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Abstract A compact model for oscillatory flow in a long

microchannel with a circular cross-section is derived from

the linearised Navier–Stokes equations. The resulting two-

port model includes the effects of viscosity due to rarefied

gas in the slip flow regime, inertia, compressibility and

losses due to heat exchange. Both an acoustic impedance T

network and an acoustic admittance P network are pre-

sented for implementation in system level and circuit sim-

ulation tools. Also, reduced T and P networks with constant

component values are given to be used in the low frequency

region. They are useful in time domain simulations, too. To

verify the analytical model, simulations with a harmonic

finite element solver for acoustic viscous flow are per-

formed for microchannels exploiting the axisymmetry. The

simulation results with both open and closed outlet condi-

tions are compared with the two-port model with excellent

agreement. Contribution of the slip conditions and the

accuracy of the simple model are demonstrated.

Keywords Acoustic wave propagation � Slip flow �
Microchannel � Compact model � Rarefied gas

1 Introduction

Gas-filled microchannels are an essential part of several

micromechanical devices. The channels may transfer gas

from one container to another, or the flow can be oscilla-

tory. The measure for the oscillation frequency is the re-

duced frequency k = xr0/c0, where x is the angular

frequency, r0 is the radius of the channel and c0 is the speed

of sound. If k approaches 0 and the flow velocity is rela-

tively low, both steady and oscillatory flow can be

modelled with linear flow resistances. It is typical for mi-

crochannels that their characteristic dimensions are com-

parable to the mean free path k of the gas molecules. The

measure of the rarefaction is the Knudsen number Kn. In

the case of flow channels with circular cross sections, it is

the relation between the mean free path k and the radius

of the flow channel r0. Models for circular microchannels

in the rarefied gas regime were studied from the beginning

of the twentieth century by Knudsen (1909) and more re-

cently by Sharipov and Seleznev (1998) and Karniadakis

and Beskok (2002), among several others.

When the reduced frequency k > 1, the flow can be

considered mainly viscous, but the inertia of the gas

introduces a complex, frequency-dependent part to the flow

impedance. Lumped flow impedance models for open

capillaries with inertial effects have been studied in the

literature in the continuum flow regime by Thurston

(1952), Morris and Forster (2004), and in the transition

flow regime by Hadjiconstantinou (2001).

When the reduced frequency k > 1, the channel behaves

rather as an acoustic wave guide than a viscous flow

channel. A transmission-line type two-port is needed to

model the flow in the channel. The model for a long, cir-

cular acoustic wave guide is well discussed in the literature.

The classical model that includes effects of viscosity and

heat conduction on the acoustic propagation is based on the

work by Stokes, Hemholtz and Kirchhoff in the nineteenth

century. Several useful approximations were published by

Rayleigh (1945), Daniels (1950), Beltman (1999), and

Scheichl (2004) among several others. All these papers

discuss the continuum flow regime only. Beltman (1999)
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presents a general viscothermal propagation model for

various flow geometries, including the pressure-driven and

moving-surfaces (squeezed-film damping) cases.

This paper presents a microchannel model that contains

the gas rarefaction effects and extends the lumped flow

impedance model to frequencies where k < 1, but where

the two-port model is necessary. A relatively long channel

(end effects can be considerd negligible) with a circular

cross-section is assumed. The resulting two-port flow

impedance contains the gas rarefaction effects in the slip

flow regime, losses due to viscosity and thermal conduc-

tivity, and inertial and compressibility effects. At small

reduced frequencies the model reduces to the flow resis-

tance of the viscous flow channel.

The model is derived by following the derivation of the

low reduced-frequency model by Beltman (1999), but

considering slip boundary conditions for the velocity and

temperature on the walls of the channel. This extends the

model to be valid both in the continuum flow region (Kn

< 0.001) and in the slip flow region (0.001 < Kn < 0.1).

The two-port (four-pole) model is presented as an electrical

equivalent circuit with frequency-dependent circuit ele-

ments, similarly to Daniels (1950) and Beranek (1986).

This model is usable in the frequency-domain analysis, but

to enable transient simulations, too, a model with constant

element (component) values is given.

