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Abstract Recently, centrifugal pumping has been re-
garded as an excellent alternative control method for fluid
flow inside microchannels. In this paper, we have first
developed the physical modeling and carried out the
analysis for the centrifugal force-driven transient filling
flow into a circular microchannel. Two types of analytic
solutions for the transient flow were obtained: (1)
pseudostatic approximate solution and (2) exact solution.
Analytic solutions include expressions for flow front
advancement, detailed velocity profile and pressure dis-
tribution. The obtained analytic results show that the
filling flow driven by centrifugal force is affected by two
dimensionless parameters which combine fluid proper-
ties, channel geometry and processing condition of rota-
tional speed. Effects of inertia, viscous and centrifugal
forces were also discussed based on the parametric study.
Furthermore, we have also successfully provided a simple
and convenient analytic design tool for such microchan-
nels, demonstrating two design application examples.

Keywords Transient filling flow - Centrifugal force -
Microchannel - Modeling - Analysis

1 Introduction

Over the past decade, wide applications of integrated
microfluidic systems have been found in the fields of
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miniaturized analytic systems for chemistry and biology
such as genomic and proteomic analyses, clinical diag-
nostics and micro total analysis systems (Manz et al.
1990; Sanders and Manz 2000; Reyes et al. 2002;
Auroux et al. 2002). In recent years, these miniaturized
analytic microfluidic systems enable a point-of-care or
ubiquitous diagnosis and treatment of patients with
minimizing sample and reagents volumes.

The integrated microfluidic systems generally contain
several microfluidic functions (Reyes et al. 2002; Auroux
et al. 2002; Kovacs 1998) such as pump, valve, mixing,
reaction, separation and so on. In order to achieve
desirable functions with the microfluidic systems in a
precise manner, the control of the fluid flow is inherently
required. Amongst many controlling methods reported
in the literature, electrokinetic and pressure-driven flow
controls have been regarded as the most representative
control methods. Electroosmotic flow has widely been
utilized for the analyses in which a separation process is
involved in microfabricated capillaries due to its inter-
esting characteristic of a plug-like velocity profile
(Effenhauser et al. 1997; Probstein 1994). Numerous
experimental and analytic studies were carried out to
understand flow characteristics of the electrokinetic flow
for the purpose of the proper design and improvement
of such microfluidic systems (Herr et al. 2000; Ross
et al. 2001; Xuan and Li 2004). Electrokinetic control,
however, has the following disadvantages: (1) high sen-
sitivity to physicochemical properties of fluids and sub-
strates; (2) requirement of a high-voltage power supplier;
(3) possible working limitation due to the bubble exis-
tence or formation inside a channel; (4) difficulty in
achieving high flow rate (< 1 pL s~ ') (Probstein 1994;
Dufty et al. 1999). In contrast, when there is no sepa-
ration process involved, the pressure-driven flow control
is quite manageable with respect to the flow rate and the
physicochemical properties of fluids and substrates. The
pressure-driven laminar flow has been well understood
and characterized in the macroscale duct. However, it
was found that there is a little difference between the
microscale laminar flow and the macroscale one. In this
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regard, many experimental and analytic studies of the
pressure-driven flow in the microchannel were also per-
formed in order to understand the microscale flow
behavior (Koo and Kleinstreuer 2003). In addition to
the studies of the steady-state flow in the microchannel,
a transient filling flow into the microchannel was also
studied experimentally and numerically (Kim et al. 2002;
Tseng et al. 2002).

Recently, a centrifugal pumping method for a CD-
type microfluidic chip equipped with a rotational motor
was reported as a new controlling method of flow in
microchannels (Duffy et al. 1999; Madou et al. 2001;
Gyros Microlaboratory). The centrifugal force generates
fluid flow with a little sensitivity to the physicochemical
properties of the working fluid such as ionic strength,
pH and so on (Duffy et al. 1999). It can also provide
parallel pumping flows to several microchannels simul-
taneously on the same CD-type microfluidic chip. It is
important to understand the spatial and temporal
behavior of the fluid flow inside the microchannel for a
precise design of a centrifugal microfluidic channel sys-
tem. So far, most of previous studies in the literature
simply adopted capillary stop valves making use of a
surface tension effect for the purpose of controlling fluid
flow, with lack of detailed understanding of the cen-
trifugal flow behavior.

Numerical simulation could help us to design the
desirable microchannel system more precisely and to
understand the physical behavior of such microchannel
flows. However, relying on a numerical analysis tool is
very time consuming and costly at the first design step,
especially for the cases of a complex microchannel net-
work system or transient filling flow into microchannels.
In contrast, an analytic solution approach, if available,
provides a physical insight into fluid flow behavior inside
the microfluidic channel. And moreover, it can also offer
a simple design guide at the first design step so that the
design time and cost could be remarkably reduced. But,
to the best of our knowledge, there has been no report in
the literature with regard to an analytic approach to the
transient flow into the microchannel in which the fluid is
driven by the centrifugal force.

In this paper, we first define a specific physical
problem for the radial flow into a microchannel on a
rotating disk, as a simplified model of the centrifugal
flow. For such a model problem, a physical modeling is
carried out based on the fundamental balance equations
of mass and force. A dimensional analysis is then per-
formed to understand the effects of related forces to the
defined system according to the physical modeling. Two
analytic solutions are obtained: (1) a pseudostatic
approximation when the inertia force is negligible and
(2) an exact solution with taking into account the inertia
force. The solution provides an important information
such as filling flow front advancement, velocity profile
and pressure distribution as functions of both time and
geometry. The obtained analytic results show that the
filling flow driven by centrifugal force is affected by two
dimensionless parameters, which combine fluid proper-

ties, channel geometry and rotating conditions. Finally,
we propose a design tool for a microchannel in which
the flow is driven by centrifugal force with application
examples.

