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Abstract In this paper, the behavior of a micron-scale
fluid droplet on a heterogeneous surface is investigated
using a two-phase lattice Boltzmann method (LBM).
The two-phase LBM permits the simulation of the time
dependent three-dimensional motion of a liquid droplet
on solid surface patterned with hydrophobic and
hydrophilic strips. A nearest-neighbor molecular inter-
action force is used to model the adhesive forces between
the fluid and solid walls. The solid heterogeneous wall is
a uniform hydrophilic substrate painted with hydro-
phobic strips. The model is validated by demonstrating
the consistency of the simulation results with an exact
solution for capillary rise and through qualitative com-
parison of computed dynamic contact line behavior with
experimentally measured surface properties and ob-
served surface shapes of a droplet on a heterogeneous
surface. The dependence of spreading behavior on wet-
tability, the width of hydrophobic strip, initial location
of the droplet relative to the strips, and gravity is
investigated. A decrease in contact angle of the liquid on
a hydrophilic surface may lead to breakup of the droplet
for certain substrate patterns. The simulations suggest
that the present lattice Boltzmann (LB) model can be
used as a reliable way to study fluidic control on heter-
ogeneous surfaces and other wetting related subjects.

Keywords Fluid droplet Æ Lattice Boltzmann method Æ
Heterogeneous surface Æ Nearest-neighbor molecular
interaction force Æ Wetting and spreading

1 Introduction

Liquid droplet spreading on surfaces occurs in many
industrial processes, such as painting and coating,
inkjet printing, lubrication, and gluing. A large num-
ber of experimental, theoretical, and numerical studies
on liquid droplet spreading have been performed
(Pasandideh-Fard et al. 1996; De Gennes 1985; Trevi-
no et al. 1998). As a result, the physics of liquid
droplet behavior on flat homogeneous surfaces is rel-
atively well understood. In contrast, motivated largely
by growing interest in ‘microfluidics’, fluid behavior on
small scale heterogeneous surfaces is not as well
characterized and is currently the subject of wide-
spread investigation. Of particular interest is the con-
trol of liquid movement, mass flow rates and residence
times in microchannels and ducts and on physically
and chemically patterned substrates. The range of
possible surface configurations and the underlying
complexity of the processes (De Coninck 2001) make
the simulation of these processes challenging. The
complexity arises from the chemistry of the solid sur-
face, contamination of the liquid surface, solid surface
roughness and dissolved components in the liquid (e.g.,
surfactants and polymers) (Blake 1993). The wetting of
heterogeneous surface exhibits several unusual features
that have been recently brought to light through
studies of structured surfaces (Lenz and Lipowsky
1998). For example, such systems can undergo mor-
phological transitions in which the wetting phase
experiences an abrupt change in shape (Gau et al.
1999).

In many processes, for example, printing, droplets
typically have length scales of microns. Experimental
work on micro and mesoscopic droplets can be diffi-
cult because of the length- and time-scales involved.
The ability to predict droplet behavior as a function of
surface chemistry and liquid properties using numerical
modeling is an attractive option both for a parametric
investigation of the physical behavior and for design
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and interpretation of experiments. One useful modeling
tool is molecular dynamics (MD). In earlier work, MD
simulations have been carried out to study the
spreading of sessile drops on flat homogeneous sur-
faces (D‘Ortona et al. 1996; Bekink et al. 1996; Ha-
ataja et al. 1996; de Ruijter et al. 1999), flat
heterogeneous surfaces (Adão et al. 1999), and porous
surfaces (Deng et al. 2002). MD simulations yield
molecular level information on the influence of surface
structure and chemistry on the wetting and spreading
behavior. Because of computational overhead and the
restriction to two or three body potentials, however,
such MD simulations are unable to access a wide
range of system parameters (e.g., size and distribution
of physical and chemical heterogeneities of substrates,
interfacial tension and viscosity of fluids, and gravity)
that can influence mesoscopic behavior.

In this paper, the specific aim is to model the
behavior of a droplet on a chemically heterogeneous
substrate by employing a modified LBM. The LBM is
a convenient simulation tool to solve multiphase fluid
dynamics problems on a variety of length scales. Its
appeal is that, in contrast to traditional CFD methods
that solve macroscopic equations, the LBM simulates
fluid flow based on a microscopic model or mesoscopic
kinetic equations. This intrinsic feature is attractive to
those who wish to incorporate microscopic or meso-
scopic features and processes that are either not used,
or are difficult to incorporate, in traditional CFD
simulation models. In particular, the dynamics of
multiple fluids interfaces is often difficult to simulate
by traditional approaches but can be modeled effec-
tively by LBM accounting for molecular interactions
near an interface (He et al. 1999; Shan and Chen 1993;
Succi 2001).

There are several different multiphase LB models
currently in use. The first multiphase fluid LBM was
Chromodynamic model proposed by Gunstensen et al.
(1991) and modified by Grunau et al. (1993). In this
model, ‘red’ and ‘blue’ particle distribution functions
were introduced to mimic two different fluids. The
main drawback of this model is that the ‘recoloring’
process results in artificial anisotropic surface tension
and induces unphysical currents near the interfaces.
The pseudopotential model (Shan and Chen 1993,
1994) avoids artificial ‘recoloring’ process by intro-
ducing an additional force term explicitly to the
velocity field, and thus has been quite successful in
simulation of several fundamental interfacial phenom-
ena. However, the choice of the force term ignores the
effect of the repulsive core and leads to a ‘mass col-
lapse’ phenomenon in which particle density
approaches infinity. Although this ‘black-hole’ problem
can be reduced by modifying the force term, this leads
to a thermodynamic inconsistency (He and Doolen
2002), and limits its application in multiphase ther-
modynamics. Swift et al. (1995, 1996) developed
a model for multiphase fluids using the concepts of
free-energy functional. Compared with pseudopotential

model, the free-energy model is fully consistent with
Maxwell’s equal-area construction, especially for low-
temperature conditions. Furthermore, since the free-
energy model admits local momentum conservation,
the interfacial spurious velocity is nearly eliminated.
Dupuis and Yeomans (2004), Dupuis et al. (2005b),
and Leopoldes et al. (2003) have applied this free-en-
ergy based LBM to dynamic analysis of a droplet
spreading on a solid surface.

