
RESEARCH PAPER

A comparative study of analytical squeeze film damping
models in rigid rectangular perforated MEMS structures
with experimental results

Ashok Kumar Pandey Æ Rudra Pratap

Received: 17 October 2006 / Accepted: 28 February 2007 / Published online: 12 April 2007

� Springer-Verlag 2007

Abstract Several analytical models exist for evaluating

squeeze film damping in rigid rectangular perforated

MEMS structures. These models vary in their treatment of

losses through perforations and squeezed film, in their

assumptions of compressibility, rarefaction and inertia, and

their treatment of various second order corrections. We

present a model that improves upon our previously re-

ported work by incorporating more accurate losses through

holes proposed by Veijola and treating boundary cells and

interior cell differently as proposed by Mohite et al. We

benchmark all these models against experimental results

obtained for a typical perforated MEMS structure with

geometric parameters (e.g., perforation geometry, air gap,

plate thickness) that fall well within the acceptable range of

parameters for these models (with the sole exception of

Blech’s model that does not include perforations but is

included for historical reasons). We compare the results

and discuss the sources of errors. We show that the pro-

posed model gives the best result by predicting the

damping constant within 10% of the experimental value.

We study the validity of the proposed model over the entire

range of perforation ratios (PR) by comparing its results

with numerically computed results from 3D Navier-Stokes

equation. These results are also compared with other ana-

lytical models. The proposed model shows considerably

better results than other models, especially for large values

of PR.

Keywords Squeeze-film damping � Reynolds equation �
Perforations � Analytical model � Experimental result

1 Introduction

Squeeze film damping, which dominates over other losses

(Hosaka et al. 1995), plays a significant role in the per-

formance of many MEMS devices such as accelerometers,

gyroscopes, torsional mirrors, etc. It has been extensively

studied for various cases such as vibration of parallel rigid

plates (Blech 1983; Bao 2000; Hwang et al. 1996) and

flexible plates (Nayfeh and Younis 2004) with thin to ultra-

thin gaps and from smooth to rough surfaces (Hwang et al.

1996; Pandey and Pratap 2004). Perforations in MEMS

structures, often used as etch holes (Madou 1997), play a

significant role in controlling the squeeze-film damping in

most MEMS devices.

To model perforation effects on squeeze-film damping,

there are two common approaches used in the literature.

The basic idea used in both approaches is to consider the

vibrating plate as a set of uniformly distributed cells. Each

cell contains a single hole. The shape and size of a par-

ticular cell depends on the nature of the flow around the

hole and the pitch of the hole distribution over the plate.

Based on the nature of the flow, one can divide the holes

into two categories: boundary holes, located along the

boundary; and internal holes, located in the interior of the

plate as shown in Fig. 1a. These cells are also called the

domain of influence of the corresponding holes. The flow

pattern is asymmetric around the boundary hole which

gives its conjoint cell an asymmetric shape because of

asymmetric boundary conditions. When the perforation

ratio (defined as the ratio of hole size to hole pitch) is

small, such as the case shown in Fig. 1c, the flow around

the internal holes near the boundary also show asymmetric

flow pattern mainly because of the pressure gradient that

exists along the length of the oscillating plate due to

squeeze-film flow. In general, however, the flow pattern
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around the internal holes are considered to be symmetric

because of the symmetric boundary conditions around each

cell. This assumption is more realistic when the perforation

ratio is large, in which case, the pressure gradient drops,

especially in the interior of the domain, due to the reduc-

tion of maximum pressure as shown in Fig. 1d.

In the first approach, the squeeze-film damping within a

single cell is calculated by solving the Reynolds equation

over the cell using suitable boundary conditions. The total

damping is then calculated by multiplying the damping due

to the single cell with the total number of cells. This ap-

proach is more suitable for systems with large perforation

ratios where the pressure distribution under different cells

is largely invariant. This condition can be observed in

Fig. 1d where the perforation ratio is 0.7. The pressure

distribution is almost flat across the plate except on the

boundaries. Assuming incompressible flow and using the

first approach, Škvor (1967–1968) has modelled squeeze

film damping within a cell by taking ambient pressure

boundary condition on the hole rim (i.e., neglecting flow

through the hole) and zero flow rate across the cell

boundary. Mohite et al. (2005) has extended Škvor’s model

to include compressibility and rarefaction effects under the

same boundary conditions. By comparing the numerical

and experimental results for different perforation model,

Kim et al. (1999) have shown that the zero pressure

boundary condition on the hole rim, which is used in the

Škvors’ model, underestimates the damping. For incom-

pressible flow in a system with circular holes, Homent-

covschi and Miles (2004, 2005) have calculated fluid

damping as the sum of squeeze film damping and the loss

through the holes. Kwok et al. (2005) have also derived a

damping model to include perforations and compared it

with experimental results but their formula is valid for

large perforations only. In this approach, there are two

major sources of error. First, the nature and magnitude of

flow is taken to be identical for each cell, which leads to a

significant error in the net damping calculations in case

small and medium sized holes. This is because the holes on

the boundaries and the holes in the interior have consid-

erably different pressure distribution. The difference in

pressure distribution results in large errors especially when

the perforation ratio is small and the number of holes on the

boundary are comparable to the number of holes in the

interior. The other source of error is the assumption of zero

velocity condition on the outer boundary of a cell. In

general, the pressure distribution across the length of the

plate is not constant as shown in Fig. 1b, c. Therefore, a net

flow will result across the boundaries of each cell. The

magnitude of error in the second case becomes high as the

ratio of the hole radius to cell radius decreases (i.e., for

small hole radius) necessitating a large loss through the

Fig. 1 a Maximum pressure

distribution due to squeeze film

flow in a system with perforated

plate of length 100 lm, width

50 lm, thickness 5 lm, air-gap

4 lm, and perforation ratio, PR

(hole size to hole pitch) 0.3 at a

particular instant of time during

an oscillatory motion of

frequency 10 kHz. Pressure

variation along section A–A¢ in

b a non-perforated plate, i.e.,

PR = 0; maximum pressure =

3.01 · 10–2 Pa; c a perforated

plate with PR = 0.1; maximum

pressure = 2.84 · 10–2 Pa; d a

heavily perforated plate with

PR = 0.7; maximum pressure =

3.49 · 10–3 Pa. A trivial

pressure boundary condition is

applied on the plate boundaries

and outer rim of the holes. Air is

used as a fluid medium

(l = 1.67 · 10–5 N s/m2)
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squeeze effect which, in turn, enhances the spatial variation

