 0.1697 0.1694 0.1651 0.1649 0.1695 0.1649

2 0.2819 0.0005 0.2696 0.0419 0.1465 0.1196 0.1262 0.1249 0.1250 0.1238 0.1252 0.1240

4 0.2819 0.0000 0.2688 0.0059 0.1531 0.0654 0.0888 0.0821 0.0885 0.0821 0.0830 0.0829

6 – – 0.2688 0.0007 0.1622 0.0345 0.0774 0.0600 0.0772 0.0602 0.0623 0.0623

8 – – – – 0.1632 0.0178 0.0770 0.5868 0.0768 0.0460 0.0498 0.0498

10 – – – – 0.1627 0.0091 0.0803 0.0351 0.0803 0.0354 0.0416 0.0416

15 – – – – 0.1625 0.0017 0.0865 0.0177 0.0867 0.0181 0.0294 0.0294

20 – – – – 0.1625 0.0003 0.0870 0.0087 0.0871 0.0089 0.0227 0.0227

30 – – – – – – 0.0866 0.0021 0.0867 0.0022 0.0156 0.0156

40 – – – – – – 0.0866 0.0005 0.0868 0.0005 0.0119 0.0119

50 – – – – – – 0.0866 0.0001 0.0868 0.0001 0.0096 0.0096

Eq. (24) 0.4220 0 0.3132 0 0.1644 0 0.0868 0
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i.e. the variation of Pm is small for d = 0.1, while for

d = 10 it sharply decays near the oscillating surface. The

phase uP changes just quantitatively by increasing the

rarefaction parameter d.

The velocity amplitudes um(x) and phases uu are given

in Figs. 6, 7 and 8 as functions of the dimensionless

coordinate x/L. The behavior of the velocity is similar to

that of the shear stress.

Additional calculations were carried out to perform a

comparison with data obtained in (Park et al. 2004). The

results of the present work are shown by the lines in Figs. 9

and 10, while the data of Park et al. (2004) are given by the

symbols. From these Figures we can see that for some

values of d and h the results obtained in both works are in a

fine agreement with each other, while for other values, viz.

d = 0.3545, h = 0.2513; d = 0.1772, h = 0.0628; and

d = 0.3545, h = 0.0402, there is a discrepancy. Since there

is no any tendency in the disagreement we cannot explain

its reason.

9 Conclusion

The oscillating Couette flow was calculated over the

whole range of the rarefaction d and oscillation speed h
parameters. The analytical expressions of the bulk

Table 3 Phase of shear stress uP versus d and h at x = 0 and at x = L

d uP

h = 0.1 h = 1 h = 10 h = 50 Eq. (20) at h = 50

x = 0 x = L x = 0 x = L x = 0 x = L x = 0 x = L x = 0 x = L

0.01 –0.0025 0.1647 –0.0004 0.0173 0.0000 0.0017 0.0000 0.0003 –0.0002 0.0002

0.05 –0.0192 0.7026 –0.0072 0.0831 –0.0008 0.0084 –0.0002 0.0017 –0.0010 0.0010

0.1 –0.0248 1.2514 –0.0222 0.1608 –0.0026 0.0165 –0.0005 0.0033 –0.0021 0.0021

0.5 –0.0190 4.2781 –0.1590 0.7137 –0.0381 0.0812 –0.0077 0.0163 –0.0128 0.0125

1 –0.0188 6.9678 –0.1868 1.3051 –0.1158 0.1719 –0.0244 0.0346 –0.0314 0.0292

2 –0.0188 11.188 –0.1660 2.2782 –0.3124 0.3936 –0.0783 0.0805 –0.0864 0.0740

4 –0.0188 17.957 –0.1662 3.7228 –0.5199 0.9562 –0.2496 0.2114 –0.2577 0.2050

6 – – –0.1662 4.6309 –0.5226 1.5723 –0.4446 0.3921 –0.4538 0.3869

8 – – – – –0.5082 2.1837 –0.5868 0.6157 –0.5976 0.6123

10 – – – – –0.5053 2.7873 –0.6567 0.8712 –0.6680 0.8701

15 – – – – –0.5063 4.3073 –0.6686 1.5716 –0.6792 1.5778

20 – – – – –0.5063 5.8146 –0.6516 2.2796 –0.6614 2.2929

30 – – – – – – –0.6504 3.6806 –0.6603 3.7072

40 – – – – – – –0.6504 5.0813 –0.6604 5.1214

50 – – – – – – –0.6504 6.4821 –0.6604 6.5356

Eq. (24) –0.1339 – –0.3186 – –0.5469 – –0.6604 –
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Fig. 1 Amplitude of the shear stress Pm on the oscillating surface

versus rarefaction parameter d
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Fig. 2 Amplitude of the bulk velocity um on the oscillating surface

versus rarefaction parameter d
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velocity and shear stress were obtained in the free-

molecular and slip regimes. It was shown that the use the

free-molecular expression for the velocity and shear stress

at the oscillating plate is justified if at least one of the two

conditions d = 0 and h = 0 is satisfied. However, to apply

the solution based on the Navier–Stokes equation with the
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Fig. 4 Amplitude Pm and

phase uP of the shear stress

versus distance x at d = 1
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uu of the bulk velocity versus

distance x at d = 0.1
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slip boundary condition it is necessary to satisfy both

conditions d � 1 and h � 1 simultaneously. If at least

one of these parameters is not large, the problem is solved

on the basis of the kinetic equation. The slip solution

works well under these conditions if the rigorously ob-

tained slip coefficient is used. The amplitude of the shear

stress plotted versus the rarefaction parameter d when

the oscillation speed parameter is fixed has a minimum in

the interval 0.1h £ d £ h, while the bulk velocity has a

maximum at the same point.
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