In this paper, we adopt a three-dimensional, two-
phase LBM based on effective molecular interaction
force, which was recently developed by He et al. (1998).
The adhesive force of the solid surface proposed by
Martys (1996) is used to model the wetting phenome-
non. The advantage of this approach for wetting prob-
lems is that it allows us to tune equilibrium
thermodynamic properties such as the surface tension or
static contact angle by matching LBM solutions with
analytic predictions of interface shapes for known sur-
face tension values and static wetting angles. Thus, the
equilibrium wetting properties of the substrate can be
readily defined and controlled, and the dynamic prop-
erties are determined by the nature of the interfacial
molecular interaction model that is employed. The
model is checked by showing the consistency of the
theoretical solution with the simulation results of capil-
lary rise and by comparing the measured dynamic con-
tact line with experimentally measured surface
properties of a droplet on a multi-striped heterogeneous
surface. The effects of some parameters on the droplet
spreading are then analyzed.

2 Numerical model

2.1 The continuous Boltzmann model

The LBM has evolved from the lattice-gas automata
(LGA) model (Frisch et al. 1987; Rothman and Zaleski
1994), and as such is often referred to as a mesoscopic
approach (in contrast to, say, the more traditional
continuum mechanical formulations). Different from
LGA, which is a direct consequence of the single particle
Boolean operation and thus suffers a problem of the
statistical noise in the computed hydrodynamic fields,
the LBM employs real-valued densities of microscopic
particles that move along each bond of the lattice, fol-
lowing the motion of a distribution of microscopic
particles. The key idea is to solve a discretized Boltz-
mann equation on a regular lattice, where the fluid is
modeled with a particle distribution function. The den-
sity distribution function represents the mass of fluid
‘particles’ at a location r with mass m moving with a
given velocity e per unit volume of phase space. The
dimension of the distribution function is mass per unit
volume of r � e space (or phase space). The distribution
function satisfies the Boltzmann equation (Chapman
and Cowling 1970). That is
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@tf ðr; e; tÞ þ e � rrf ðr; e; tÞ þ a � ref ðr; e; tÞ ¼ Xðf Þ; ð1Þ

where re ¼ @
@e ; rr ¼ @

@r ; and a ¼ de
dt

and occurs when a

force such as gravity or magnetic field is acting on the
fluid particles.

To obtain a tractable solution it is necessary to
specify the form of the collision operator in a simple
enough way that a solution is possible, but the
essential physics is retained. Two major assumptions
are made for simplification of the collision term. The
first assumption is that only binary collisions are taken
into account. The second assumption is that the
velocity of a molecule is uncorrelated with its position.
Under these assumptions the collision term is ex-
pressed in the form known as the ‘BGK’ collision
operator (Bhatnagar et al. 1954), which has proved
useful for certain applications. That is

X ¼ � f � f eq

s
; ð2Þ

where s is the relaxation time, f eq is the local equilibrium
distribution function given by (Chapman and Cowling
1970; Cercignani 1975)

f eq ¼ q

ð2pRT ÞD=2
exp �ðe� uÞ2

2RT

" #
: ð3Þ

Here D, R, T, q, u are the spatial dimension, gas con-
stant, macroscopic temperature, density and mscro-
scopic velocity, respectively. The single phase
Boltzmann-BGK equation then takes the form:

@tf ðr; e; tÞ þ e � rrf ðr; e; tÞ þ a � ref ðr; e; tÞ ¼ �
f � f eq

s
:

ð4Þ

The third term on the left-hand side of Eq. 4 is
approximated by assuming that f � f eq is small enough
that the derivative �e f in the force term can be
approximated as (He et al. 1998)

ref � ref eq ¼ � e� u

RT
f eq: ð5Þ

Substitution of Eq. 5 into 4, yields

@tf ðr; e; tÞ þ e � rrf ðr; e; tÞ ¼ �
f � f eq

s
þG � ðe� uÞ

qRT
f eq;

ð6Þ

where G is an external force, G=q a.
The Boltzmann equation is linked to the equations of

macroscopic hydrodynamics by averaging properties
over velocity space (Chapman and Cowling 1970) such
that the macroscopic density, q, and momentum, q u are
given by

q ¼
Z

f de; ð7Þ

qu ¼
Z

f e de: ð8Þ

In dense fluids (e.g., liquids), the mean free path of
a particle or molecule is comparable with the particle
or molecular size. Thus, in additional to particle
collisions, other mechanisms for momentum transfer,
such as intermolecular forces must be considered. In
this paper, this is simulated using the He–Shan–Doo-
len (HSD) model (He et al.1998). The effective
molecular interaction force F can be expressed as the
sum of long-range attractive and short-range repulsive
forces in the form

F ¼ qrV � Bq2RT vr lnðq2vÞ: ð9Þ

The first term in Eq. 9 arises from a mean-field
approximation to the long-range intermolecular
attraction and the second term is a presentation of the
short-range intermolecular repulsive force. B is a
function of the mass and effective diameter of a mol-
ecule and v is a density-dependent collision probability
for molecules. The intermolecular attraction potential
V has the dimensions of kinetic energy per unit mass
and can be expressed as V=�2Aq � j� 2q. A and j
are parameters that are taken to be constants (He
et al. 1999).

