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Abstract Two-dimensional finite element simulations of
electrokinetic flow in a microchannel T-junction of a
fluid with a Carreau-type nonlinear viscosity are pre-
sented. The motion of the electrical double layer at the
channel walls is approximated by velocity wall slip
boundary conditions. The fluid experiences a range of
shear rates as it turns the corner, and the flow field is
shown to be sensitive to the non-Newtonian character-
istics of the Carreau model. A one-to-one mapping be-
tween the Carreau parameters and the end wall pressure
is demonstrated through statistical analysis of the pres-
sure profile for a broad range of physical and operating
parameters. Such a mapping allows the determination of
the Carreau parameters of an unknown fluid if the end
wall pressure profile is known; thus a highly efficient
viscometric device may be constructed. A graphical
technique to show that the inverse problem is well posed
is shown, and a method for solving the inverse problem
is presented. The challenges that must be overcome be-
fore a practical device can be constructed are discussed.

Keywords Rheometry Æ Non-Newtonian Æ Inverse
problems Æ Electrokinetic flow

1 Introduction

The miniaturization of fluidic systems has given rise to
many exciting applications in biotechnology and

biochemistry. Reliable construction of devices having
features in the range from about 1 lm to 1 mm has
opened the way for more accurate, efficient and inex-
pensive chemical production, analysis and separation.
Improved reaction control is possible with microfluidics
compared to conventional macroscopic reactors.
Advantages of miniaturization also include reduced
analysis time, portability, requirement of minute
amounts of chemical agent and potential for parallel
analysis for increased throughput, which is advanta-
geous for biochemical screening. We are working to-
wards the fabrication of laboratories on chips where
fluids are manipulated, transported and tested in vol-
umes ranging from picoliters to microliters. At these
micro scales, the surface to volume ratio for fluid flow
passages is large and there is the prospect of precise
control over mass transfer, heat transfer and chemical
reaction. These properties have made micro-channel
networks an attractive solution in a wide range of
problematic situations.

At the micro scale, surface phenomena become
prominent and a range of physical effects that are
unimportant for flow at larger scales can be employed.
One such effect is electroosmosis, inducing flow using
the movement of the thin double layer of charged fluid
present at a liquid–solid interface under application of
an electric field. Electroosmotic flow (EOF) can be used
in place of pressure differences to drive flows through
micro channels. The advantages over pressure flow in-
clude precise flow control through applied potential
differences at electrodes, fluid speed is largely indepen-
dent of channel size, and a flat velocity profile in straight
channel sections avoids mixing and rheological changes
produced by lateral velocity variation that is character-
istic of pressure flow. Also, charged species present in
the bulk of the liquid (outside the double layer) will
migrate due to the electric field, a process known as
electrophoresis. Flows that are influenced by these
electrical effects are referred to as electrokinetic flows.

To the authors’ knowledge, there is little experimental
data and theoretical analysis in the literature concerning
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the electrokinetic flow of non-Newtonian fluids. Solu-
tions of polymers in an ionic solvent readily meet this
criterion however. Existing techniques for the analysis of
non-Newtonian behavior are predominantly based on
one-dimensional shear flows, where the stress experi-
enced by the fluid can be expressed through a single
shear parameter for the whole flow. Commercial devices
such as viscometers work on this principle, and as such
many experiments are required to build a picture of a
fluid’s shear response at different rates of shear. To date
piezo electrics have not been used in microrheometry for
pressure sensing. However, micron resolution particle
image velocimetry (l-PIV) has been used for the location
of surfaces (Stone et al. 2002), the measurement of shear
stresses (Pommer and Meinhart 2005) and for the mea-
surement of flowrates. Piezo electric pressure sensors are
cheap candidates to replace this functionality for online
sensors. The purpose of this paper is to illustrate their
potential utility in microrheometry.

This work demonstrates a potential design for an
electrokinetic flow rheometer in a microchannel
through the use of numerical simulations. By taking
advantage of the unique characteristics of electroki-
netic flow, we seek to develop a device capable of
testing a range of viscous response in a single experi-
ment. By inducing a flow which exhibits many shear
rates, but remains organized by the imposed electric
field, it is proposed that a great deal of information
about the fluid’s rheological properties may be deter-
mined. We build on preliminary studies by Zimmer-
man (2004), MacInnes (2002), Rees and Zimmerman
(2005) and Zimmerman et al. (2004), and examine the
rheometry of a Carreau fluid undergoing electrokinetic
flow in a T-junction.

The geometry was selected in order to force a range
of shear rates in the ordinarily plug flow profile of an
electrokinetic flow that is dragged along by a Debye
double layer motion along the boundary. The range of
shear rates leads to a non-uniform acceleration of the
flow as the fluid ‘‘turns the corner’’ and accelerates away
from the stagnation point. This renders the pressure field
along the end-wall of the T-junction sensitive to the
constitutive properties of a non-Newtonian fluid. If a
one-to-one relationship exists between the end-wall
pressure profile and the parameters of the Carreau
model, then knowledge of the end-wall pressure profile
should directly lead to the determination of the Carreau
parameters. Thus a highly efficient viscometric device
may be constructed which is able to characterize the
viscous response to shear rate in a single experiment. We
select a four-parameter Carreau model for the nonlinear
viscosity and perform two-dimensional finite element
simulations of electrokinetically driven flow in the T-
junction to test this hypothesis.