of pressure as shown in Fig. 1c. To reduce the error con-

tributed by the asymmetric flow pattern in the boundary

cells, recently Mohite et al. (2006) have included the effect

of asymmetric flow pattern on the net squeeze-film

damping calculations, thus improving their own model

derived in (Mohite et al. 2005). They have shown through

numerical experiments that the damping in a square cell

with one open side is about 0.6 times the damping in any of

the interior cells with all sides closed, Similarly, the

damping in a cell with two sides open (i.e., cells at the

corner of a plate) is roughly one third the damping of an

interior cell. As these weights are not constant for all

perforation ratios, it needs to be calculate for the perfora-

tion ratio under considerations. To reduce the second error

due to the consideration of no-flow boundary condition on

the outer boundary of a cell, the flow through the holes and

that through the gap between the parallel plates has to be

coupled, which is taken up in the second approach of

modelling perforations.

In the second approach, the loss through the holes and

the squeeze-film damping are combined in a single gov-

erning equation. Veijola and Mattila (2001) have mod-

elled the perforation effect, along with the compressibility

effect, in the modified Reynolds equation. Bao et al.

(2003) have derived a modified Reynolds equation under

the assumption of incompressible flow for system oper-

ating at low frequencies by subtracting the pressure relief

due to perforations. In another study, Veijola (2006) has

recently obtained expressions for several secondary losses

such as those due to the open ends of the holes, due to the

bending of flow from horizontal to vertical, etc. Thus, the

modelling of different loss mechanisms in a single cell is

improved even further which is then incorporated into the

formula derived by Veijola. All the above models which

are based on this approach give good results for dense

perforations with small hole size. We have extended

Bao’s model to include large range of perforation sizes

along with rarefaction and compressibility effects in one

of our work (Pandey et al. 2006). This study also includes

the effect of plate elasticity in computing the overall

damping.

Apart from the above approaches to derive analytical

models for simple perforated structure, Schrag and Wa-

chutka (2002, 2004) have proposed mixed level approach

to model perforations of arbitrary shape and size in

complex structures. In this paper the simple analytical

models which are derived based on the two approaches

discussed above are summarized in the text. Since the

success of both these approaches depends on how well the

different dissipation mechanisms are modelled and how

correctly the flow patterns in a single cell and across its

boundaries are captured, we use the best analytical model

which includes most of the effects under a single cell. We

follow the same approach discussed in (Pandey et al.

2006) to cover a large range of perforation ratios in the

analytical solution obtained by Veijola (2006). To further

improve the result, we also consider the effect of

boundary holes in the governing equation by adding a

correction term. We compare several damping models,

including the modified solution presented in this paper,

with experimental results obtained from measurements of

dynamic response of a perforated MEMS structure using a

scanning laser vibrometer. In all models considered here,

inertial effect is neglected.

2 Governing equations

The squeeze-film flow is governed by Reynolds equation

irrespective of which approach one uses to calculate the

squeeze-film damping. To briefly describe the procedure,

we consider a rectangular plate of length L along the x-axis,

width W along the y-axis, and thickness Tp along the z-axis,

as shown in Fig. 2a. The plate has M · N uniformly dis-

tributed square holes of size Lh with a pitch q along both x

and y-directions. Here, N is the number of holes in any row

(along the length) and M is that in any column (along the

width). So, the total number of holes is Nh = M · N. The

equivalent hole radius b is calculated by comparing the

resistance through a circular pipe and a square channel of

the same length, while the cell radius a is calculated by

equating the areas of the circular and square shape. Thus,

we get b = 1.096 Lh/2 and a ¼ q=
ffiffiffi

p
p

(Veijola 2006) (see

Fig. 2b). The hole length is equal to the plate thickness, Tp.

When the moving plate oscillates with a velocity Vz with

respect to the fixed plate, the air under the plate tries to

move from its position. We consider the dynamics of air

flow through a typical cell shown in Fig. 2b. The figure

shows that when the plate oscillates at a certain frequency,

the air volume, trapped under the annular cell, gets com-

pressed under the cell and a part of it flows through the hole

and causes dissipation. Here, the flow through the hole is

assumed to be incompressible, inertialess and fully devel-

oped.

The form of the governing equation which is used to

calculate squeeze-film damping in two approaches (as

discussed in the preceding section) can be briefly described

below:

1. In the first approach, the squeeze-film damping under a

single cell, as shown in Fig. 2, can be calculated by

solving the conventional Reynolds equation in cylin-

drical co-ordinate system using suitable boundary

conditions on the inner and the outer boundary of

the cell (Škvor 1967; Mohite et al. 2005; Kwok et al.
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2005). The conventional Reynolds equation in cylin-

drical co-ordinates is given by

1

r

@

@r
r
qh3Qch

12l
@P

@r

� �

¼ @ðqhÞ
@t

ð1Þ

The total damping is then calculated by multiplying

the net damping obtained for a single cell with the total

number of cells. While this approach can be improved

by considering the proper edge correction for the holes

lying on the boundaries, it neglect the losses due to the

flow across the cell boundaries, hence a more general

approach is required which is valid for large range of

perforations. The second approach, which is discussed

below, considers this particular effect.

2. In the second approach, which is used in this paper, the

Reynolds equation is modified to couple the flow

through the gap between the plates and that through

the holes. By equating the total mass flow rate based

on the principle of conservation of mass, the conser-

vation of linear momentum and the universal gas law,

the non-linear modified Reynolds equation, which in-

cludes perforation, compressibility and rarefaction ef-

fects, is obtained (Veijola and Mattila 2001; Bao et al.

2003; Pandey et al. 2006). Thus, we get

@

@x

qh3Qch

12l
@p

@x

� �

þ @

@y

qh3Qch

12l
@p

@y

� �

�qpLW

NRRP
¼ @ðqhÞ

@t
:

ð2Þ

where l is the viscosity of air at ambient conditions.