To account for the possibility that the fluid may be
two-phase, with, say different densities, q h, q l, Eq. 9 can
be recast in the form

F ¼ �rwþ Fs; ð10Þ

where

Fs ¼ jqrr2q; ð11Þ

represents the macroscopic interfacial force between the
phases, which is associated with a steep density gradient.
The parameter j in Eq. 11 determines the magnitude of
the interfacial tension. Bulk molecular interactions are
accounted for through the potential w where

w ¼ BRT v� Að Þq2; ð12Þ

and intermolecular potential w is related to the fluid
pressure by w (q)=p � qRT. In this paper, v is set as

v ¼ 1� Bq

ð1� Bq=4Þ3
; ð13Þ

then the pressure satisfies the Carnahan–Starling equa-
tion of state (Carnahan and Starling 1969) which has the
form

p ¼ qRT
1þ Bq=4þ ðBq=4Þ2 � ðBq=4Þ3

ð1� Bq=4Þ3
� Aq2: ð14Þ

Accounting for the molecular interaction, the Boltz-
mann Eq. 6 for a two-phase fluid becomes
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@tf ðr;e; tÞþ e �rrf ðr;e;tÞ¼�
f � f eq

s

þðGþFs�rwÞ � ðe�uÞ
qRT

f eq

ð15Þ

Specification of the intermolecular force in Eq. 15
involves the evaluation of �w. This quantity is usually
very large near interfaces and results in numerical
schemes that may become unstable even for small
numerical errors accumulated while calculating the
intermolecular force. Hence, it is difficult to simulate
multiphase flow if Eq. 15 is used directly.

To improve the stability, He et al. (1999) introduced
an auxiliary distribution function, which is used to cal-
culate pressure and velocity:

nðr; e; tÞ ¼ f ðr; e; tÞRT þ wðqÞCð0Þ; ð16Þ

where C (u) is a function of the macroscopic velocity u

and is given by

CðuÞ ¼ 1

ð2pRT ÞD=2
exp �ðe� uÞ2

2RT

" #
: ð17Þ

The Boltzmann equation for n is then obtained from
Eq. 15 and is

@tnþ e � rrn ¼ �
n� neq

s
þ ðe� uÞ

� ðFs þGÞCðuÞ þ rwðqÞ Cð0Þ � CðuÞð Þ½ �;
ð18Þ

where

neq ¼ RTf eq þ wðqÞCð0Þ: ð19Þ

The pressure and momentum are computed from the
distribution function n (r,e,t) as follows:

p ¼
Z

n de; ð20Þ

qu ¼ 1

RT

Z
n e de: ð21Þ

Note that, the term involving �w in Eq. 18 is now
multiplied by a small quantity (C(0) � C(u) ), the
numerical error in the calculation of the density gradient
is greatly reduced as a result.

Rather than calculating the density distribution
function, it is convenient to define an index function /
(which represents, in some sense the phase fraction) such
that

/ ¼
Z

f /de: ð22Þ

The distribution function, f /=f /(r,e,t), for the index
function / must be calculated as a function of time and
position. This will be discussed below. The density is
calculated from the index function and is

qð/Þ ¼ ql þ
/� /l

/h � /l
ðqh � qlÞ: ð23Þ

Here a subscript l and h on a quantity denotes the light
and heavy fluid, respectively. The distribution function,
f/, for the index function / satisfies

@tf /ðr; e; tÞ þ e � rrf /ðr; e; tÞ

¼ � f / � f /eq

s
�rwð/Þ � ðe� uÞ

f /eq; ð24Þ

where

f /eq ¼ /

ð2pRT ÞD=2
exp �ðe� uÞ2

2RT

" #
: ð25Þ

In summary, to simulate incompressible multiphase
flow, two distribution functions, n and f / are employed.
The corresponding Boltzmann Eqs. are 18 and 24. The
index distribution function f/ is used to track the density
distribution through Eqs. 24, 22, and 23, while the
auxiliary distribution function n is used to obtain the
pressure and momentum fields through Eqs. 18, 20, and
21.

2.2 Discretization and numerical solution

The Boltzmann equations are discretized and solved
numerically. Each point of the discretized physical space
of interest is assigned a lattice point. Each lattice point is
populated by discrete particles. These particles ‘jump’
from one lattice site to another with discrete particle
velocities ea (a=0... b where b is the chosen number of
discrete directions of motion), and colliding with each
other at lattice nodes. Thus, the discretized form of the
Boltzmann equation is referred to as the LB equation
(He and Luo 1997).

To solve Eqs. 24 and 18 numerically, the following
temporal discretizations are adopted:

f /ðrþ e �dt;e;tþdtÞ� f /ðr;e;tÞ

¼ �
Z tþdt

t

f /� f /eq

s
dtþ

Z tþdt

t

rwð/Þ � ðe�uÞ
RT

CðuÞdt;

ð26Þ

and

nðrþ e �dt;e;tþdtÞ�nðr;e;tÞ¼�
Z tþdt

t

n�neq

s
dt

þ
Z tþdt

t
ðe�uÞ � ðFsþGÞCðuÞþrwðqÞ Cð0Þ�CðuÞð Þ½ �dt:

ð27Þ

The integrand of the first terms on the right-hand side
of Eqs. 26 and 27 is assumed to be constant over one
time step. That is, the first integral in the collision
operator is treated explicitly, using a first-order
approximation. This assumption yields an artificial
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viscosity that can be absorbed into the real viscosity of
fluids (Sterling and Chen 1996). The second-order
trapezoidal rule is used for the second integral (He et al.
1998). Eqs. 26 and 27 then become

f /ðrþe �dt;e;tþdtÞ¼ f /ðr;e;tÞ�f /ðr;e;tÞ�f /eqðr;e;tÞ
s=dt

þ rwð/Þ � ðe�uÞ
2RT

CðuÞdt
� �

tþdt

þ rwð/Þ � ðe�uÞ
2RT

CðuÞdt
� �

t
; ð28Þ

nðrþ e �dt;e;tþdtÞ¼ nðr;e;tÞ�n�neq

s=dt

þ ðe�uÞ � ðFsþGÞCðuÞþrwðqÞ Cð0Þ�CðuÞð Þ½ � dt
2

� �
tþdt

þ ðe�uÞ � ðFsþGÞCðuÞþrwðqÞ Cð0Þ�CðuÞð Þ½ � dt
2

� �
t
:

ð29Þ

The following variable transformations are introduced:

~f ¼ f / þ ðe� uÞ � rwð/Þ
2RT

CðuÞ dt; ð30Þ

~n ¼ n� 1

2
ðe� uÞ

� ðFs þGÞCðuÞ þ rwðqÞ Cð0Þ � CðuÞð Þ½ � dt: ð31Þ

Then Eqs. 28 and 29 transform to

~f ðrþ e � dt; e; t þ dtÞ ¼ ~f ðr; e; tÞ �
~f ðr; e; tÞ � f eqðr; e; tÞ

s=dt

þ ð2s� dtÞ
2s

rwð/Þ � ðe� uÞ
RT

CðuÞ dt;

ð32Þ

and

~nðrþe �dt;e;tþdtÞ¼~nðr;e;tÞ�
~nðr;e;tÞ�neqðr;e;tÞ

s=dt
þ2s�dt

2s

� ðe�uÞ � ðFsþGÞCðuÞþrwðqÞ Cð0Þ�CðuÞð Þ½ �dt
2

� �
:

ð33Þ

To obtain the LB model, the velocity space must be
discretized as mentioned earlier. A so-called D3Q19
discretization (Mei et al. 2000) is employed in this paper
(see Fig. 1). There are 19 discrete lattice velocities that
are defined as:

ea ¼
ð0; 0; 0Þ a ¼ 0
ð�c; 0; 0Þ; ð0;�c; 0Þ; ð0; 0;�cÞ a ¼ 1 � 6
ð�c;�c; 0Þ; ð�c; 0;�cÞ; ð0;�c;�cÞ a ¼ 7 � 18

8<
: :

ð34Þ

Note that the calculated distribution functions at the
next time step using this discretization may not reside on
the grid nodes. A reconstruction step is necessary to
extrapolate the information onto the grid nodes. There
are many options for this reconstruction step. For iso-
thermal flow, the computation can be greatly simplified
if the physical space can be discretized so that every
discrete distribution function travels from one grid node
to another grid node in each time step. That is, every
r+ea dt lies exactly on a grid node. This is done simply
by setting c=dx/dt=1, that is, the regular lattice has a
lattice length of cdt. This also leads to the definition of
the so-called ‘LBE sound speed’ (He and Luo 1997) as:

c2 ¼ 3c2s ¼ 3RT ; ð35Þ

where cs ¼
ffiffiffiffiffiffiffi
RT
p

:
Each lattice velocity is assigned a pair of discrete

distribution functions, ~fa; ~na; a ¼ 0 . . . 18; that are de-
fined by

~faðr; tÞ ¼ wa
~f ðr; ea;tÞ; ð36Þ

~naðr; tÞ ¼ wa
~nðr; ea;tÞ; ð37Þ

where the wa are ‘weights’ with the following values for a
D3Q19 lattice model (Mei et al. 2000):

wa ¼
1=3 a ¼ 0
1=18 a ¼ 1 � 6
1=36 a ¼ 7 � 18

8<
: : ð38Þ

The function C (u) can be expanded in terms of Mach
number (u/cs ) in a Taylor series and has the form

CaðuÞ ¼ wa 1þ ðea � uÞ
c2s

þ ðea � uÞ2

2c4s
� u2

2c2s

" #
þ O u3=c3s

� �
:

ð39Þ

The equilibrium distribution functions of fa and n a are

f eq
a ðuÞ ¼ /CaðuÞ; ð40Þ

13

310 7
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2
1

17 5 15
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Fig. 1 Three-dimensional lattice (D3Q19) geometry and discretized
velocity vector space
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and

neqa ðuÞ ¼ wap þ q c2s ðCaðuÞ � 1Þ: ð41Þ

With the velocity space discretization described above
applied to Eqs. 32 and 33, the discrete distribution
functions ~fa and ~na satisfy the following evolution
equations:

~faðrþ eadt; t þ dtÞ ¼ ~faðr; tÞ �
~faðr; tÞ � f eq

a ðr; tÞ
s=dt

þ ð2s� dtÞ
2s

rwð/Þ � ðea � uÞ
RT

CaðuÞ dt;

ð42Þ

~nðrþ eadt; tþdtÞ¼ ~naðr; tÞ�
~naðr; tÞ�neqa ðr; tÞ

s=dt
þ2s�dt

2s

� ðea�uÞ � ðFsþGÞCaðuÞþrwðqÞ Cað0Þ�CaðuÞð Þ½ � dt
2

� �
:

ð43Þ

The macroscopic variables can now be calculated
using

/ ¼
X18
a¼0

~fa; ð44Þ

p ¼
X18
a¼0

~na �
1

2
u � rwðqÞ dt; ð45Þ

Fig. 2 Droplet spreading on a
homogenous surface
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Fig. 4 Forces acting on a liquid column during capillary rise
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q u ¼ 1

RT

X18
a¼0

ea
~na þ

dt
2
ðFs þGÞ: ð46Þ

The relaxation time, s is a parameter which charac-
terizes the constitutive behavior of the fluent material at
a microscopic level. It is connected with the macroscopic
kinematic viscosity of the simulated fluid according to

m ¼ ðs� 0:5 dtÞ c2s : ð47Þ

To model phases with different viscosity, the relaxation
time s should be a variable which depends on index
function /. For example,

sð/Þ ¼ A/þ B; ð48Þ

with

sð/hÞ ¼ sh;

sð/lÞ ¼ sl:
ð49Þ

Combining Eqs. 48 and 49 gives

sð/Þ ¼ sl þ
/� /l

/h � /l
ðsh � slÞ; ð50Þ

which corresponds the variable kinematic viscosity

mð/Þ ¼ sl þ
/� /l

/h � /l
ðsh � slÞ

� �
c2s : ð51Þ

The discretization scheme used here leads to an
apparent kinematic viscosity given by

mapp /ð Þ ¼ sl þ
/� /l

/h � /l
ðsh � slÞ �

1

2
dt

� �
c2s ; ð52Þ

and the viscosities of the pure phases, h and l are
mh ¼ ðsh � 0:5 dtÞc2s and ml ¼ ðsl � 0:5 dtÞc2s ; respectively.