In Sect. 2, the Beltman model is first extended by con-

sidering the slip flow conditions on the channel surfaces. A

two-port acoustic impedance is derived to enable the mod-

elling of the capillary with general inlet and outlet conditions.

In Sect. 3, implementations of this impedance with electrical-

equivalent T and P networks are given. Simple models for

short channel sections with constant component values are

presented, too. In Sect. 4, the model is verified with finite

element method (FEM) simulations of both closed and open-

ended capillaries. Finally, in Sect. 5, the accuracy of the

complete model and the simplified model is discussed. The

importance of the slip conditions is also demonstrated.

2 Analytic model for a circular microchannel

A model of wave propagation in a circular capillary,

including the effects of viscosity, inertia and compress-

ibility, and gas rarefaction, is derived from the low re-

duced-frequency model (LRF model) by Beltman (1999).

The geometry of the capillary is shown in Fig. 1.

2.1 Characteristic numbers

The behaviour of the flow in a narrow channel is described

in the frequency domain by a few characteristic numbers.

The Reynolds number Re (the square of the shear wave

number s) is the ratio between inertial and viscous forces

s2 ¼ Re ¼ xr2
0q0

g
; ð1Þ

where x is the angular frequency, q0 is the density of the

gas, g is the viscosity coefficient, and r0 is the radius of the

channel.

The reduced frequency

k ¼ xr0

c0

ð2Þ

is scaled by r0 and the speed of sound

c0 ¼
ffiffiffiffiffiffiffi

cp0

q0

r

: ð3Þ

p0 is the static pressure and c is the specific heat ratio c =

cP/cV, where cP and cV are the specific heats at constant

pressure and volume, respectively.

The Knudsen number Kn = k/r0 is a measure of gas

rarefaction. It is the ratio between the mean free path k
and the radius r0 of the channel. In this paper, the

quantity

Kc ¼
rpk
r0

ð4Þ

is used as a measure of the rarefaction instead of Kn.

For the diffuse-specular scattering model, rp is specified

by Sharipov and Seleznev (1998) as

rp ¼
2� a

a
½1:016� 0:1211ð1� aÞ�; ð5Þ

where a is the momentum accommodation coefficient. For

diffuse scattering, a = 1 and rp reduces to 1.016. Since k is

inversely proportional to pressure, Kc increases when the

pressure drops below the ambient pressure.

Here the square root of the Prandtl number Pr is used to

characterise the thermal properties

r

x

x 0

r 0

Fig. 1 Geometry of a circular

capillary
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/ ¼
ffiffiffiffiffi

Pr
p

¼
ffiffiffiffiffiffiffiffi

gCp

j

r

; ð6Þ

where j is the thermal conductivity.

KT is the thermal Knudsen number specified by Karni-

adakis and Beskok (2002) as

KT ¼
2� aT

aT

2c
cþ 1

� �

k

/2r0

; ð7Þ

where aT is the energy accommodation coefficient.

The collision frequency e of the gas molecules depend

on the average molecular velocity vave and the mean free

path k Park et al. (2004)

� ¼ vave

k
; ð8Þ

where

vave ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

8kBT0

pm

r

; ð9Þ

and kB is the Boltzmann coefficient (kB = 1.38 · 10–23 J/

K), m is the molecular mass, and T0 is the temperature. The

model derived in this paper assumes an infinite collision

frequency.

2.2 Normalised variables

The variables vx; p; T ; and q are the velocity, pressure,

temperature, and density, respectively. The normalised

variables are specified as

�vx ¼ c0vxeixt;

�p ¼ p0ð1þ peixtÞ;
�T ¼ T0ð1þ TeixtÞ;
�q ¼ q0ð1þ qeixtÞ

ð10Þ

The spatial variables in the propagation and in the radial

direction are x and r; respectively. The normalised

variables are specified as

x ¼ xx=c0; r ¼ r=r0: ð11Þ

These definitions are identical to the ones used by Beltman

(1999).