Potential applications for a micro rheometer are
many and varied. As a component in a lab-on-a-chip
network, a micro rheometer could supply fluid compo-
sition data at strategic points in a chemical process.
Real-time data from such a device could easily be used

by the process control system, allowing the dynamic
alteration of control parameters, chemical concentra-
tions, flow rates, etc. Many biological fluids of interest,
for example protein chains in solvents exhibit non-
Newtonian behavior that may be analyzed by a micro
rheometer. The device’s small size and the requirement
of only tiny amounts of sample fluid are characteristics
well suited to analyzing rare proteins. Potential medical
applications include the analysis of blood, through a
hand-held device capable of assessing the risk of differ-
ent blood-related conditions.

In Sect. 2, we present the Carreau viscosity model,
and analyze its viscous behavior at different rates of
shear for different parameter values. The electrokinetic
flow equations are described, along with their appro-
priate boundary conditions. We introduce the statistical
measures used to recover quantitative information from
the end wall pressure profile, and describe the numerical
methods employed to discretize and solve the flow
problem.

In Sect. 3, flow solutions are presented and the flow
profiles discussed. The simulated behavior of the dy-
namic viscosity is then analyzed in order to choose a
range of model parameters over which the end wall
pressure profile is sensitive.

In Sect. 4, we introduce the inverse problem. A new
method to test for mapping uniqueness based on
numerical polygonal interpolation is described, and ap-
plied to the T-junction data to demonstrate a one-to-one
mapping between the Carreau fluid properties k and n
and the end wall pressure. We also describe a method for
finding the inverse solution, based on local direct search
error minimization.

In Sect. 5, we discuss the challenges that must be
overcome in order for a practical micro-rheometer to be
constructed. A range for pressure sensitivity is calcu-
lated, and the limitations of the work are discussed.

2 Model

2.1 Carreau viscosity

For Newtonian fluids, the relationship between the
stress tensor and the rate of deformation tensor is a
simple scalar. This scalar uniquely defines a constant
viscosity l. For some complex fluids, the deformation
tensor in a unidirectional flow can be characterized by a
single parameter—the shear rate _c: The simplest non-
Newtonian behavior of a fluid is (Schowalter 1978; Bird
et al. 1960; Doi and Edwards 1995)

l ¼ lð _cÞ:

More generally, this relationship is tensorial, and can
even depend on the deformation history of a fluid ele-
ment. In this study, we use a four-parameter Carreau
viscosity model, which has widespread use in the litera-
ture. The fluid viscosity at any position is dependent on
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the local instantaneous shear rate _c: The Carreau vis-
cosity is given by

l ¼ l1 þ l0 � l1ð Þ 1þ k _cð Þ2
h in�1

2

: ð1Þ

The model parameters l0, l¥, k and n are the viscosity
at zero shear rate, viscosity at infinite shear rate, time
shear relaxation constant and exponential index,
respectively. The time shear relaxation k has units of
seconds, and may take values in the range 0 < k < ¥.
The exponential index n is dimensionless and takes
values in the range 0 < n < 1.

The parameters l0 and l¥ are upper and lower limits
for the value of viscosity, while k and n determine the
behavior of the viscosity curve as shear rates change. It
is therefore proposed that a viscometric flow will be
sensitive to the shape of the viscosity curve determined
by k and n. The viscosity limits l0 and l¥ serve to scale
the value of viscosity, but do not affect the dynamic
behavior of the viscosity curve as shear rates change.
Figure 1 shows three examples of Carreau viscous re-
sponses to shearing. Figure 1a (top) shows rapid shear
response, dimensionless k* = 0.01, for which the vis-
cosity profile is practically Newtonian. Figure 1c (top)
shows the opposite extreme of a slow response time,
k* = 20, for which only low shear rates induce a sig-
nificant non-Newtonian character. The intermediate
case, Fig. 1b (top) is responsive over a wide range of
shearing. For fixed n, these curves collapse when l is

plotted against k _c: In this study, we assume that l0

and l¥ are known, and we vary k and n independently.
For a given electrokinetic driving force, there is a

maximum shear rate _cmax such that the shear rate
experienced by the fluid at any point in the domain lies
in the range

0 � _c � _cmax: ð2Þ

We wish to choose flow conditions so that the
resultant flow profile is sensitive to the Carreau param-
eters k and n. Analysis of the Carreau viscosity curve
over a range of k and n values suggests that there are
upper and lower limits for the values k and n beyond
which the viscosity curve becomes insensitive to changes
in the Carreau parameters. These limits are dependent
solely on the maximum shear rate experienced in the
channel.

If the viscosity curve is not sensitive to different fluid
parameters, then the flow profile will also be insensitive.
We consider the behavior of the viscosity curve over a
wide range of k and n values, and choose appropriate
ranges for each parameter over which the viscous re-
sponse of the fluid remains sensitive to the shear rate.