2.3 Wetting solid surface boundary conditions

In the simulations the no-slip boundary condition at
solid–fluid interfaces is realized through a computa-
tionally efficient ‘bounce-back’ condition (Succi 2001),
where the particle momenta are conserved during colli-
sions with a solid wall. Adhesive forces between the fluid
and solid wall are introduced into the model by Martys
(1996) and can be expressed as

FadðrÞ ¼ �sEðrÞ
X18
a¼0

Wasðrþ eaÞea; ð53Þ

where

EðrÞ ¼ q0 1� exp �qðrÞ=q0½ �f g: ð54Þ

where q0=(qh+ql)/2 and

Wa ¼
4We for eaj j ¼ 1
We for eaj j ¼

ffiffiffi
2
p

0 for eaj j ¼ 0

8<
: : ð55Þ

Here s=0,1 for nodes in the liquid and nodes on solid
walls, respectively. We represents the particle interaction

Table 1 Parameters for
simulation of capillary rise Unit q1 q2 m r h Hi

Lattice 0.1 1.5 0.04 0.022 75 45
Metric 62 kg/m3 937 kg/m3 8.0·10�6 m2/s 0.027 N/m 75� 900 lm

t = 0 t = 13000 t = 33000 t = 130000 

Fig. 5 Capillary rise in a tube
with radius r=140 lm in
weightlessness (Bo=0)
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strength between fluid and solid walls, and is positive for
a hydrophobic surface and negative for a hydrophilic
surface. With these definitions the interfacial tension
force, adhesive force and body force change the
momenta of fluid particles at each time step and Eq. 46
becomes

q u ¼ 1

c2s

X18
a¼0

ea
~na þ

dt
2
ðFs þ Fad þ qgÞ: ð56Þ

2.4 Outline of solution procedure

Combining Eqs. 42, 43, and 53, the velocity, pressure
and density distributions are solved at each time step as
follows:

a. Set an initial velocity u, density q, index function /,
pressure p at each site in the domain field.

b. Calculate equilibrium distribution functions f a
eq(r,t)

and na
eq(r,t) with Eqs. 40 and 41 at each site.

c. Calculate the surface tension force Fs and adhesive
force Fad using Eqs. 11 and 53, respectively.

d. Complete the collision and propagation using Eqs. 42
and 43 to obtain distribution functions ~faðr;tÞ and
~naðr;tÞ at the new time step.

e. Calculate /, q, p and u with Eqs. 44, 23, 45 and 56 for
the new time step.

f. Return to step (b) and repeat until either a steady
state/equilibrium is obtained or, for time-dependent
flows, until the desired time has elapsed.

Before carrying out any dynamic simulations, we first
need to obtain relationships between the simulation
parameters j, s and We and macroscopic quantities
corresponding to surface tension, viscosity and equilib-
rium contact angle. While the viscosity can be calculated
directly by Eq. 47, the surface tension and equilibrium
contact angle h require to be determined by carrying out
a series of simulations that mimic experimental mea-
surements of these quantities. For example, the rela-
tionship between We and h is found by picking a fixed
value of We, simulating a static drop on a horizontal
solid surface and measuring the drop height h and the
radius r of the circular contact region between the
droplet and surface (see Fig. 2). The contact angle is
measured by

h ¼ arcsin
2rh

r2 þ h2

� �
: ð57Þ
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Fig. 6 Capillary rise height vs. time for different tube radii (Bo=0)
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Fig. 8 Long time
configurations of a spreading
droplet on a heterogeneous
surface. dphi=140 lm,
dpho=100 lm, hphi=40�,
hpho=110�, g=9.8 m/s2
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Note that, consistent with the definition of an equilib-
rium contact angle, Eq. 57 is valid for a drop with a
semicircular contact line.

The relation between contact angle and the parameter
We is determined by using a computational domain with
100 · 100 · 50 grid nodes. To relate the simulation
parameters to real physical quantities, a length scale L0,
time scale t0 and mass scale M0 are required to be
determined. A simulation parameter with dimension
½L�n1 ½t�n2 ½M �n3 is multiplied by ½L0�n1 ½t0�n2 ½M0�n3 to give the
physical quantities. In this simulation, L0=2.0 · 10�5 m,
t0=2.0 · 10�6 s, M0=5.0 · 10�12 kg were chosen to give
real physical length, density, viscosity and surface ten-
sion.