2.3 Low reduced frequency viscoelastic wave

propagation model

The LRF model is applied here to a pressure-driven flow in

a channel with a circular cross-section. The starting point is

the set of general LRF equations, Eq. 24 in Beltman

(1999). After applying the operators specified in Appendix

A2 by Beltman, and considering the axial symmetry and

non-moving channel walls (radial velocity is zero), the low

reduced-frequency equations become

ivx ¼ �
1

c
@p

@x
þ 1

s2

@2vx

@r2
þ 1

r

@vx

@r

� �

; ð12Þ

0 ¼ � 1

kc
@p

@r
; ð13Þ

@vx

@x
þ ikq ¼ 0; ð14Þ

p ¼ qþ T ; ð15Þ

iT ¼ 1

s2/
@2T

@r2
þ 1

r

@T

@r

� �

þ i
c� 1

c

� �

p: ð16Þ

2.4 Slip boundary conditions

In the continuum flow regime both the velocity and the

temperature are zero at the channel walls. When the non-

zero mean free path is considered, the velocity and tem-

perature have non-zero values at the walls. In the slip flow

regime, the first-order boundary conditions are those given

by Karniadakis and Beskok (2002) for velocity,

vxðr ¼ 1Þ ¼ �Kc

@vx

@r

�

�

�

�

r¼1

; ð17Þ

and temperature,

Tðr ¼ 1Þ ¼ �KT

@T

@r

�

�

�

�

r¼1

: ð18Þ

Kc and KT are specified in Eqs. 4 and 7, respectively.

2.5 Solution for vx and T

The pressure is a function of x only, and the velocity and

temperature can be solved from Eqs. 12 and 16, respec-

tively. Since these differential equations and the boundary

conditions in Eqs. 17 and 18 have identical forms, the

solution can be presented using a single function A. The

solution for velocity can be written as

vx ¼ �
i

c
Aðs;Kc; rÞ

@p

@x
ð19Þ

and for temperature as
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T ¼ � c� 1

c

� �

pAðs/;KT; rÞ; ð20Þ

where the function A is

Aðs;Kc; rÞ ¼
I0ðs

ffiffi

i
p

rÞ
I0ðs

ffiffi

i
p
Þ þ

ffiffi

i
p

KcsI1ðs
ffiffi

i
p
Þ
� 1; ð21Þ

where I0 and I1 are the modified Bessel functions of the first

kind. If Kc = 0, Eq. 21 reduces to the result in Appendix

A2 in Beltman (1999).

2.6 Function B

After solving the function A with slip boundary conditions,

the solution strategy by Beltman can be followed: the

velocity, density and temperature in Eqs. 19, 15 and 20,

respectively, are substituted into the equation of continuity,

Eq. 14, resulting in

� iAðs;Kc; rÞ
c

@2p

@x2
þ ikp 1þ c� 1

c
Aðs/;KT; rÞ

� �

¼ 0: ð22Þ

In the two-port model the average velocity through the

cross-section is needed rather than the radial velocity

distribution. Integrating across the cross-section of the

channel gives the final wave equation for pressure. Since

only the functions A depend on radius r, they are replaced

with functions B that represent the average value of A

Bðs;KcÞ ¼
1

p

Z

1

0

Aðs;Kc; rÞ2pr dr: ð23Þ

This results in

Bðs;KcÞ ¼
2I1ðs

ffiffi

i
p
Þ

s
ffiffi

i
p

I0ðs
ffiffi

i
p
Þ þ iKcs2I1ðs

ffiffi

i
p
Þ
� 1: ð24Þ

The same result applies to B(su,KT).

2.7 Wave equation

After replacing functions A with functions B in Eq. 22, the

resulting equation for the pressure distribution is

k2@
2p

@x2
� k2C2p ¼ 0; ð25Þ

where

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c
ncðs/ÞBðs;KcÞ

r

ð26Þ

and

ncðs/Þ ¼ 1þ c� 1

c
Bðs/;KTÞ

� ��1

: ð27Þ

The polytrophic constant nc relates density and pressure. It

affects mainly the spring forces due to the gas compress-

ibility, but it introduces losses also. The polytrophic con-

stant depends on the heat conduction and temperature

boundary conditions. Here, isothermal walls with temper-

ature jump conditions due to the rarefied gas are assumed.

The value of the polytropic constant nc is between 1 (iso-

thermal process, low-frequency region, and a small gap)

and the specific-heat ratio c (adiabatic process, high-fre-

quency region, large gap).