The contribution of internal and boundaries holes can

be clubbed into NR = (A0N0s + A1N1s + A2N2s +

A2N2s + A3N3s) based on the result and discussion

in (Mohite et al. 2006) where A0, A1, A2, and A3 are

weights calculated by comparing the losses under a

hole-cell combination with different boundary

conditions and an internal cell with all sides closed

(see Sect. 4.1 for details); N0s is the total number of

internal cells whereas N1s, N2s and N3s are the total

number of boundary cells with one side open, two

sides open, and three sides open along the boundaries

of the plate, respectively; and Nh = N0s + N1s +

N2s + N3s is the total number of cells (or holes). RP

is the net resistance offered to the fluid flow in a

hole-cell combination with all sides closed (Veijola

2006), which is given by Eq. (26) in ‘‘Appendix A’’;

Qch and Qth are the flow rate factors which account

for rarefaction effect in the flow through the parallel

plates and through the holes, respectively. The

expression for Qch over the entire flow regimes

(i.e., the molecular, the transition, the slip and the

continuum flow regimes) in the air-gap between the

parallel plates (Hwang et al. 1996) and Qth for the

slip flow regime (Veijola 2006) in holes are given by

Qch ¼ 1þ 3
0:01807

ffiffiffi

p
p

D0

þ 6
1:35355

D1:17468
0

Qth ¼ 1þ 4Knth

ð3Þ

where D0 ¼
ffiffi

p
p

2Knch
;Knch ¼ k

h0
;Knth ¼ k

b and k ¼ 0:0068
pa

at

ambient temperature and pressure pa (Sharipov 1999).

Equation (2) can be linearized under the assumption of

small amplitude vibration (h = h0 + Dh) and small

pressure variation (p = pa + Dp) through the film

thickness, where pa and h0 are constants representing

the ambient pressure and the nominal gap thickness,

respectively. Now, introducing P ¼ Dp
pa

and H ¼ Dh
h0
; the

linearized modified Reynolds equation for an isother-

mal process (i.e., q � p), becomes

@2P

@x2
þ @

2P

@y2
� P

l2
¼ a2@P

@t
þ a2@H

@t
ð4Þ

where l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Qchh3
0
RPNR

12lLW

q

; a2 ¼ 12l
h2

0
paQch

is a constant.
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Fig. 2 Schematic diagram of

the system under consideration

with perforation for squeeze

film damping: a isometric view

of oscillating perforated plate

and the fixed plate; b a

dynamical view of air flow

under a typical hole-cell

combination
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3 Different analytical models

Equation (4) is first transformed and solved (Polianin

2002) over a 2D domain as shown in Fig. 2a, with ambient

pressure boundary condition (i.e., P = 0) and ambient ini-

tial condition, P(t = 0) = 0. The squeeze film damping

force is found by following the procedure given in Pandey

et al. (2006).

For harmonic displacement H(t) = deixt about the

equilibrium position, i.e., H(0) = 0, we get the non-

dimensional pressure distribution P(x,y,t) as

Pðx; y; tÞ ¼
X

m;n¼odd

16ð�1Þ
mþn�2

2

p2mn

�ixdeixt

j2 þ k2
mn=a

2 þ ix

� cos
mpx

L
cos

npy

W

ð5Þ

where kmn ¼ m2p2

L2 þ n2p2

W2 ; j ¼ 1
la: The total reaction force

F(t) on the moving perforated plate is calculated by

integrating the pressure distribution paP(x,y,t) over the

domain S = {(x,y)|–L/2 £ x £ L/2, –W/2 £ y £ W/2}

and then subtracting from it the force contribution due to

the total area of the individual holes. The net force after

normalizing it with LWpa is given by

FðtÞ
LWpa

¼ ftot ¼
X

m;n¼odd

16

p4m2n2

�ixdeixt

ðj2 þ k2
mn=a

2Þ þ ix
4� fperf

� �

ð6Þ

Here, a negative sign shows the opposite relationship

between the back force and the direction of motion. The

expression for fperf is given by:

– If N and M are odd

where i 2 �N�1
2
; N�1

2

� �

:
�

i! iþ 1g and j 2 �M�1
2
;

��

M�1
2
� : j! jþ 1g

– If N and M are even

fperf ¼ð�1Þ
mþn�2

2

X

ðN�1Þ

i¼�ðN�1Þ
sin

mpðiqþLhÞ
2L

� sin
mpðiq�LhÞ

2L

� �

�
X

ðM�1Þ

j¼�ðM�1Þ
sin

npðjqþLhÞ
2W

� sin
npðjq�LhÞ

2W

� �

¼ 4ð�1Þ
mþn�2

2 sin
mpLh

2L
sin

npLh

2W

X

ðN�1Þ

i¼�ðN�1Þ

� cos
mpiq

2L

X

ðM�1Þ

j¼�ðM�1Þ
cos

npjq

2W

where i2{[–(N–1),(N–1)]: i fi i + 2} and j2{[–(M–1),

(M–1)]: j fi j + 2}. Note that i and j are odd numbers.

– If N is odd and M is even

fperf¼ð�1Þ
mþn�2

2

X

N�1
2

i¼�N�1
2

sin
mpðiqþLh=2Þ

L
�sin

mpðiq�Lh=2Þ
L

� �

�
X

ðM�1Þ

j¼�ðM�1Þ
sin

npðjqþLhÞ
2W

�sin
npðjq�LhÞ

2W

� �

¼4ð�1Þ
mþn�2

2 sin
mpLh

2L
sin

npLh

2W

�
X

N�1
2

i¼�N�1
2

cos
mpiq

L

X

ðM�1Þ

j¼�ðM�1Þ
cos

npjq

2W

where i 2 �N�1
2
; N�1

2

� �

: i! iþ 1
� 	

and j2{[–(M–1),

(M–1)]: j fi j + 2}.

Now, the non-dimensional damping force fdp is calcu-

lated by taking the imaginary part of ftot. Taking the

absolute value of the non-dimensional damping force, we

get

fperf ¼ ð�1Þ
mþn�2

2

X

N�1
2

i¼�N�1
2

X

M�1
2

j¼�M�1
2

Z iqþLh

iq�Lh=2

Z jqþLh=2

jq�Lh=2

cos
mpx

L
cos

npy

W
dxdy

fperf ¼ ð�1Þ
mþn�2

2

X

N�1
2

i¼�N�1
2

sin
mpðiqþ Lh=2Þ

L
� sin

mpðiq� Lh=2Þ
L

� �

X

M�1
2

j¼�M�1
2

sin
npðjqþ Lh=2Þ

W
� sin

npðjq� Lh=2Þ
W

� �

¼ 4ð�1Þ
mþn�2

2 sin
mpLh

2L
sin

npLh

2W

X

N�1
2

i¼�N�1
2

cos
mpiq

L

X

M�1
2

j¼�M�1
2

cos
npjq

W
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fdp ¼
16dr
p6

X

m;n¼odd

C2=p2 þ m2v2 þ n2

 �

4� fperf

� �

ðmnÞ2f½C2=p2 þ m2v2 þ n2�2 þ r2=p4g
ð7Þ

where C ¼ jaW ¼ W
l ¼ W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12lLW
Qchh3

0
RPNR

q

is a constant that

captures the perforation effect; r ¼ a2W2x ¼ 12lW2x
h2

0
paQch

is the

well known squeeze number (Blech 1983) that captures the

compressibility effect; and v ¼ W
L is the plate aspect ratio.