As k fi 0, the term 1þ ðk _cÞ2
h i

in Eq. 1 tends to
unity, and the viscosity becomes constant. We must
therefore choose a lower bound for k such that the vis-
cosity remains ‘‘sensitive enough’’ over the range of
shear rates present in the T-junction. Similarly, as n fi
1, viscosity also becomes constant, so an appropriate

Fig. 1 Carreau viscosity functions versus shear rate for different
values of k*. Part a shows a typical viscosity response to shear and
viscosity distribution in the T-junction when k* is small compared
to _cmax � : Shear thinning is insignificant over the shear range and
therefore the flow profile is near-Newtonian in character. Part b
shows the same information but for the case when the viscosity

response varies across the whole shear range. The resultant flow
profile is sensitive to changes in k* and n as viscous information is
propagated throughout the flow. For k* of the order of _cmax�; as
shown in c, shear thinning occurs at low shear. This renders the
viscosity near-constant in the center of the flow where the majority
of shearing takes place
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upper bound for n must be chosen to ensure sensitivity.
These cases correspond to curve a in Fig. 1.

When _cmax � 1=k; the ðk _cÞ2 term in Eq. 1 becomes
large, so that the Carreau viscosity approaches l¥ at
shear rates much smaller than _cmax; and is therefore
near-constant over much of the shear rate range (curve c
in Fig. 1). This places a restriction on the upper bound
for k for the viscosity to remain sensitive.

We determine appropriate ranges for k and n for a
fixed _cmax; which is dependent on the applied electroki-
netic driving force. Variation of the electric field strength
would change the ranges of k and n over which the flow
is sensitive. The choice of parameter ranges is discussed
in Sect. 2.

2.2 Equations

Governing equations for electrokinetic flow that include
species transport, temperature and electrical property
variation are derived in Ermakov et al. (1998) and
MacInnes (2002). The electrical double layer is not re-
solved directly, but instead replaced by a slip boundary
condition for velocity that gives equivalent boundary
conditions for the core flow. This condition is derived
using a local one-dimensional solution to the Poisson–
Boltzmann equation, and the validity criterion for this
approximation (MacInnes 2002) is j2 L0

2 � max [1, (E0

L0/f0)
2], where L0 is the channel width, E0 the electric

field strength and f0 is the wall zeta potential. j is the
inverse of the Debye length, which is the characteristic
thickness of the double layer. We consider a channel of
width 200 lm in this study. With a Debye length of less
than 10 nm and channel sizes of the order of 100 lm, the
layer model approximation is excellent for the flow re-
gimes considered here (MacInnes 2002).

We assume that there is no net charge on the fluid,
that the flow is in a steady state, and that the wall zeta
potential and electrical conductivity of the fluid are
uniform. Thermostatic conditions are assumed to apply,
although dimensional analysis (MacInnes 2002) suggests
that temperature variation may be significant in the re-
gion of the T-junction corners. We leave analysis of heat
generation and its potential effect on the flow to future
work. The equations reduce to a set of three partial
differential equations for the conservation of mass,
momentum and electrical charge.

The equations are solved in non-dimensional form
using the reference scales q, l0, U0, L0 and E0 for den-
sity, viscosity, velocity, length and electric field, respec-
tively. Density is taken as constant, we use the Carreau
zero-shear viscosity l0 as our reference viscosity, and the
length scale is set according to the channel width. The
non-dimensional variables are

xi� ¼
xi

L0
; ui� ¼

ui

U0
; p� ¼ pL0

l0U0
; /� ¼ /

E0L0
; ð3Þ

where xi*, ui*, p*, and/* are the non-dimensional length,
velocity, pressure and electric potential, respectively.

The velocity scale is set according to the Helmholtz–
Smoluchowski slip boundary condition, so that

U0 ¼
ef0E0

ls
; ð4Þ

where e is the electrical permittivity of the fluid, f0 is the
electric zeta potential at the channel wall and ls is the
solvent viscosity. Since the Debye length of the electric
double layer is less than 10 nm, inside such a thin region
one can hardly find any polymer molecules due to the
depletion effect (Tuinier and Taniguchi 2005). Thus, the
solvent viscosity is the appropriate viscosity for deter-
mination of the boundary slip velocity, Eq. 4. In prac-
tice, the electric field strength E0 is set to achieve the
desired slip velocity, and therefore the maximum shear
rate in the channel _cmax:

The fluid velocity is governed by the Navier Stokes
momentum equations

Reuj �
@ui�
@xj�

¼ � @p�
@xi�
þ @

@xj�
l � @ui�

@xj�

� �
ð5Þ

and the continuity equation

@uj�
@xj�

¼ 0; ð6Þ

where the Reynolds number is calculated according to
the zero shear viscosity l0:

Re ¼ qU0L0

l0

: ð7Þ

Electric charge conservation, in the case of uniform
permittivity and in the absence of net charge reduces to

@

@xj�
@/�
@xj�

� �
¼ 0; ð8Þ

so that the electric field is independent of the velocity
field.

The Carreau model parameters l¥ and k are nor-
malized as

l1� ¼
l1
l0

; k� ¼ kU0

L0
; ð9Þ

while the exponential index n is already a non-dimen-
sional parameter. The Carreau viscosity may then be
expressed in non-dimensional form as

l� ¼ l1 � þ 1� l1�ð Þ 1þ k � _c�ð Þ2
h in�1

2

: ð10Þ

The non-dimensional shear rate _c� is computed from the
velocity field and is given by

_c� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
@u1�
@x1�

� �2

þ @u1�
@x2�

þ @u2�
@x1�

� �2

þ2 @u2�
@x2�

� �2
s

: ð11Þ

The flow is governed by the four dimensionless
parameters Re, l¥*, k* and n. For this computational
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study, we assume a Reynolds number of Re = 0.02,
which is consistent with observed experimental electro-
kinetic micro flows (MacInnes et al. 2003a, b) and fix the
infinite shear viscosity as equal to l¥* = 0.001. This is
approximately the highest value given in Table 1.