The fluid region is initially composed of a hemi-
spherical liquid droplet in contact with hydrophilic or
hydrophobic substrate and the vapor phase elsewhere.
The system is then allowed to evolve and the drop either
spreads to increase the solid/liquid contact area or
contract to decrease the contact area, depending on the

property of the substrate. Figure 2 shows the evolved
equilibrium droplet with a static contact angle. The
density of the droplet and surrounding fluid is 937 and
62 kg/m3, respectively. The parameter j is set to be j
= 0.04 that corresponds to a surface tension of
rs=0.027 N/m. The results are shown in Fig. 3 and fit
the linear equation given below

h ¼ 67710� ðWe þ 0:0013291Þdeg : ð58Þ

3 Results and discussion

3.1 Verification of ‘measured’ wetting properties

A reliable correlation between h and We is needed if the
LB model is to be used with confidence as a predictive
model. To test the ‘measured’ values a numerical
experiment with capillary rise was undertaken that
provides a useful benchmark. Figure 4 shows the
geometry of the capillary rise process considered. For a

Fig. 9 Droplet spreading on a
heterogeneous surface. The
initial droplet is located on the
centerline of the hydrophobic
strip. dphi=160 lm,
dpho=260 lm, hphi=40�,
hpho=110�, g=9.8 m/s2
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tube with a radius r inserted into a fluid, the fluid col-
umn should rise if the fluid is wetting (contact angle h <
90�) or fall with non-wetting fluid (contact angle h >
90�). It is possible from a simple theory to predict the
velocity at which the fluid column rises as well as the
time it takes. For the simulations presented here we
assume that the contact angle h is independent of
velocity, the resistance to flow comes only from the fluid
viscosity, which is the same in both phases (i.e.,
mh=ml=m). The fluid in the tube rises as a function of
time and can be easily determined by

ðhþ hiÞ
dh
dt
þ r2g

8m
h� rr cos h

4mq2

¼ 0 ð59Þ

where h is the instantaneous position of the meniscus of
the fluid column in the tube, hi is the length of the part of
the capillary tube immersed in the liquid, and r is the
radius of the tube with a circular cross section. Fluid
density, viscosity, surface tension and contact angle are
denoted by q2, m, r and h, respectively.

The Eq. 59 can be non-dimensionalized by using the
characteristic time tref ¼ q2

2m
3=r2 and length

lref ¼ q2m
2=r to yield

ðhþ hiÞ
dh
dt
þ 1

8
r2Boh� 1

4
r cos h ¼ 0 ð60Þ

where Bo is the Bond number Bo=gq2
3 m4/r3, and an

under bar denotes a dimensionless variable.
If there is no gravity, i.e., Bo=0, Eq. 60 simplifies to

h ¼ �hi þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2i þ

1

2
r cos h t

r
: ð61Þ

The verification simulation of capillary rise with
multiphase LBM was carried out on a three-dimensional
domain with a 70 · 70 · 200 lattice nodes for tube radii
r=4, 7, and 10 lattices which correspond metric units
r=80, 140, and 200 lm and dimensionless radii
r ¼ 36:5; 64.0, and 91.3, respectively. The parameters for
each simulation are listed in Table 1.

Fig. 10 Droplet spreading on a
heterogeneous surface. The
initial displacement of the
center of the droplet from the
centerline of the hydrophobic
strip is 40 lm. dphi=160 lm,
dpho=260 lm, hphi=40�,
hpho=110�, g=9.8 m/s2
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Figure 5 presents the dynamic motion of the fluid in
the capillary tube for r=140 lm under weightlessness
(Bo=0). The horizontal boundary conditions are
periodic while the top/bottom and tube wall are
assumed to be ‘bounce-back’ boundaries (Succi 2001).
The contact angle of the fluid against the outside wall
of the tube is set to be p/2. Figure 6 presents the

instantaneous height of the capillary rise under
weightlessness. The solid lines in the figure show the
corresponding theoretical solution of Eq. 61. The fig-
ure also reveals that there is no limit to the capillary
rise height in weightlessness.

Comparisons between multiphase LBM simulation
results and theoretical solution at g=9.8 m/s2 (Bo=2.7

Fig. 11 Droplet spreading on a
heterogeneous surface. The
initial displacement of the
center of the droplet from the
centerline of the hydrophobic
strip is 80 lm. dphi=160 lm,
dpho=260 lm, hphi=40�,
hpho=110�, g=9.8 m/s2

Fig. 12 Equilibrium shape of
droplet after spreading on a
heterogeneous surface. The
initial droplet is located on the
centerline of the hydrophobic
strip. dphi=300 lm,
dpho=260 lm, hphi=40�,
hpho=110�, g=9.8 m/s2
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· 10�5) are shown in Fig. 7. As expected, the gravity
retards the rise and an equilibrium height is approached.
The simulation results shown in Figs. 6 and 7 agree well
with the theoretical solution for both weightless and
non-zero gravity conditions.

3.2 Single droplet spanning several hydrophilic-hydro-
phobic stripes

A simple heterogeneous surface consisting of alternat-
ing and parallel strips with different surface wetting
properties was considered. The hydrophilic and
hydrophobic strips are characterized by widths dphi,
dpho, respectively. A single component liquid drop that
forms an intrinsic contact angle hphi, hpho separately on
each surface and 0 £ hphi £ hpho £ p . The strip width
and contact angle have values of dphi=140 lm,
dpho=100 lm, and hphi=40�,hpho=110�, respectively.
Unless otherwise mentioned, the density and viscosity
of the droplet and surrounding fluid are set to be
qh=937 kg/m3, ql=62 kg/m3, mh ¼ 8:0� 10�6 m2=s;
ml ¼ 1:0� 10�6 m2=s; respectively, and surface tension
r=0.027 N/m.

The behavior of a hemispherical droplet with a radius
r=400 lm spreading on such a surface is shown in
Fig. 8. At beginning, the droplet rapid spreads out in all
directions. When the contact line parallel to the strips

approaches the edge of a hydrophobic strip, the
spreading rate in this direction slows, ultimately stops,
and is pinned at the edge. The droplet then spreads
along the strips until an equilibrium state is reached.
Despite the fact that the droplet is initially situated at a
location other than the centerline of the middle strip, the
final state is symmetric. The equilibrium contact line
shown in Fig. 8b shows the pattern of the underlying
substrate and agrees qualitatively with experimental
results obtained by Pompe et al. (1998).