Generally, W is the smallest dimension chosen out of

length L and width W of the plate (in this case, we have

taken width W as the smallest dimension). The

corresponding damping constant due to squeeze-film

assuming viscous damping is given by

Csqueeze ¼
16r
p6

pavL2

xh0

X

m;n¼odd

C2

p2 þ m2v2 þ n2
� 

4� fperf

� �

ðmnÞ2f½C2

p2 þ m2v2 þ n2�2 þ r2

p4g
:

ð8Þ

The damping constant due to the loss through holes and

their end effects is given by [see Eq. (20) in ‘‘Appendix

A’’ (Veijola 2006)]:

Chole ¼ 8pl
Tp

Qth

þ DEb

� �

� Nh ð9Þ

where Tp is the thickness of the perforated plate, Qth is the

relative flow rate to account for the rarefaction effect in the

hole [see Eq. (3)], DE is the relative elongation of the hole

length due to open end effects [see Eq. (20)]. Finally the

net damping constant of the system is given by

Ctotal ¼ Csqueeze þ Chole: ð10Þ

For higher perforations ratios, the squeeze area reduces and

eventually the loss through the holes becomes the dominant

term in fluid damping.

The same damping constant obtained from other models

that include perforation modelling, are summarized below.

1. By substituting fperf = 0 in Eq. (8) and NR = Nh in G
and neglecting r term from the denominator we re-

trieve Veijola’s formula (Veijola 2006)

CVeijola¼
768lLW

h03p6Qch

X

m;n¼odd

1

ðmnÞ2 m2

L2 þ n2

W2þ 768lLW
64p2h3

0
QchNhRp

h i

ð11Þ

2. Bao’s formula (Bao et al. 2003), which is derived

assuming incompressible flow, gives the following

expression for the damping constant:

CBao ¼ 3c2 � 6c3
sinh2 ð1cÞ
sinhð2cÞ

� 24c3 v
p2

l
Qch

W3L

h3
0

�
X

n¼odd

tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þðnpc=2Þ2
p

cv

� �

n2ð1þ ðnpc=2Þ2Þ3=2

ð12Þ

where c ¼ 2
W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2h3
0
TeffgðbÞQch

3b2b2Qth

r

; b ¼ b=a is the ratio of the

hole to cell radius, Teffð¼ Tp þ 3pb
8
Þ is the effective

hole length, gðbÞ ¼ 1þ 3b4KðbÞQth

16Teff h3Qch

� 

; and K(b) = 4b2–

b4–4lnb–3. Qch and Qth are given by Eq. (3). In the

original equation given by Bao, rarefaction effect in

the pipe flow and the flow through the gap between the

parallel plates has not been modelled. In Eq. (7), we

have included rarefaction effect which is inevitable in

small air-gap thickness and the holes of small radius.

3. The expression of damping constant given by Kwok

et al. (2005) is based on the solution of Reynolds

equation under a single hole-cell combination with non-

trivial pressure boundary condition on the inner bound-

ary and trivial pressure boundary condition on the outer

boundary of the cell. The net damping is then obtained by

summing up the contribution of all hole-cell combina-

tions. The expression of damping constant is given by

CKowk¼
3

8

l
Qch

q4Nh

h3
0

KðbÞþ8pTpNh
l

Qth

ðq2�L2
hÞ

2

L4
h

: ð13Þ

The first term captures the loss due to squeeze-film flow

under the cells and the second term captures the addi-

tional loss due to non-trivial pressure boundary con-

ditions arising from the flow through the holes. In this

formula, although the effect of flow through the holes is

considered on the squeeze-film damping, the drag force

on the side walls of the holes is not included. Therefore,

the formula is valid for thin plates only.

4. Ŝkvor’s (1967) formula for fluid damping is derived by

solving the Reynolds equation with the trivial pressure

boundary condition on both the inner boundary and

zero flux on the outer boundary of a single cell. The

total damping is calculated by summing the contribu-

tions of all cell and hole combinations. The damping

constant in this case is given by

CŜkvor ¼ 3p
l

Qch

a4Nh

2h3
0

KðbÞ ð14Þ

If it is compared with Kowk’s model, it is clearly seen

that the negligence of flow through the holes omits the

second term in Eq. (13). Thus, this formula is suitable

in those cases where the loss through the holes is

negligible, e.g., perforations with large holes and small

plate thickness.

210 Microfluid Nanofluid (2008) 4:205–218

123



5. Mohite et al. (2005) modified the Ŝkvor’s formula to

include rarefaction and compressibility effect. Later,

they found that the damping contribution of boundary

cells are not same as the internal cells, and therefore,

they modified the formula to include additional

boundary effects.

where ra ¼ 12la2x
h2

0
paQch

is the squeeze number correspond-

ing to a single hole/cell combination; I0 and I1 are the

modified Bessel functions of the first kind of order

zero and one, respectively; K0 and K1 are the modi-

fied Bessel functions of the second kind of order zero

and one, respectively; A0 = 1, A1 = 0.6154,

A2 = 0.3407, A3 = 0.1758, Ro = 1, Ri = b/a, Nos is the

total number of internal hole-cell combinations

whereas N1s, N2s and N3s are the total number of

boundary hole-cell combinations with one side, two

sides, and three sides along the boundaries of the

plate, respectively. In this formula, the flow through

the holes is neglected.

We point out that if perforations are not considered in

the modelling, the formula presented in this paper [i.e.,

Eq. (7)] reduces to Blech’s formula (Blech 1983) for

fperf = 0, G = 0 and CHole = 0. The Blech’s formula, after

taking effective viscosity in r, is given by

CBlech ¼
64r
p6

pavL2

xh0

X

m;n¼odd

m2v2 þ n2ð Þ
ðmnÞ2f½m2v2 þ n2�2 þ r2=p4g

:

ð16Þ

For viscous damping, the damping force is given by

Fd ¼ ca _x; where x is the displacement during oscillations.