2.3 Boundary conditions

In non-dimensional form, the boundary conditions at
the channel walls are the electrokinetic slip velocity and
zero electric flux through the wall:

ui� ¼
@/�
@xi�

; nj
@/�
@xj�

¼ 0: ð12Þ

nj is the local unit vector normal to the channel wall. The
flow is purely electrokinetic; no external pressure gra-
dient is applied. We therefore set the pressure at the inlet
and outlets to zero. The electric potential is set to zero at
the outlets. At the inlet, we set the value of /* so as to
produce a potential gradient in the inlet channel of
unity:

Inlet : p� ¼ 0 /� ¼ 8;

Outlets : p� ¼ 0 /� ¼ 0:

In a straight channel section, in order to produce a
potential gradient of unity in the channel, /* at the inlet
should be set equal to the non-dimensional channel
length.

The value of /* at the inlet effectively sets e f0 and
thus the Reynolds number through the wall slip velocity
U0. The applied potential at the channel inlet is a
physically adjustable operating parameter, which is of-
ten used in experimental work to achieve a desired slip
velocity, since f0 is not known a priori for many mixtures
of macromolecules.

2.4 Statistical pressure analysis

We wish to extract quantitative information from the
shape of the end wall pressure profile. We do so by
computing the first three statistical moments of pressure

on the end wall—the mean p�; standard deviation r and
skewness S. The T-junction domain has a line of sym-
metry down its center, so the pressure profile will be
symmetrical about the channel center. Skewness is a
measure of the asymmetry of a distribution, so in order
for the skewness to yield meaningful information, we
consider only one half of the entire end wall pressure
profile.

Standard deviation and skewness are computed from
the expansions

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p�2 � p�2

q
; ð13Þ

S ¼ 1

r3
p�3 � 3p�p�2 þ 2p�3
� �

: ð14Þ

The p�N are obtained by integrating p*N along the left
half of the end wall boundary (line AB in Fig. 2) and
normalizing:

p�N ¼ 1

a

Z

AB

p�N dx; ð15Þ

where a in the above equation represents the length of
the line AB.

2.5 Numerical methods

The model equations are discretized using the Galerkin
finite element method. We use Lagrange cubic elements
for the velocities ui* and electric potential /*, and
Lagrange quadratic elements for the pressure p*. The
coupling of velocity to electric field through the wall
boundary conditions necessitated the use of additional
weak boundary constraint equations, which were dis-
cretized using Lagrange quadratic elements. The full
system of equations was solved using an iterative quasi-
Newton solver with a convergence criterion of O(10�6)
for the squared error residuals. Computations were
carried out using the FEMLAB� (version 2.3 Comsol,
Stockholm) finite element PDE engine on a Linux
workstation, using a custom-built MATLAB� program.

Figure 2 shows the microchannel domain and a typ-
ical mesh. A 12,330-element mesh was used for the
computations, with elements concentrated at the chan-

Table 1 Representative values for Carreau parameters k and n

Fluid l0 (Pa s) l¥ (Pa s) k (s) n l¥* k*a

2% Polyisobutylene in Primol 355 923 0.15 191 0.358 1.63 · 10�4 3,820
0.75% Separan-30 in 95/5 mixture
by weight of water–glycerol

10.6 0.010 8.04 0.364 9.43 · 10�4 160.8

7% A1 soap in decalin and m-cresol 89.6 0.010 1.41 0.200 1.11 · 10�4 28.2
5% Polystyrene in Aroclor 1242 101 0.059 0.84 0.380 5.84 · 10�4 16.8
Linear Polystyrene in
1-chloronaphthalene solutionb

166 0.01 0.017 0.538 6.02 · 10�5 0.34

Data taken from Tanner (2002)
aValues for k* are calculated according to the density of water, q = 103 kg m�3
bTaken from Zimmerman (2004)
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nel corners where the largest flow gradients occur, and
mesh accuracy was verified on a refined 19,782-element
mesh. When modeling a flow domain with sharp cor-
ners, a large number of elements are required in the
corner regions in order to resolve the large flow gradi-
ents (see inset diagram in Fig. 2). It is demonstrable that
the mesh size in these corner regions determines the
upper limit for the calculated flow gradients. Large flow
gradients may introduce terms in the solution vector of
several orders of magnitude higher than other terms,
leading to impaired convergence. In practice, the perfect
T-junction does not exist as wet etching microchannel
fabrication processes smooth sharp edges. MacInnes
2002 actually found closer agreement between numerical
simulations and experiments when rounded corners were
modeled. We found that curvatures smaller than a given
level were found to make negligible difference to the
back wall pressure profile. In light of these consider-
ations, we rounded the corners with a radius of one
tenth of the channel width. The error introduced by this
approximation was found to influence the flow locally
over a length scale of the order of the radius of curvature
and had a negligible effect on the flow as a whole.

3 Forward problem

3.1 Typical flow profile

A computed steady-state flow profile with k* = 1 and
n = 0.6 is shown in Fig. 3. The plug velocity profile in
the inlet channel is characteristic of pure electroosmotic
flow, and has the advantage for non-Newtonian fluids

that the shear rate is zero, so that viscosity remains
uniform.