3.3 Droplet spanning three strips

Figure 9 shows the evolution of a small hemispherical
droplet spreading on heterogeneous surface with relative
wider strips. The initial droplet has a radius r=200 lm
and is located on the centerline of the hydrophobic strip.
The strip width and contact angle have the value
dphi=160 lm, dpho=260 lm, and h phi=40�,
hpho=110�, respectively. As shown in Fig. 9, the droplet
stretches over both hydrophilic strips due to the attrac-
tive force of the hydrophilic surfaces. At the same time,
the drop rapidly contracts inward along the hydropho-
bic strip and the central height of the droplet decreases
at the initial stage and slightly increases after time
t=4.0 ms. Viewed from top, the drop has an ‘H’ shape,
with the connecting bar located over the hydrophobic

Fig. 13 Snapshots of droplet
spreading and its breakup on a
heterogeneous surface. The
initial droplet is located on the
centerline of the hydrophobic
strip. dphi=¥, dpho=200 lm,
hphi=20�, hpho=160�,
g=9.8 m/s2
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strip. Note that the droplet remains symmetric both
about an axis parallel to the stripes and about an axis
perpendicular to the stripes in the whole spreading
process. Finally, the droplet approaches an equilibrium
state and spreading ceases at time t=12.0 ms. A
dimensionless time t ¼ rt=ðq2 m2 rÞ is introduced in order
to compare with the experimental results. The dimen-
sionless time is t ¼ 0:15 (corresponding a spreading time
t=12.0 ms) which is too short compared with the
experimental result (Zosel 1993). This is due to the width
of the interface being too large and the density difference
being too small (Dupuis and Yeomans 2004).

3.4 Effect of the initial location of droplet on spreading
process

One important factor that affects the spreading
dynamics of droplet on a heterogeneous surface is the
initial position of the droplet. Different with Fig. 9, in
this case the droplet is initially placed such that its center
is located 40 lm off the centerline of the middle

hydrophobic strip. The results are shown in Fig. 10.
Because the initial droplet is closer to the right hydro-
philic strip, it spreads towards the right faster in the
early stage of spreading. The droplet remains symmetric
about an axis perpendicular to the stripes while it
becomes asymmetric about the centerline of the middle
hydrophobic strip. However, the left hydrophilic strip
drags the droplet more toward the left hydrophilic strip
in the later stages of spreading. The final equilibrium
state is identical to that shown in Fig. 9d, where the final
drop was symmetric about the centerline of the middle
hydrophobic strip. However, the approach to equilib-
rium for off-centered drop takes longer.

For a larger initial displacement of the center of the
droplet from the centerline of the hydrophobic strip, for
instance, 80 lm, the drop only moves toward the nearest
hydrophilic strip. As shown in Fig. 11, the droplet slips
toward the right hydrophilic strip and then stretches on
it. Compared with the results simulated by Leopoldes
et al. (2003) and Dupuis and Yeomans (2004), which are
based on free-energy model, the droplet behaviors in
Figs. 9, 10, and 11 show a similar tendency.
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Fig. 14 Effect of the hydrophobic strip width on spreading
dynamics
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3.5 Droplet spreading and breakup

If the width of the hydrophilic strip is increased and all
other conditions are kept the same as for the case shown
in Fig. 9, the droplet can spread further on the hydro-
philic strip. The wider hydrophilic strip thins the portion
of the droplet on the hydrophobic strip and a neck forms
(see Fig. 12). This example motivated us to investigate
the conditions that lead to breakup of the drop.

For a uniform hydrophilic surface separated by a
hydrophobic strip three parameters were investigated
that affect the spreading dynamics of the droplet: the
width of the hydrophobic strip, the gravity and the
wetting property of the hydrophilic surface.

Figure 13 shows the evolution of a hemispherical
droplet spanning a hydrophobic strip with width
dpho=200 lm. The contact angles are set as hphi=20�,
hpho=160�, respectively. As shown in Fig. 13, the
droplet spreading process is similar to that in Figs. 9 and
12 at the early stages. However, spreading on the
hydrophilic surfaces is not limited by a second hydro-
phobic strip and the shape of the front of the contact line
advancing on the hydrophilic surface becomes circular.
Viewed from top, the drop has a butterfly like shape

located over the hydrophobic strip and the two ‘wings’
are connected by neck that has pulled off the hydro-
phobic strip to form a bridge. As spreading proceeds, the
two wings of the butterfly pattern grow while the bridge
neck eventually pinches off at time t=17.6 ms. Two
separate droplets emerge after breakage has occurred.
Thereafter, the two isolated droplets continue spreading
until equilibrium state is attained.

To further study the spreading dynamics of a droplet
on a heterogeneous surface, we define dimensionless
spreading area and bridge area as

Aspr ¼
Aspr

A0
spr

; Abri ¼
Abri

A0
bri

; ð62Þ

where Aspr and Abri are the spreading and bridge area of
a droplet, respectively, and Aspr

0 and Abri
0 are initial val-

ues of Aspr and Abri, respectively.
Figure 14 shows the bridge area Abri and spreading

area Aspr as a function of time. For the case of
dpho=200 lm, in the initial stage, the droplet spreads at
a lower speed because only a small region of the liquid is
in contact with the hydrophilic surface. At time
t=2.0 ms, the spreading speeds up. Further spreading
causes an increase in total interfacial surface area of the
drop and, thus, produces an increase in the total inter-
facial energy; thereby decreasing the instantaneous
spreading rate. After the neck breaks up, the spreading
rate returns to a higher value and then gradually slows
as the equilibrium state is approached.

Decreasing the width of the hydrophobic strip
reduces the spreading rate and delays the breakup time
of the neck, as shown by the curve for dpho=140 lm in
Fig. 14. However, when the width of the hydrophobic
strip is reduced below some critical value, the initial
spreading rate is rapid and then slows down to zero, as
shown in case dpho=80 lm in Fig. 14. This behavior is
similar to a droplet spreading on a homogeneous
hydrophilic surface. Also, the bridge area approaches a
constant value, showing that the neck cannot break up if
the hydrophobic strip is too narrow.