Now, for x = A sinx t, where A is the amplitude of

oscillation and t is the time, the velocity of oscillation is

given by _x ¼ Ax cos xt: If m is the effective mass of the

vibrating system, then, using the definition of quality factor

(Clough and Penzien 1993), we calculate quality factor as:

Qanal ¼ 2p
Einput

DEloss per cycle
¼ 2p

1
2
mA2x2

R 2p=x
0

Fd _xdt
¼ mx

ca
ð17Þ

where x is the frequency of oscillation. For comparing

with the experimental results, we use Eq. (17) to calculate

the quality factor analytically for all the models described

above.

4 Experimental validation

We take a polysilicon MEMS structure shown in Fig. 3a

for an experimental validation of the analytical models.

The dimensions of the structure and the properties of

polysilicon used in calculations are given in Table 1.

Assuming that the plate oscillates as a single rigid

body, rigidly, the approximate effective mass meff =

mplate + mcombs + mbeam, where mplate = (Lp
2–Nh Lh

2)Tp

qpoly = 1.77 · 10–9 kg is the mass of the plate involved

in out of plane motion, mcombs = NcLcWcTpqpoly = 9.79 ·
10–11 kg is the mass of the total combs, mbeam = 4 ·
0.37LbWbTpqpoly = 1.45 · 10–11 kg is the effective mass

(Rao 1995) of the anchor beams. Here, the beam is

considered as a guided beam. Thus, for the given MEMS

structure, the net effective mass, meff is 1.88 · 10–9 kg.

For computing the first resonant frequency theoretically,

we need to find the residual stress in the structure. Such

large structure suspended with straight anchored beams

(as compared to folded beams) tend to have large

residual stresses. We carried out experiments on a few

structures on the same wafer (fabricated with the same

process) and used independent results to determine the

values of the Young’s modulus (E) and the residual

stress (s) (Wylde and Hubbard 1999). The experimen-

tally determined values of E and s turn out to be 171

GPa and 77.6 MPa, respectively.

For the experiments, we use MSA 400 microsystem

analyzer—a Polytec product to characterize the out-of-

plane vibrations by Scanning Laser-Doppler Vibrometry

(http://www.polytec.com). To find the quality factor and

the damped natural frequency of the structure, we apply 4

V DC and 1 V AC pseudorandom signal with frequencies

ranging from 1 to 40 kHz. From the captured modes and

frequencies, the first natural frequency is found to be

17.30 kHz. The process is repeated 10 times and the results

are found to be the same. To verify the spectral response to

the pseudorandom signal, we apply a 1 V AC signal (over a

4 V DC bias) of a single frequency at a time and record the

steady state response amplitude of the structure. We repeat

this process over hundred chosen frequencies between 10

and 27 kHz. Here, we apply electrical signal using an

internal function generator across the bottom electrode and

the upper perforated plate. The frequency response curve

for the displacement on the plate is shown in Fig. 3c. The

CMohite ¼
paa2p
h0x

� Img
2Ri I1ð

ffiffiffiffiffiffi

raj
p

RoÞK1ð
ffiffiffiffiffiffi

raj
p

RiÞ � I1ð
ffiffiffiffiffiffi

raj
p

RiÞK1ð
ffiffiffiffiffiffi

raj
p

RoÞ½ �
ffiffiffiffiffiffi

raj
p

I0ð
ffiffiffiffiffiffi

raj
p

RiÞK1ð
ffiffiffiffiffiffi

raj
p

RoÞ þ I1ð
ffiffiffiffiffiffi

raj
p

RiÞK0ð
ffiffiffiffiffiffi

raj
p

RiÞ½ � � R2
o � R2

i


 �

� �

� ðA0N0s þ A1N1s þ A2N2s þ A3N3sÞ
ð15Þ

Microfluid Nanofluid (2008) 4:205–218 211

123

http://www.polytec.com


out-of-plane mode corresponding to this frequency is

shown in Fig. 4.

To calculate the damping ratio and the quality factor, we

use the frequency response curve shown in Fig. 3c. The

largest amplitude of oscillation is found to be about

165 nm and the first natural frequency, fd, to be 17.30 kHz.

To calculate the quality factor directly from the response

curve, we apply the half-width method (Clough and

Penzien 1993). The expression of the experimental quality

factor Qexp is given by

Qexp �
1

2n
¼ fd

f2 � f1

: ð18Þ

where f1 and f2 are frequencies at which the amplitude of

the displacement is equal to 1=
ffiffiffi

2
p

times the maximum

amplitude, and fd is the resonance frequency. To calculate

the quality factor based on the response shown in Fig. 3c,

we get fd = 17.30 kHz, f1 = 14.86 kHz and f2 = 19.99 kHz,

and finally, Qexp = 3.37 from Eq. (18). Thus, we get Qexp�
3.37. The damping ratio corresponding to the Qexp is 0.14

and the the damping constant is obtained by using the
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Proof mass Anchored beam

Bottom electrode Anchor

Fig. 3 a A picture of the MEMS structure with probes on the

electrical pads (shown partially). The central perforated plate is

suspended by four anchor beams (see Table 1 for dimensions). There

is an electrode below the perforated plate. The structure can oscillate

in-plane (actuated by combdrives) or out-of-plane (actuated by

parallel plate electrodes). In this study, the structure is made to

oscillate out-of-plane by applying actuating voltage between the

perforated plate and the bottom electrode. b Side view of the MEMS

structure along A–A¢. c Frequency response of the first out-of-plane

mode of the MEMS structure shown in a

Table 1 Dimensions of MEMS structure shown in Fig. 3a

Symbol Description Values

Lp Side length of the square plate 500 lm

Tp Thickness of the square plate 3.5 lm

Ae Area of bottom electrode 400 · 500 lm2

Lb Length of the beam 300 lm

Wb Width of the beam 4 lm

Tb Thickness of the beam 3.5 lm

Lc Length of the comb 50 lm

Wc Width of the comb 3 lm

Tc Thickness of the comb 3.5 lm

Nc Number of combs 80

Lh Length of square perforation 11.25 lm

q Pitch of the perforation distributions 31.25 lm

Nh (N · M) Number of perforations 256 (16 · 16)

h0 Air-gap thickness 6 lm

qpoly Density of polysilicon 2,330 kg/m2 Fig. 4 Transverse motion of the proof mass a top view; b oblique
view
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relationship Cexp = meffxd/Qexp = 6.09 · 10–5 N s/m,

where xn ¼ xd=
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� n2
p

¼ 1:01� xd � xd ¼ 108:7�
103 rad/s is the natural angular frequency and meff is the

effective mass of the structure. The stiffness of all the

beams with the given stress residual effects is 22.7 N/m.