2.8 Relative flow rate coefficient

At small frequencies the function B(s,0) approaches –is2/8,

and its use in the following impedance equations is not

very informative. An alternative variable, the relative flow

rate coefficient Qpr, is used here instead in the following

equations. It is specified as

Qpr ¼ �
8Bðs;KcÞ

is2
: ð28Þ

An approximation valid for small s is

Qpr;0 ¼
1þ 4Kc

1þ is21þ 6Kc þ 12K2
c

6ð1þ 4KcÞ

: ð29Þ

2.9 Denormalised wave equation for a pressure driven

channel

The wave equation Eq. 25 is presented in a denormalised

form as

@2pðx;xÞ
@x2

� q2pðx;xÞ ¼ 0; ð30Þ

where the propagation coefficient q is specified as

q2 ¼ 8ixg
r2

0Qprp0ncðs/;KTÞ
: ð31Þ

The pressure function satisfying Eq. 30 is

pðx;xÞ ¼ C1eqx þ C2e�qx; ð32Þ

where C1 and C2 are constants to be determined from the

boundary conditions at the ends of the channel. Setting

boundary conditions pð�x0=2;xÞ ¼ p1 and pðx0=2;xÞ ¼
p2; the pressure distribution along the channel is
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pðx;xÞ ¼ �p1e�qx0=2 � p2eqx0=2

eqx0 � e�qx0
eqx

þ p1eqx0=2 � p2e�qx0=2

eqx0 � e�qx0
e�qx: ð33Þ

2.10 Two-port impedance

To have a simulation model, the relations between pres-

sures and velocities at both channel ends should be solved.

Here, volume velocities are used so that these can be ex-

pressed via acoustic impedances.

Equation 19 gives the relation between the velocity and

pressure in the propagation direction. After denormalising

and averaging the velocity across the cross-section, the

averaged velocity is

vxðxÞ ¼ �
r2

0Qpr

8g
@pðx;xÞ
@x

: ð34Þ

The volume velocities at the inlet and outlet are

U1 ¼ pr2
0vxð�x0=2Þ and U2 ¼ �pr2

0vxðx0=2Þ:We can write

p1

p2

� �

¼ ZA11 ZA12

ZA21 ZA22

� �

U1

U2

� �

; ð35Þ

where ZAij are the acoustic impedances that can be solved

using the volume velocities specified above and from

Eq. 34, resulting in

p1

p2

" #

¼ ZA0

1

tanhðqx0Þ
1

sinhðqx0Þ
1

sinhðqx0Þ
1

tanhðqx0Þ

2

6

6

4

3

7

7

5

U1

U2

2

4

3

5; ð36Þ

where

ZA0 ¼
8g

pr4
0qQpr

ð37Þ

is the characteristic acoustic impedance of the flow chan-

nel. Equation 36 describes an acoustic transmission line,

analogous to the electrical one discussed by Gardiol

(1987). At high frequencies ZA0 approaches a constant, real

value of q0c0/(pr0
2) that contains the specific acoustic

impedance of free space (q0c0).

Equation 36 can be used to calculate the characteristics of

the capillary, as long as two variables from p1; p2;U1; and U2

are fixed. Assume that port 2 in the capillary is terminated

with an impedance ZA2. The impedance at port 1 is then

ZA1 ¼ ZA0

ZA2 þ ZA0 tanhðqx0Þ
ZA0 þ ZA2 tanhðqx0Þ

: ð38Þ

The most important characteristics are the open and closed

channel impedances ZAopen and ZAclosed, respectively:

ZAopen ¼
p1

U1

�

�

�

�

p2¼0

¼ ZA0 tanhðqx0Þ; ð39Þ

ZAclosed ¼
p1

U1

�

�

�

�

U2¼0

¼ ZA0

tanhðqx0Þ
: ð40Þ

2.11 Distributed impedance and admittance

The distributed longitudinal impedance zAS and the trans-

versal admittance yAP per unit length are solved from

the equations for the characteristic impedance ZA0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

zAS=yAP

p

and the propagation factor q ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

zASzAP
p

:

zAS ¼ qZA0 ¼
8g

pr4
0Qpr

; ð41Þ

yAP ¼
q

ZA0

¼ ixpr2
0

p0ncðs/;KTÞ
: ð42Þ

Approximations at low frequencies can be obtained by

writing the Taylor series for these distributed impedances.