As the fluid approaches the junction, large shear rates
are experienced close to the walls as the fluid is ‘‘drag-
ged’’ around the corners through the slip boundary
conditions. Velocity vectors are seen to be several times
larger in magnitude at the corners than in the channel
flow, owing to the large potential gradients there (Pat-
ankar and Hu 1998). The flow is forced to diverge, and a
range of shear rates are present in the vicinity of the
corners. The centerline velocity of the fluid is forced to
zero at the end wall, where a stagnation point is clearly
visible.

A range of shear rates is also present along the end
wall, as the potential gradient becomes larger in mag-
nitude approaching the outlets. Shear rates in this region
are an order of magnitude smaller than the shear rates
near the corners, and within two channel widths of the
junction the flow regains a near-plug profile. Therefore it
is the high shear rates at the corners that produce a
viscometric flow, while the shear rates near the stagna-
tion point are small in comparison. The presence of
small shear rates along the back wall suggests that the
flow could be ‘‘squeezed’’ into a narrower back channel
to produce larger shear rates over the whole of the end
wall and increase sensitivity to the Carreau parameters.

3.2 Choice of parameter ranges

Our simulations show that the flow profile is sensitive to
variation of the Carreau viscosity parameters k* and n.
We chose the shape of the pressure profile on the end

Fig. 2 Two-dimensional microchannel domain. The inlet and
outlet arms of the T-junction are five channel widths long to
ensure that flow is developed at the inlet and outlet boundaries. The
finite element mesh consists of 12,330 triangular elements; mesh

resolution is higher at the channel corners where larger flow
gradients occur. Boundary integration of the pressure p* is
performed along the line AB. The finite element approximation
solves for 197,965 unknowns
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wall of the channel as a measure of changes to the flow
field. Figure 3 demonstrates the velocity vectors and
pressure profile for a typical set of Carreau parameters.
The bottom of Fig. 1 shows the viscosity variation in-
duced by the velocity field. Significant variation in vis-
cosity profile and pressure shape is apparent as the
Carreau parameters are changed. We wish to choose
appropriate ranges for k* and n over which such varia-
tions remain pronounced. These ranges are selected by
considering the shape of the viscosity curve as described
in Sect. 1, together with simulated flow profiles.

Contours of dynamic viscosity and a plot of end wall
pressure corresponding to k* = 1, n = 0.5 are shown in
Fig. 4a. The largest changes in viscosity occur in the
vicinity of the corners where shear rates are large, while
the viscosity changes little in the central region of the
junction near to the end wall.

The pressure plots show the expected symmetry
about the channel center. The ‘‘Mexican’’ hat shape of
the back wall pressure profile recurs at all parameters
studied, including purely Newtonian flow. Notice that
the pressure is lower than the reference pressure p* = 0
everywhere on the end wall apart from near the center
line. This pressure drop is due to the influence of the
velocity slip boundary conditions at the corners, which
drag the fluid away from the end wall. The rise along the
end wall away from the central maximum is due to the
acceleration up to the free stream velocity from the
stagnation point. The small deviation from zero pressure
at the exit is a numerical artifact of requiring the
boundary condition to be fully developed flow (uniform
pressure outflow). It is clear that both the position and
shape of the central maximum changes with k* and n,
implying that mean and standard deviation are suitable
measures with which to analyze the pressure profile.

The case when k* = 0.4 and n = 0.2 is shown in
Fig. 4b. The viscosity variation is seen to be confined to
an area near the corners, where the shear rates are

largest. The viscosity approaches the infinite shear vis-
cosity at higher shear rates than in case (a), meaning that
it is insensitive to the smaller shear rates that are present
further from the channel corners. This flow demon-
strates the approach to the limiting case where k fi 0,
as discussed in Sect. 1.

In order to ensure sensitivity for the range of shear
rates present in the T-junction flow, the normalized
Carreau parameters are varied independently over the
following ranges:

0:3 � k� � 10; ð16Þ
0:35 � n � 0:9: ð17Þ

We may consider our model as a function f that maps
a vector of input parameters xi=(ki*, ni)

T to a vector of
outputs, yi ¼ p�i; ri; Sið ÞT: Our output vectors yi lie in
the set Y � <3, where Y = f(X). The set Y of all output
vectors is the image of the set X of all input vectors with
respect to the model f. Specifically, Y represents a two-
dimensional surface in <3, parameterized by the two
input parameters k* and n.

In the upper and lower limits for k*, the viscosity
becomes insensitive to shear rate, and the flow profile
becomes close to that of a Newtonian fluid with con-
stant viscosity. The parameter ranges are set so that
the flow profiles at k* = 0.3 and 10 remain distinct to
some tolerance, which could be set according to
experimental error for example. Similarly, when n fi
1, viscosity becomes constant; n = 0.9 was chosen as
the upper limit at which the flow profile is distinct
from that of Newtonian flow. This range is approxi-
mately the parametric range for which the numerical
map of Fig. 6 from parameters (k*,n) to measures
p�; r; Sð Þ are single valued. In this range an online
sensor would invert the measures to find the constit-
utive parameters k and n. For values of k* that are
higher or lower, the procedure becomes numerically
insensitive. This can be addressed with higher resolu-

Fig. 3 Velocity vectors and
contours of electric potential
for the case when k* = 1 and
n = 0.6. Velocities are larger at
the corners owing to the large
potential gradients there. The
maximum shear rate _cmax
always occurs at the channel
corners. Its value is governed
not only by the slip velocity, but
also by the values of the
Carreau parameters k and n
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tion PDE solution to some extent, but there will al-
ways be a numerically insensitive limit in k* at fixed
resolution. At low n, the mapped image set Y curls
back on itself and becomes double valued. Because k*
is a dimensionless operating parameter, it can be ad-
justed experimentally by changing the electric field
strength to move to a numerically sensitive region. n,
however, is a physical parameter which is intrinsically
double valued in the near zero region due to change in
shape of the Carreau viscosity profile.