4.1 Comparison of different analytical models

with experiment

We first calculate the damping constant using different

damping models given in Eqs. (7)–(16). Then, we estimate

the corresponding quality factor by substituting the

damping constants in Eq. (17). We also compute the per-

centage error in each model with respect to the experi-

mental value of the damping constant and discuss the

results.

First, we calculate the weights A’s for border holes in

the given structure shown in Fig. 3a. Figure 5 shows the

pressure distribution and the corresponding fluid velocities

in a typical cell with no-flow boundary condition on the

boundaries of the fluid domain. The boundary conditions in

an internal cell are shown in Fig. 5a. The numerical pro-

cedure is validated by comparing the value of damping

constant obtained with the theoretical value from Eq. (26)

for a cell with no-flow boundary condition on all the four

sides. It is found that the numerical value 3.786 · 10–7 N-s/m2

of damping constant for an interior cell is extremely close

to the analytical value 3.785 · 10–7 N-s/m2. To calculate

damping in the border cells, appropriate boundary condi-

tions must be used which are listed in Table 2. In Table 2,

we calculate the damping constant in a square cell of size

31.25 lm, a square hole of size 11.25 lm, and the air-gap

thickness of 6 lm under different boundary conditions.

The pressure distribution on the square cell and on the

corresponding area of the back plate are shown in the

second and third columns. The numerical values of the

damping constant, which are obtained by solving the 3D

Navier-Stokes equation in ANSYS, are listed in column

four. The ratio of the damping constant in different cases

with respect to the fully closed condition, which assumes

the boundary condition around a typical internal hole-cell

combination, are listed in column five. In the structure

shown in Fig. 3a, there are two types of border cells: 4

corner cells with two adjacent sides open, i.e., case

CL2OP2; and 28 cells on the boundaries with one side

open, i.e., case CL3OP1. In short, out of Nh = 256 total

hole-cell combinations, there are N0s = 226 internal cells

with weights A0 = 1, N1s = 28 border cells of type CL3OP1

with weights A1 = 0.39, and N2s = 4 corner cells of type

CL2OP2 with weights A2 = 0.22. All other type of cell

numbers N¢s and the corresponding weights A¢s are zero.

These values are subsequently used in calculating the

damping constant in the test structure using the present

formula.

Blech’s formula (Blech 1983), which is valid only for

non-perforated structures, is used to calculate damping

constant by taking the effective plate area (based on

effective length) of the perforated plate. The effective

length is obtained by reducing the original length of the

plate by the net perforation length (Leff = Lp–N

Lh = 320 lm). It gives an error of 476% in the damping

constant. This is obviously not a relevant formula for the

perforated plate considered here as it does not take dif-

ferent effects into account such as the pressure relief due

(a)
V=0

P=0

V
x=

0V
x=

0
P

=
0

P
=

0

Vz=V0 sin(ωt) Vz=V0 sin(ωt)

(b) (c)

Fig. 5 Sectional view of 3D

flow behavior in a cell with

no-flow condition on the

boundaries of the air-gap:

a pressure distribution; b net

fluid velocity; c net velocity

vector when the plate moves

downwards

Table 2 Damping constant and weights with respect to fully closed

boundary condition for different boundary conditions. Here, CL4OP0

denote all the sides closed, CL3OP1 three sides closed and one side

open, CL2OP2 two adjacent sides closed and two adjacent sides open

Different

boundary

conditions

Pressure

distribution

(perforated)

Pressure

distribution

(back)

Damping

constant

(N-s/m2)

Weights w.r.t

fully closed

case

CL4OP0 3.79 ·
10–7

1

CL3OP1 1.46 ·
10–7

0.39

CL2OP2 0.83 ·
10–7

0.22
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to perforations, etc. Ŝkvor’s (1967) formula, which ne-

glects the loss through the holes, gives an error of

74.5%. This formula is derived based on the repetitive

pressure pattern over the structure around each hole.

Mohite et al. (2005), included the compressibility and

rarefaction effect and recently (Mohite et al. 2006)

modified the formula by modelling the effect of bound-

ary holes and internal holes, separately. When compared

with experimental result, it gives an error of 76.9%. The

formula derived by Kwok et al. (2005) improves the

Ŝkvor’s model by including the loss through the holes

and gives an error of 51.2%. Both Ŝkvor and Kwok

formulas are based on the first approach discussed in

section I and they do not consider the loss due to drag

on the sides walls of the holes. That is the reason their

models fail if for thick perforated plate. But these models

can be extended by adding the damping due to drag on

the side walls of the holes to their models. In (Bao et al.

2003), modified the conventional Reynolds equation to

include perforation effect by equating the net flow

through all the holes and thus they include spatial vari-

ation of pressure also in the governing equation. Their

formula gives an error of 32.4%. Recently, Veijola

(2006) has modelled the loss under a single cell-hole

combination by considering other factors such as the loss

due to turning of flow from horizontal to vertical, the

loss due to change in flow profile from the region under

the cell to that under the hole, etc. (see ‘‘Appendix A’’),

in addition to the losses included in Bao’s model. When

compared with the experimental result, Veijola’s model

gives an error of 34.6%. However, our formula, given by

Eq. (7), which is an improvement over Veijola’s formula,

does the best and gives the least amount of error—only

2.0%. This improvement is due to the consideration of

reduction in the damping force by fperf as well as the

distinction made between the boundary cells and the

interior cells in the total force calculation. We find that

both these factors contribute significantly in this case,

reducing the error approximately by 23 and 15%,

respectively, from the values obtained with Veijola’s

model (Table 3; Fig. 6).