The approximated distributed longitudinal impedance and

transverse admittance, respectively, are

zAS �
8g

pr4
0ð1þ 4KcÞ

þ ix
4q0ð1þ 6Kc þ 12K2

c Þ
3pr2

0ð1þ 4KcÞ2
ð43Þ

and

yAP �
1

p0

ixpr2
0

þ q0p0cP

8pcj ðc� 1Þð1þ 4KTÞ
: ð44Þ

3 Electrical equivalent circuit implementations

There are several alternative ways to implement the

mechanical-impedance two-port specified in Eq. 36.

Here, T- and P-network realisations are presented that

can be used to calculate the accurate response for all inlet/

outlet impedance conditions. Also, simple low-order

approximations modelling short line sections with fre-

quency-independent component values are presented for

both realisations.

These networks are usable in building models for circuit

simulation and system simulation programs. With these tools,

frequency responses and time-domain responses for arbitrary

inlet/outlet impedances or networks can be calculated.
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3.1 T network

The T-equivalent acoustic impedance circuit is shown in

Fig. 2a. The accurate values and short-line approximations

for the series impedances and parallel admittances,

respectively, are

ZAS ¼ ZA0 tanhðqx0=2Þ � RA1

2
þ ixLA1

2
ð45Þ

and

ZAP ¼
ZA0

sinhðqx0Þ
� 1

GA1

þ 1

ixCA1

: ð46Þ

The approximate lumped component values for a short

section of length l are

RA1 ¼
8gl

pr4
0ð1þ 4KcÞ

; ð47Þ

LA1 ¼
4q0ð1þ 6Kc þ 12K2

c Þl
3pr2

0ð1þ 4KcÞ2
; ð48Þ

CA1 ¼
pr2

0l

p0

; ð49Þ

and

GA1 ¼
8pcjl

q0p0cPðc� 1Þð1þ 4KTÞ
: ð50Þ

Figure 2b shows the approximating circuit. Capacitance

CA2 has been added to correct the high-frequency response.

At high frequencies the capacitance of the parallel section

approaches CA1/c. This results in

CA2 ¼
CA1

c� 1
: ð51Þ

Several sections of the simple model can be cascaded to

improve the accuracy of the approximation at high fre-

quencies. In this case l = x0/N, where N is the number of

sections.

3.2 P network

An alternative way to construct the equivalent circuit is to

use an acoustic-admittance (YA = 1/ZA) P network, as

shown in Fig. 3.

The series admittance and the admittances in the parallel

branches, respectively, are

YAS ¼
1

ZA0 sinhðqx0Þ
� 1

RA1 þ ixLA1

ð52Þ

and

ZAS

ZAP

U1 U2

ZAS

p1 p2

L /2A1

CA2

U1
U2

RA1/2

p1
p2

L /2A1 R /2A1

CA1

R=1/GA1

(a)

(b)

Fig. 2 T networks for calculating the acoustic impedance character-

istics of a circular flow channel. a An accurate model with frequency-

dependent acoustic impedances, and b a small-frequency approxima-

tion for a short line section of the channel with constant component

values

YAP

U1 U2

YAS

p1 p2

CA2/2

U1 U2

RA1

p1 p2

LA1

CA1/2

R=2/GA

YAP

CA2/2

CA1/2

R=2/GA1

(a)

(b)

Fig. 3 P networks for calculating the acoustic impedance charac-

teristics of a circular flow channel. a An accurate model with

frequency-dependent acoustic admittances, and b a small-frequency

approximation for a short line section with constant component values
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YAP ¼
tanhðqx0=2Þ

ZA0

� 1

2

GA1

þ 2

ixCA1

: ð53Þ

The component values in Eqs. 47–50 for the approximate T

network are the same as for the P network. Also, additional

capacitances CA2/2 have been added to the circuit to cor-

rect the frequency response when nc approaches infinity.

The P network is suited for approximating an input

impedance of an open-ended channel (that is, port 2 of the

equivalent circuit is short-circuited).