At sufficiently large widths, the adhesive force of the
hydrophilic surface cannot overcome the repulsive force
exerted in the drop by the hydrophobic strip. In this
case, the droplet cannot be stretched towards both
hydrophilic sides. The final state of the droplet will only
contact the hydrophobic strip in a small region. This is
shown in the curve of dpho=300 lm in Fig. 14, for,
which the bridge area increases and the spreading area
decreases quickly to a constant value.

The effect of gravity on spreading process is presented
in Fig. 15 for fixed wetting properties of the heteroge-
neous surface hphi=20�, hpho=160� and the width of
hydrophobic strip dpho=200 lm. It is found that gravity
increases the spreading rate and accelerates breakup of
the droplet neck when the gravity is relatively smaller
and vice versa when it is larger.

The wetting properties of the hydrophilic surface also
affect droplet spreading behavior. To examine this the
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spreading dynamics
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wetting properties of the hydrophilic surfaces were varied
while the contact angle and width of the hydrophobic
strip were kept constant at hpho=160�, dpho=200 lmand
gravity is neglected (g=0). The results are shown in
Fig. 16. Clearly, an increased contact angle hphi reduces
spreading rate and delays neck breakup. When the con-
tact angle is too large, hphi=60�, the wetting forces ex-
erted by the hydrophilic strip on the droplet are not large
enough to stretch the bridge to a point at which it breaks.

3.6 Droplet spreading on heterogeneous surface with
intersecting hydrophobic strips

Finally, droplet spreading on a heterogeneous surface
with intersecting hydrophobic strips was investigated.

The surface is a uniform hydrophilic substrate
(hphi=40�) with two intersecting hydrophobic strips
(hpho=100�) each having a width dpho=200 lm. The
initial droplet has a shape of spherical cap with radius
r=400 lm and height h=200 lm and is located at the
center of the intersecting strips. The evolution of
the droplet spreading dynamics is shown in Fig. 17. The
droplet quickly contracts inward along the hydrophobic
intersection and the central height of the droplet in-
creases at the initial stage. It then symmetrically spreads
into the four hydrophilic quadrants and the central
height of the drop decreases. The final droplet at equi-
librium state has a shape reminiscent of a four-leaved
clover. If the initial droplet is off-center, symmetric
spreading does not occur. In Fig. 18, the initial droplet is
located with its center shifted toward the upper right

Fig. 17 Droplet spreading on a
heterogeneous surface with
intersecting hydrophobic strips.
The initial droplet is located on
the center of the intersection.
dpho=200 lm, hphi=40�,
hpho=100�, g=9.8 m/s2
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quadrant. The droplet subsequently spreads toward the
upper right quadrant faster than in the other quadrants.
At time t=12 ms, it approaches equilibrium. For larger
initial off-center displacements as shown in Fig. 19, the
branch in the lower left quadrant initially attempts to
spread and reaches its maximum extent at time t=4 ms.
Thereafter it starts to shrink and ultimately disappears.
Rather than slipping to the hydrophilic region as shown
in the results by Dupuis and Yeomans (2005a), the
droplet still spans the intersecting hydrophobic strips at
the final spreading stage, because the diameter of the
droplet is relative bigger to the hydrophobic strips and
the initial location of the droplet is close to the center of
the intersecting hydrophobic strips.

4 Conclusions

In this work the lattice Boltzmann method (LBM) is
used to study droplet spreading on a heterogeneous
surface. An adhesive force model was established by
nearest-neighbor solid lattice adhesive force with multi-
phase LBM. The validation of adhesive force model was
verified by comparing with theoretical solution of cap-
illary rise and experimental results of droplet spreading
on a heterogeneous surface.

The effect of the initial droplet position on the droplet
spreading dynamics was analyzed. As the displacement
of the center of the droplet from the centerline of the

Fig. 18 Droplet spreading on a
heterogeneous surface with
intersecting hydrophobic strips.
The initial displacements of the
center (0,0) of the droplet from
the center of the intersection are
(40,40) lm. dpho=200 lm,
hphi=40�, hpho=100�,
g=9.8 m/s2
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middle hydrophobic strip increases, the droplet shape
becomes more asymmetric about the centerline of the
middle hydrophobic strip during the spreading process,
although the final droplet returns its symmetric about
that centerline. If the displacement exceeds a critical
value, the droplet only moves toward the nearest
hydrophilic strip and then stretches on it.

The droplet spanning a hydrophobic strip may break
up if some conditions are satisfied. These conditions
include the wettability of hydrophobic and hydrophilic
strip, gravity and width of the hydrophobic strip.
Increasing the width of the hydrophobic strip and the
contact angle of the fluid on the hydrophilic surface all
lead to increases in the spreading rate and the tendency
of the drop to break up and also reduce the time to
break up.

The droplet spreading dynamics on a heterogeneous
surface with intersecting hydrophobic strips was also
analyzed. A drop spreads symmetrically into all four
quadrants when the initial droplet is located at the center
of the intersecting strips. If the initial off-center dis-
placement of the droplet relative to the intersecting
hydrophobic strips exceeded a critical value, some lobes
of the droplet shrink and may eventually disappear.

The results of these simulations demonstrate that the
LBM is readily adapted to problems requiring the
tracking of sharp interfaces between different phases and
can be a useful tool in calculating dynamic equilibrium
shapes obtained by varying the system parameters. The
analysis of droplet spreading behavior on regularly
heterogeneous surface can be readily extended to ran-
domly heterogeneous substrates and to situations where

Fig. 19 Droplet spreading on a
heterogeneous surface with
intersecting hydrophobic strips.
The initial displacements of the
center (0,0) of the droplet from
the center of the intersection are
(80,80) lm. dpho=200 lm,
hphi=40�, hpho=100�,
g=9.8 m/s2
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the fluid properties are functions of temperature (e.g.,
temperature dependent transport coefficient, viscosity
and considerable surface tension variations).
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