Variation of the channel size L0 and the slip velocity
U0 through the inlet potential allows the maximum shear
rate in the channel _cmax to be altered. This should allow
the classification of fluids over large ranges of k. The

sensitivity ranges apply to the normalized k*, where
k* = k U0/L0, so by changing our variable scalings, it is
possible to consider fluids with high k by reducing the
slip velocity U0, while fluids with small k could be ana-
lyzed by reducing the channel width L0.

4 Inverse problem

Next we address the question of invertibility—given
experimental pressure measurements, can we infer the
viscous properties of an unknown fluid? For inversion to
be possible, we need to show the existence of a one-to-
one mapping between the parameters that we intend to

Fig. 4 Contours of dynamic viscosity l* and plots of end wall
pressure p* for two pairs of Carreau parameters. The flow profile is
seen to be sensitive to changes in the constitutive properties k* and

n. The height and width of the pressure maximum is seen to vary,
implying that statistical analysis of the end wall pressure should be
informative
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vary, k* and n, and the quantities that we intend to
measure, namely p�; r and S.

4.1 Numerical test for solvability of the inverse problem

A necessary and sufficient condition for the inverse
problem to be unique is that the surface Y � <3 does not
intersect itself. In other words, every input xi 2X is
mapped by f to a unique output yi 2Y. For a surface not
to touch itself, the inverse function theorem states that
det J, where Jij=(¶fi/¶xj) is the Jacobian of the map
y=f(x). Where det J=0 the surface must touch itself,
which is equivalent to stating that two or more mapped
image points intersect there, and hence the map is not
invertible. In the case, as here, that the Jacobian of the
map is not a square matrix, then this condition applies
the rank of the largest square submatrix being equal to
its dimension.

A technique based on linear triangular polygonal
interpolation is used to determine whether the mapping f
: X fi Y is single-valued. We approximate the con-
tinuous set X by defining interpolation functions be-
tween each discrete data point, as shown schematically
in Fig. 5. Firstly, step sizes dx = (dk*, dn)T are chosen
between the data points xi to be evaluated. We then have
m data points. Triangular polygons are defined accord-
ing to the data points at their vertices, with two polygons
interpolating each two-dimensional interval dx. For
example, the interval between the data points x1, x2, x3
and x4 in Fig. 5 is interpolated by polygons P1 and P2,
where P1 = (1, 2, 5) and P2 = (2, 6, 5).

The m output points yi are computed by running the
model with each set of input parameters xi. This batch
process is entirely automated from within MATLAB�.
A discrete set of points yi 2Y is obtained, from which the
approximate continuous surface Y may be constructed

by drawing the polygons P1, P2,..., Pm in <3 with their
vertices at the output points y1, y2,..., ym. The resulting
surface intersects itself if and only if at least one pair of
polygons overlap. The interpolated set Y may be dis-
played graphically to examine for overlapping polygons,
or it can be analyzed numerically to search for inter-
sections. Software with this capability is freely available,
for example the open source GNU Triangulated Surface
Library (website: http://www.gts.sourceforge.net).

4.2 Graphical analysis

We perform a graphical analysis of the mapping f : X

fi Y. Pictures of the interpolated sets X and Y are
shown in Fig. 6. The input parameter set X 2<2 is
shown in Fig. 6a, and the lower and upper bounds for k*
and n are marked as points A, B, C and D. A chequered
pattern is drawn on the surface to emphasize the scaling
that occurs when the input set is mapped to the output.
The picture represents the entire range of values of k*
and n that our model parameters may take. In this study,
we take dk* = 0.1 and dn = 0.05, so that 1,700 data
points are computed in order to construct the interpo-
lated sets. Computations took one week to complete on
a Linux workstation.

The interpolated output set Y is pictured in Fig. 6b.
The set X has been distorted considerably, with straight
edges becoming curved and elongated, but it is clear
from the figure that Y does not intersect itself and is a
smooth surface. The bounds at A-D are shown for direct
comparison with the input parameter set. Point D rep-
resents the point of minimum k* and n, and the direc-
tions of increasing Carreau parameter values are drawn
on the surface at this point.

We may analyze parameter sensitivity (Sun et al.
2001; Chen et al. 2004) by examining how the size of the
chequered pattern varies at different points on the out-
put surface. Looking at Fig. 6a, k* varies from 0.3 at
edge AD of X to 10 at edge BC of X, with constant step
size dk* = 0.1. We see from Fig. 6b that in output
space, the distance between each successive xi decreases
as k* increases. The pressure profile is less sensitive to
changes in the Carreau shear relaxation time parameter
as that parameter increases. We also see that the pres-
sure profile is least sensitive to changes in n at low values
of n, by comparing polygon sizes at edges AB and CD.