The components in the simple equivalent circuits clearly

show the equivalency with electrical transmission lines: the

series resistances and inductances are due to gas viscosity

and inertia, respectively. The parallel capacitances and

conductances model the spring effect and losses due to

compressibility, respectively.

4 FEM simulations

To verify the results derived FEM simulations were per-

formed. Impedances for capillaries with open or closed

ends were simulated and compared with the model. A

solver for dissipative acoustic equations in a multiphysical

FEM software Elmer (2006) was used. The dissipative-

acoustics equations were discretised using enhanced MINI

finite elements while residual free bubbles were used for

the Navier–Stokes equation by Malinen et al. (2004). The

methods ensure good numerical behaviour but have a high

computational cost. The circuit simulation and design tool

Aplac (2006) was used to calculate the responses of the

electrical equivalent circuits.

Figure 4 shows the axisymmetric simulation space with

encircled boundaries. Slip conditions were assumed for

boundary 2 with the T = 0 condition. The simulated acoustic

impedance ZAFEM is calculated from the average of the

pressure p1 divided by the volume velocity on boundary 1.

Parameters for air at ambient pressure are used in the

simulations. The numerical values are shown in Table 1. A

mesh of 5,000 elements was used, and the number of

simulated frequencies was 65.

4.1 Capillary with an open end

The acoustic impedance of an open capillary was first

simulated. In the FEM simulations, pressures p1 and p2 at

boundaries 1 and 3 (ports 1 and 2, respectively) were set to

1 Pa and 0 Pa, respectively, and the volume velocity U1 at

port 1 was calculated from the velocity distribution. These

conditions ensured that there are no fringe effects at the

ends of the capillary. Figure 5 shows both the simulated

results and the analytic impedance ZAopen in Eq. 39 for two

capillary geometries.

4.2 Capillary with a closed end

Next, the acoustic admittance of a closed capillary was

simulated. In the FEM simulations, pressure p1 at port 1 was

set to 1 Pa and the velocity at port 2 U2 was set to 0. The

volume velocity U1 at port 1 was then calculated from the

velocity distribution. Since the imaginary part of the

impedance approaches infinity when the frequency ap-

proaches zero, an admittance response is shown instead of

the impedance. Figure 6 shows both the simulated results and

the analytic admittance 1/ZAclosed specified in Eq. 40 for two

capillary topologies. These figures show the real parts and the

negation of the imaginary parts of the admittance.

5 Discussion

5.1 Accuracy of the analytic model

In principle, the analytic frequency responses should be

exactly the same as those simulated with FEM tools. This

x 0

r 0

1

2

3
Fig. 4 Axisymmetric simula-

tion space of a circular capillary

Table 1 Gas parameters used in simulations

Parameter Description Value Unit

p0 Pressure 101.3 103 N/m2

T0 Temperature 300 K

g Viscosity coefficient 18.5 10–6 N s/m2

k Mean free path 68.23 10–9 m

j Heat conductivity 25 10–3 W/m/K

q0 Density 1.155 kg/m3

cP Specific heat 1.01 103 J/kg/K

c Specific heat ratio c = cP/cV 1.4

a Accommodation coefficient 1.0

aT Thermal acc. coefficient 1.0

m Molecular mass 4.85 10–26 kg
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is due to the fact that, in both cases, the solved equations

are the same, and so are the boundary conditions. This is

also a proof that the derived equations are correct. As

Figs. 5 and 6 show, the agreement is excellent but not

perfect. There are some differences in the high-frequency

region.

In deriving this model, idealistic end-conditions were

assumed. In practice, the fringe flows and acoustic radia-

tion at the open ends should be considered for a more

accurate model, especially for relatively short channels (x0/

r0 < 20). Also, the closed end needs an end-correction

since the flow profile at the closed end differs from the flow

profile in the middle of a long channel. There are two ways

to extend the validity of the present model for short

channels. In the first one, the length of the tube with ideal

end-conditions is simply extended to approximately com-

pensate the end effects. The amount of the open-end cor-

rection depends on the output conditions. A published

value for the end correction exists for small reduced fre-

quency k. For continuum flow and for an unflanged end, the

end correction is 0.6133r0 according to Levine and

Schwinger (1948), and for a flanged end it is 0.68r0 as

given by Weissberg (1962) and 3p/16r0 � 0.59r0 by

Sharipov and Seleznev (1998). The second way to extend

the validity of the model is to use the presented equivalent

circuit and connect to it an equivalent circuit modelling the

end correction. In this way, both the correction due to the

viscous flow (small k) and due to the inertia (attached

mass) could be included in the model.