4.2 Numerical validation of fperf

In order to compare different analytical models at different

values of perforation ratios and discuss the effect of pres-

sure relief, we carry out numerical simulations to calculate

damping constant in a perforated structure shown in Fig. 7

with the following dimensions: square plate of length

200 lm, perforation distribution 8 · 8, plate thickness

3.5 lm, and air-gap thickness 8 lm. Perforation ratios of

0.0, 0.3-0.9 are considered with a constant value of pitch

q = 25.0 lm. We solve the 3D Navier-Stokes equation on

the domain shown in Fig. 7 with the following boundary

conditions: zero pressure boundary condition on the dotted

boundaries (i.e., on the side boundaries and the outer end of

Table 3 Comparison of

damping constant Canal in

N-s/m2 obtained from different

analytical models including the

present model with respect to

the experimental result,

Cexp = 6.09 · 10–5 N-s/m2 of

MEMS structure shown in

Fig. 3b. (Percentage error is

calculated with respect to the

experimental result, i.e.,
Cexp�Canal

Cexp

�

�

�

�

�

�
� 100Þ

Different analytical models Damping

constant Canal

% Error w.r.t.

Cexp = 6.09 · 10–5
Quality factor

(anal.) Qexp = 3.37

Blech (1983) [see Eq. (16)]

(Based on reduced length)

3.51 · 10–4 476.3 0.58

Škvor (1967) [see Eq. (14)] 1.55 · 10–5 74.5 13.2

Mohite et al. (2002) [see Eq. (15)] 1.40 · 10–5 76.9 14.58

Kwok et al. (2005) [see Eq. (13)] 2.97 · 10–5 51.2 6.90

Bao et al. (2003) [see Eq. (12)] 8.05 · 10–5 32.4 2.54

Veijola (2006) [see Eq. (11)] 8.19 · 10–5 34.6 2.50

Present model [see Eq. (7)] 6.21 · 10–5 2.0 3.29
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Fig. 6 Damping constant and its percentage error with respect to

experimental result using different analytical models for the MEMS

structure shown in Fig. 3a
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the holes), zero velocities on the fixed plate, and non-zero

but small velocity with a frequency of 500 Hz on the solid

portion of the perforated plate as shown in Fig. 7c. After

calculating the pressure distribution on the back plate and

the perforated plate, and shear stresses on the side walls of

the holes, we calculate the net back force based on three

different areas: (1) the top surface of the back plate; (2) the

bottom surface of the perforated plate; and (3) the bottom

surface of the perforated plate along with the side walls of

the holes. We then calculate the phase difference between

the velocity and the net back force in all the cases and

subsequently find their damping and spring components.

The damping constant is then obtained under the assump-

tion of viscous damping in which damping force is pro-

portional to the velocity.

For analytical models, we vary perforation ratios from

0.01 to 0.99 for the same values of pitch and other

dimensions as mentioned above. The extreme values of PR

considered here are not practical. However, good theoret-

ical models are expected to predict the correct behavior

close to these extreme values on theoretical grounds. Since,

the zero pressure boundary condition is taken on the outer

ends of the holes in the numerical simulation, we also

neglect the outer ends effect of the holes in the analytical

model. Moreover, to stress the importance of fperf in the

present model we neglect any modification due to bound-

ary holes (i.e., all the holes are assumed to affect the

pressure distribution uniformly).

In order to point out some of the factors under different

perforation ratios, we define regions of smaller holes,

medium sized holes, and larger holes as shown in Fig. 8.

For smaller perforation ratios, the average pressure re-

lief due to perforations is small as shown in Fig. 8. Thus,

the squeeze-film damping dominates over the loss through

the holes. In this case, the formulas, which are derived

using the first approach are not valid, the reason being the

squeeze-film flow across the cell boundaries due to the

existence of non-trivial pressure gradient. The present

model, Bao’s model and Veijola’s model fit well under this

range. As the perforation area is very small compared to

that of the non-perforated plate, the term fperf in the present

Fig. 7 a Pressure distribution

on the perforated plate of

PR = 0.6; b pressure distribution

on the back plate; c average

velocity vector
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Fig. 8 Comparison of different analytical models over different

values of hole size for a given value of the hole pitch (25.0 lm) and

plate thickness (3.5 lm)
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model will be very small. So, the present model gives

values very close to the Veijola’s and the Bao’s model.

These three models match well with the numerical values.

It is also observed that the numerical value of damping

constant based on the three different areas—the top surface

of the back plate, the bottom surface of the perforated

plate, and the bottom surface and side walls of the perfo-

rated plate—are the same under this range.

For medium sized holes, the effect of perforations start

increasing and reaches to a level where one can consider

a no flow boundary condition on the cell boundaries to

find the total fluid damping. In this case, as the area of the

perforation increases, the fluid flow through the holes

increases. So, the fluid will less likely to cross the cell

boundaries and set the condition for first approach to be

valid. Since the net area, over which the back force due to

the squeeze-film is applied, decreases, this effect is ac-

counted for subtracting the back force on the perforated

areas. In the present formula, this condition is captured by

calculating fperf. In addition there is a loss due to drag

force on the side walls of the holes. In this regime,

Veijola’s model which is based on the back plate area

gives higher values than the numerical values which are

based on the area consisting of the bottom surface and the

side walls of the perforated plate, while the Bao’s model

gives lower values because it does not consider all types

of losses which exist under a particular cell-hole combi-

nation. On the other hand, the present model matches well

with numerical values also over this range. These three

formulas can be used to calculate damping in this range

with different minor errors. If the numerical results based

on the three different areas are compared, it is found that

results based on the back plate area give larger values of

damping than the other two cases. And the difference in

other two cases at the end of this range shows that the

drag force on the side walls becomes significant compared

to the squeeze-film damping.

For large sized holes where perforation ratio becomes

very high, the contribution of holes due to the drag on the

side walls in total fluid damping become significant which

is given by Chole from Eq. (9). It is also clear from the

numerical results based on these three different areas. It

can also be observed from Fig. 8 that out of Veijola’s,

Bao’s and the present models, the present model matches

well with the numerical results with an error of 10% at

PR = 0.9 (Fig. 9). In the case of large sized holes, gener-

ally the first approach is used to calculate damping. But in

these models, the flow from the boundaries of the plate, and

the loss due to the drag on side walls of the holes are not

considered. The models which are given by Kwok et al.

(2005) and Škvor (1967) can be corrected by adding the

effect of side walls of the holes from Eq. (9). Finally it is

observed that only the present model matches well with the

numerical result over different perforation ratios, hence it

is best suited for modelling the effect of perforations in

squeeze-film damping.