Generation of the interpolated mapping supplies us
with all of the information needed to examine the sen-
sitivity of the statistical moments p�; r and S individu-
ally, although such an analysis has not been carried out
in this study.

In summary, it is clear that the inverse problem is
uniquely solvable in a broad range of the Carreau fluid
parameters k* and n and the first three statistical mo-
ments of the end wall pressure, p�; r and S. The pressure
is less sensitive to the fluid properties as the time shear
relaxation parameter k* increases. The extent to which
we may accurately distinguish between two different sets

Fig. 5 Triangular polygons are used to linearly interpolate the
discrete data points xi. The continuous sets X and Y may then be
approximated
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of potential fluid properties would be governed by our
measurement error in an actual experiment. If this error
proved to be large, we may wish to restrict our ‘‘micro-
rheometer’’ to the classification of fluids with smaller k*
to ensure accuracy in our predictions.

4.3 Solution of the inverse problem

A local search method based on an error minimization
approach may be used to obtain the unique Carreau
parameters (model inputs) that correspond to an ob-
served set of pressure moments (model outputs). Recall
that our model may be expressed as a function f, acting
on a vector of input parameters xi to produce a vector of
outputs yi. Suppose that we have an output vector y0,
perhaps obtained from an experiment. We wish to find
the corresponding input vector x0 such that f(x0) = y0.
An initial guess xk is chosen for the required input
parameters. The corresponding output vector yk is then
evaluated as yk = f(yk).

The squared error Ek between the target output vec-
tor and the output vector corresponding to the guessed
input is formed as

Ek ¼ ðy0 � ykÞ
Tðy0 � ykÞ; ð18Þ

so that Ek = 0 if and only if y0 = yk. We may then
minimize Ek subject to xk to find the value of x0. When a
local minimum is found, by the uniqueness of the
mapping f, we must have xk = x0 at that minimum.

A direct search method based on the Nelder–Mead
amoeba algorithm (Nelder and Mead 1965) was used to
find inverse solutions from computed pressure data. This
method was selected as it does not require numerical or
analytic gradients, which cannot be calculated directly

for our model function f, and because it was readily
available as a standard command in MATLAB�. In-
verse search methods based on the Newton method (Sun
et al. 2001) which evaluate the finite element Jacobian at
each step are often used in the literature, but in our case
they were not viable owing to the boundary integration
performed on the finite element solution to obtain the
output parameters. This necessitated the use of a more
general direct search method.

A potential disadvantage of using direct search
methods is that they may require many function evalu-
ations to converge to a solution. In this study, a single
function evaluation requires the solution of the entire
finite element model, so it is desirable to minimize the
number of function evaluations necessary. This also
emphasizes the importance of choosing an initial guess
x0 that is as close to the actual solution as possible. The
numerical interpolation technique employed here allows
such a starting value to be found with relative ease.

5 Discussion

Computations show that there is a wide parametric re-
gion for which a single-valued mapping between the
Carreau fluid parameters k and n and the first three
statistical moments of the end wall pressure profile p; r
and S exists. This relationship allows an experimental
fluid exhibiting Carreau non-Newtonian behavior to be
uniquely determined by the measurement of the end wall
pressure. If the Carreau properties of a fluid fall within
the range 0.3 L0/U0 £ k £ 10 L0/U0 (the range of
parameter sensitivity for k), it may be classified by a
single experiment. If the value of k falls outside this
range, the wall slip velocity U0 may be varied by altering

Fig. 6 The interpolated sets X and Y are shown graphically. The
range over which k* and n are varied is shown in a. The chequered
pattern indicates the step sizes dk* = 0.1 and dn = 0.05 used in
computations. The set X of (k*, n)-points in (k*, n)-space is mapped
to the set Y of (k*, n)-points in p�;r; Sð Þ-space; shown in b. It is

clear that the set Y does not intersect itself in p�; r; Sð Þ-space: Thus
the inverse problem is well posed, and we may determine the
Carreau properties k* and n from a single p�;r; Sð Þ-measurement:
The pressure profile is seen to become less sensitive to changes in
the Carreau parameters as k* increases and n decreases
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the electric potential at the inlet in order to achieve
different ranges of sensitivity for k.

In the numerical model, the shear rates at square
corners increase with the grid resolution. Locally, at a
square corner the shear rate is infinite as fluid elements
instantaneously change direction. These infinite shear
rates cannot be achieved numerically; the computed
shear rates at the corners increase as grid resolution
increases. As a compromise, the corners have been
rounded with a radius of one tenth of the channel width.
This approach has been used in similar computational
studies (e.g. MacInnes et al. 2003a) and it allows the use
of fewer grid elements while imposing a limit on the
magnitude of shear rates at the corners. In the afore-
mentioned work, which considered the electroosmotic
flow of a Newtonian fluid, computations of velocity were
found to be in agreement with experimental results to
within the measurement uncertainty of 5 per cent. It
therefore seems sensible to assume that the rounding of
the channel corners introduces only small errors into the
flow solution.