An infinite molecular collision frequency was assumed

in the model and the FEM simulations. According to Eq. 8

and the parameters in Table 1, this frequency is 6.8 GHz.

This is 68 times the maximum frequency used in the

simulations.

5.2 Accuracy of the simple model

The simple model presents a short section of the flow

channel and is valid only at low frequencies. For an im-

proved model, several sections must be cascaded. The

equivalent circuit with frequency-independent components

can be simulated also in the time domain. The simple

model is applicable also in environments where the com-
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Fig. 5 Simulated real (open square) and imaginary (multiplication
symbol) parts of the acoustic impedance of an open ended capillary in

1012 Pa s/m. ZAopen from the analytical expression is also shown

(solid line). The dimensions of the capillary are a r0 = 1 lm and

x0 = 10 lm and b r0 = 2 lm and x0 = 20 lm
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Fig. 6 Simulated real (open square) and negative of the imaginary

(multiplication symbol) parts of the acoustic admittance for a closed-

ended capillary in 10–15 m/s/Pa. 1/ZAclosed from the analytical

expression is also shown (solid line). The dimensions of the capillary

are a r0 = 1 lm and x0 = 10 lm and b r0 = 2 lm and x0 = 20 lm
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plex Bessel functions are not available. But how accurate is

this simple model? This is a difficult question that has no

simple answer. The only fact is that the approximation

improves with the number of cascaded sections N. But,

since functions Qpr and nc, that specify the flow and tem-

perature profiles in the channel, are approximated in the

simple model, the response of the cascaded circuit never

approaches the accurate impedance.

Figure 7 shows how the number of sections affects the

response of the open-ended capillary. The responses for

both T and P networks are shown for N = 2 and N = 8. It is

clear that the frequency range of the approximation is

several orders wider for N = 8, but it is hard to make any

judgments on whether the T- or P-network approximation

is better.

5.3 Slip conditions

A lot of work was done here in modelling the slip condi-

tions. Is this work and the increased complexity of the

model worth the trouble? Also, the effect of slip conditions

is studied with a simulation example: the impedance of an

open channel is compared with an impedance that is cal-

culated assuming continuum boundary conditions (k = 0),

see Fig. 8.

This demonstration shows that accounting for slip con-

ditions is very important in channels with a radius of 1 lm

or less. If the slip conditions are not included in the model,

the impedance will be overestimated in the low-frequency

region, in this case by about 30%.

6 Conclusions

A compact model for calculating the frequency-domain

characteristics of long circular capillaries with micro-

mechanical dimensions is presented. Two alternate elec-

trical-equivalent circuit realisations for the acoustic

impedance are given, namely the T- and P-networks.

Low-frequency circuits with constant component values

are given for both cases, as well. The model was verified

with FEM simulations with an excellent agreement,

showing that the equations derived in this paper are

valid.

The model has several applications in simulating oscil-

lating micromechanical structures containing tiny flow

channels. E.g., it is usable in calculating the characteristics

of perforated gas dampers. The simplified circuits are

usable also in transient simulations.

The model derived has idealistic boundary conditions

and is not directly applicable to relatively short channels.

However, using elongation models, the application range

can be extended for channels of any length.
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Fig. 7 The response of the simple T-network (solid line) and P-

network (dashed line) model of an open-ended capillary, when a two

(N = 2) and b eight (N = 8) sections are used. The dimensions of the

capillary are r0 = 1 lm and x0 = 10 lm. The real (open square) and

imaginary (multiplication symbol) parts from the FEM simulation are

shown for comparison
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Fig. 8 Simulated real (open square) and imaginary (multiplication
symbol) parts of the acoustic impedance of an open ended capillary.

ZAopen from the analytic expression with slip conditions is shown

(solid line) with the response of the model with continuum boundary

conditions (k = 0) (dashed line). The dimensions of the capillary are

r0 = 1 lm and x0 = 10 lm
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