To validate the formula for thin as well as thick struc-

tures, we compare the analytical damping constants ob-

tained from the Veijola’s formula and present formula with

numerical results for the plate thicknesses of 1 and 10 lm

as shown in Fig. 10. In both the cases, we find that the

present formula captures the perforation effect effectively.

Since the present formula is a modification of Veijola’s

model, we compare the percentage error obtained from

Veijola’s model and the present (modified) model with
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Fig. 9 Percentage error in calculating damping constant from the

Veijola’s model and the present model with respect to numerical

results for a plate of thickness 3.5 lm
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Fig. 10 Comparison of

Veijola’s model and present

model with respect to numerical

results for a plate thickness of

a 1 lm, and b 10 lm
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respect to the numerical results for a plate of thickness

3.5 lm in Fig. 9. We find that the Veijola’s model gives an

error of about 150% compared to 10% error in the present

model at the perforation ratio of 0.9. Finally, we point out

that Eq. (7) is valid for larger range of perforation ratios. It

is because the factor fperf due to perforations and the cor-

rections for boundary and interior holes are included in

Eq. (7) (Fig. 10).

4.3 Frequency limits

There are two main assumptions used in the derivation of

the present model: (1) the amplitude of displacement is

small, i.e., d(t) � h0; and (2) the inertial effect is negli-

gible, i.e., Re � 1. While the first assumption helps in the

linearization of the governing equation, the second

assumption limits the operating frequency range.

For the valid frequency range, the Reynolds number

must be less than 1. By an order of magnitude analysis of

the equation of squeeze-film flow through the gap between

the plates and the equation of flow through the holes, we

get the following conditions:

• For inertialess flow in the gap between the plates, the

frequency should satisfy the condition f1\\ l
2pqh2

0
Qch:

• For inertialess flow in the holes, the frequency should

satisfy the condition f2\\ l
2pqb2Qth:

Therefore, the maximum allowable frequency is given

by min(f1, f2).

5 Conclusions

We present a model for squeeze film damping in perforated

MEMS structures that takes into account various losses

associated with perforations as well as the spatial variation

of pressure in 2D domains. This model is an improvement

over the model proposed by Veijola as it uses the elaborate

calculations for losses through holes proposed by him, and,

in addition, incorporates corrections in squeeze-film

damping calculation due to perforations and differential

contributions of boundary cells and interior cells. We

compare the current model with various other analytical

models available in the literature for computing squeeze

film damping and compare their predicted values with the

experimental value obtained for a typical perforated

MEMS structure. We show that the model presented in this

paper gives the closest results to the experimentally ob-

tained value. To test the validity of the present model over

a large range of perforation ratios, a comparative study is

carried out with numerical simulations using 3D Navier

Stokes equation and the results are compared with other

analytical models as well. The results from the present

model are compared in details with results from Veijola’s

model to show the effect of modifications included in the

present model. The result show that the proposed modifi-

cations improve the analytical prediction considerably for

perforation ratios over 0.5.
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Resistance in a single cell

Total resistance RP in a single perforation cell as shown

in Fig. 2b can be divided into three regions (Veijola

2006):

1. Squeeze-film region: The flow resistance in this case is

given by RS

RS ¼
3pla4

2Qchh3
0

KðbÞ ð19Þ

where K(b) = 4b2–b4–4lnb–3, b = b/a, b is the hole

radius, a is the cell radius, l is the dynamic viscosity

of fluid, Qch is the relative flow rate coefficient which

accounts for rarefaction effect in the gap h0 between

the moving part and the fixed part.

2. Perforation and end effect:

RC þ RE ¼ 8pl
Tp

Qth

þ DEb

� �

ð20Þ

where

DE¼
0:944�3pð1þ0:216KnthÞ

16
1þ0:2b2�0:754b4

 �

fE
b

h0

� �

; fEðxÞ

where Tp is the thickness of the cell, Qth is the relative

flow rate to account for rarefaction effect in the hole,

DE is the relative elongation of the hole length due to

end effects (Sharipov 1999) (open end only).

3. Intermediate region: It consists of RIS, RIC, and RIB. RIS

is the loss due to the change in the flow profile when

flow just enters the region under the hole (see Fig. 2b).

RIC is the loss due to turning of flow from horizontal to

vertical. RIB is the loss due to the change in velocity

profile at large perforation ratio. The expression for

these losses are given by:

RIS ¼
6plða2 � b2Þ2

bh2
0

DS; RIC ¼ 8plbDC;

RIB ¼ 8plbDB

ð21Þ
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where

DS ¼
0:56� 0:32bþ 0:86b2

1þ 2:5Knch
ð22Þ

DC ¼ ð1þ 0:6KnthÞð0:66� 0:41b� 0:25b2Þ ð23Þ

DB ¼ 1:33ð1� 0:812b2Þ1þ 0:732Knth

1þ Knch
fB

b

h0

;
Tp

h0

� �

ð24Þ

fBðx; yÞ ¼ 1þ x4y3

7:11ð43y3 þ 1Þ: ð25Þ

Finally, the net resistance is given by

RP ¼ RS þ RIS þ RIB þ
1

b4
RIC þ RC þ REð Þ: ð26Þ
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versary, Göteborg, Sweden, September, 17-20, vol II, pp 154–155

Nayfeh AH, Younis MI (2004) A new approach to the modelling and

simulation of flexible microstructures under the effect of

squeeze-film damping. J Micromech Microeng 14:170–181

Pandey AK, Pratap R (2004) Coupled nonlinear effects of surface

roughness and rarefaction on squeeze film damping in MEMS

structures. J Micromech Microeng 14:1430–1437

Pandey AK, Pratap R, Chau FS (2006) Analytical solution of

modified Reynolds equation in perforated MEMS structures,

Sensors Actuator A Phys (in press) doi:10.1016/

j.sna.2006.09.006

Polianin AD (2002) Handbook of linear partial differential equations

for engineers and scientists. CRC Press/C&H, Boca Raton

Rao SS (1995) Mechanical vibration. Wesley Publishing Company,

New York

Schrag G, Wachutka G (2002) Physical based modelling of squeeze

film damping by mixed-level system simulation. Sens Actuators

A 70:32–41

Schrag G, Wachutka G (2004) Accurate system-level damping model

for highly perforated micromechanical devices. Sens Actuators

A 111:222–228

Sharipov F (1999) Rarified gas flow through a long rectangular

channel. J Vaccum Sci Technol A 17:3062–3066
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