In real-life devices, fabrication techniques (for
example glass etching) result in microchannels with
shapes and dimensions that can deviate significantly
from the ideal geometry considered in this study. It has
been shown (MacInnes et al. 2003b) that typical varia-
tions in channel shape due to etching performance can
affect the flow to the extent that model predictions can
become inaccurate. Micro particle image velocimetry (l-
PIV) techniques (Bown et al. 2005; Devasenathipathy
et al. 2002; Stone et al. 2002) are being used to charac-
terize the exact geometry of fabricated microchannels
individually. Devices with geometries that differ from
the ideal considered here may be calibrated experimen-
tally, and a mapping built up by processing a range of
Carreau fluids. The existence shown here of a unique
inverse solution for the Carreau parameters guarantees
that such a mapping is also unique, and allows the
prediction of unknown fluid parameters without solving
the inverse model.

Simulations demonstrate a characteristic variation of
non-dimensionalized pressure p* of about 0.2 (see
Fig. 4). We calculate the actual pressure, p, from p*
using the following expression:

p ¼ l0U0

L0
p � : ð19Þ

l0, L0 and U0 are the characteristic viscosity, length and
velocity scales respectively. For electroosmotic flow of
an aqueous Carreau fluid in a micro-chan-
nel, l0 = 102 Pa s, L0 = 2 · 10�4 m and
U0 = 10�3 m s�1. Substituting these values into Eq. 19
gives

pvar ¼
102 � 10�3

2� 10�4
� 0:2 ¼ 100 Pa: ð20Þ

In order to accurately reconstruct the end wall pressure
profiles from a number of discrete measurements, one

would assume that a sensor error of at most 1 Pa would
be desirable. A sensor would also required that had a
footprint of no more than 50 lm in order for it to fit into
the channel. It has been shown1 that inlet and outlet
pressures in a micro-channel T-junction on a glass chip
may be balanced to within 0.001 Pa, although integra-
tion of pressure transducers into the channel has not yet
been attempted. It is reasonable to assume therefore that
the pressure variations present in the T-junction simu-
lations (100 Pa) are large enough to be measured
experimentally.

It is proposed that the end wall pressure profile may
be reconstructed from a number of discrete measure-
ments from piezo-electric pressure transducers embed-
ded at appropriate positions along the end wall. Use of
such transducers in a 300 lm microchannel to promote
mixing has been demonstrated by Yaralioglu et al.
(2004), although the successful implementation of such
devices for pressure measurement requires further work.
Once an approximate pressure profile was constructed
from sensor measurements, the mean, standard devia-
tion and skewness could be obtained. It is proposed that
the calculation error for the values of p; r and S will
decrease as sensor accuracy and the number of pressure
sensors along the end wall increase.

We have shown that the pressure profile is sensitive to
the constitutive properties of a Carreau fluid. It is rea-
sonable to assert that the velocity field as a whole will
also be sensitive to k and n. By forming statistical
measures of the velocity field at different positions in the
flow, it should be possible to find an invertible rela-
tionship between k and n and the velocity field. The
existence of such a mapping—a strong indication that
the pressure mapping holds—could easily be tested
experimentally through l-PIV techniques. PIV equip-
ment is expensive however, whereas piezo-electric pres-
sure sensors embedded in a microchannel are likely to be
cheap to produce, and would not require specialist lab
equipment to operate.

A selection of Carreau properties for different fluids
is shown in Table 1. For this preliminary computational
study, several assumptions were made. The fluid’s zero
shear and infinite shear viscosities l0 and l¥ were fixed
through the non-dimensional infinite shear viscosity and
Reynolds numbers, l¥* and Re, respectively. This re-
sults in a fixed electrokinetic slip velocity U0. In order to
change the range of k sensitivity of the flow, we must
change the value of maximum shear rate _cmax that occurs
at the channel corners. In general the maximum shear
rate for any given flow is dependent on the Reynolds
number, which in turn is dependent on both the zero
shear viscosity l0 and the slip velocity U0. On the other
hand, our non-dimensional Carreau parameter k* is
normalized by the length and velocity scales, and so is
also dependent on U0. Further simulations are required
to examine these relationships more closely before con-
crete predictions can be made about the ranges achiev-

1H. C. H. Bandulasena (2005), Personal Communication.
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able over which the flow is sensitive to the k-value of a
given fluid. It may be the case that the channel width L0

has a greater effect on the sensitivity range for k than the
slip velocity U0.

6 Conclusions

Two-dimensional finite element simulations of the
electrokinetic flow of a non-Newtonian fluid in a T-
junction microchannel have been demonstrated. It has
been shown that there exists a single-valued map be-
tween the viscous characteristics of the fluid and the
end wall pressure profile for a range of non-dimen-
sionalised Carreau parameters. Such a map allows the
construction of a highly efficient viscometric device, in
which a single experiment can determine the entire
viscosity curve of a fluid with unknown Carreau
parameters k and n in the ranges 0.3 L0/U0 £ k £
10 L0/U0 and 0.1 £ n £ 0.9 if the viscosities at zero
and infinite shear are known. By varying the channel
size and electric field strength, it should be possible to
determine the Carreau characteristics of a fluid over a
much larger range of parameter values. A new method
for determining parameter identifiability and sensitivity
has been presented, and the resulting inverse problem
solved. The effects of heat generation through electri-
cal resistance and viscous dissipation have been ne-
glected in this study, along with the effects of net
charges on species and varying electrical properties.
These potentially nonlinear effects may require the
layer model to be extended in order to preserve sim-
ulation accuracy. In order for a T-junction viscometric
device to be viable, these effects must be considered in
future work.
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