2 Problem statement

This paper aims not only at analyzing the transient fill-
ing flow into the microchannel, which is driven by a
centrifugal pumping but also at providing a simple de-
sign tool to determine microchannel geometry and disk
rotational speed to meet a specific flow requirement for
the given fluid material properties. The analytic results
will enable us to gain the physical insight to this cen-
trifugal channel flow.

In this regard, we define a model problem to repre-
sent the transient flow into a microchannel driven by the
rotation of a disk in this section. At this time, we focus
on the circular cross-sectional microchannel as the first
solution attempt. The model problem might be stated as
follows.

Figure 1 shows a schematic diagram of a circular
cross-sectional microchannel on a CD-type centrifugal
microfluidic system. The hydraulic radius of the chan-
nel is denoted by R;. A sample fluid, such as reagents
or drugs having physical fluid properties of density, p
and viscosity, u, is injected into a reservoir, which is
placed at a certain radial location of the CD plate such
that the microchannel starts from the radial location of
Lo away from the center of the CD plate as shown in
Fig. 1. Now consider the fluid flow when a rotational
motor starts rotating the CD plate in a constant rota-
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Fig. 1 Schematic diagram of the transient filling flow into a
circular microchannel on the CD-type centrifugal microfluidic
system. Dark red area represents a region occupied by the sample
fluid, /(¢) indicating the flow front



tional speed of w. The material will flow from the
reservoir into the microchannel due to the centrifugal
force and the flow front gradually advances along the
radial direction of the CD plate. It is of our interest to
be able to determine the flow front advancement as a
function of time 7, denoted by /(z). Of course, this flow
front advancement will depend on the rotational speed
 as well as the location of reservoir, channel geometry
and material properties.

As for the design aspect of a microfluidic system with
several microchannels on a CD plate, suppose a design
objective is to deliver sample fluids to specific desired
locations in the disk at desired times through the multiple
microchannels via centrifugal force induced by the
rotational motion of the CD plate. A designer has to
decide where to put the reservoirs (L), and the hydraulic
radii (Ry) for each channels along with the rotational
speed (w) of the disk. With this kind of design objective
in mind, a simple analytic solution is indeed for a great
use in designing such a microfluidic system utilizing the
centrifugal mechanism. For instance, if the analytic
expression of /(¢) is available in terms of the design
parameters, i.e., fluid properties, microchannel geometry
and processing conditions, one can easily design the
centrifugal microchannel system.

In this regard, we would like to obtain an analytic
solution for /(¢) as a function of time for a given sample
fluid (p and p), microchannel geometry (R}, and Ly) and
processing condition (w), which are regarded as the
important design parameters in the centrifugal micro-
channel system. Of course, in obtaining an analytic
solution for /(¢), we also find expressions of the detailed
velocity profile as well as the pressure distribution for
the transient filling flow inside the microchannel. Fi-
nally, we suggest a simple analytic design tool of a mi-
crochannel on the CD plate for the given conditions.

3 Physical modeling and governing equations

Figure 2 shows various forces applied to an infinitesimal
control volume of fluid inside the centrifugal micro-
channel of a circular cross-section. The centrifugal force
is developed in the downchannel direction, i.e., the radial
direction of the CD plate. Shear force and pressure are
also developed according to the fluid flow. To investigate
the centrifugal force-driven transient flow analytically,
we simplified the complicated problem by introducing
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several assumptions described below and then derived
governing equations associated with the transient flow.

3.1 Assumptions

Assumption 1 In this study, as a simple constitutive
equation, material is assumed to be a Newtonian fluid.
(Non-Newtonian case needs a numerical simulation
method since there is no analytic solution available.)

Assumption 2 As the first attempt to obtain analytic
solutions for the transient flow into a microchannel, the
Coriolis force effect is assumed to be negligible in a mild
rotational speed in comparison with the centrifugal force
effect. (Brenner et al. (2003) showed that the Coriolis
force dominantly affects the flow over the rotational
speed of 350 rad s~', or equivalently about 3,350 rpm,
for a microchannel of which width and depth are 360
and 125 pm, respectively. The Coriolis force induces the
transversal flow inside the microchannel relative to the
axial downchannel flow so that the flow becomes fully
three dimensional. At the relatively low rotational speed,
however, the Coriolis force could be neglected relative to
the centrifugal force.) Under this assumption, the flow
can be assumed to be an axial flow, i.e., u,=up=0 and
u, # 0 where u,, ugp and u. are velocity components in
the direction of r, 0 and z, respectively, in a cylindrical
coordinate system.

Assumption 3 Surface tension effect is neglected in this
study, again as the first attempt to obtain analytic
solutions for the transient flow into a microchannel. (It
might be noted here that surface tension becomes an
important parameter for the microscale transient flow
(Dulffy et al. 1999; Kim et al. 2002; Tseung et al. 2002;
Madou et al. 2001; Gyros Microlaboratory) depending
upon the surface properties. However, it may be rea-
sonable to neglect the surface tension effect when a
polymer substrate of which the contact angle of a sample
fluid is almost 90°. For example, the contact angles be-
tween water and native surfaces of PDMS (poly-
dimethylsiloxane) and COC (cyclic olefin copolymer)
substrates are about 90° (Duffy et al. 1999) and 92°
(Puntambekar 2002), respectively, with no surface
modification. With this kind of case in mind, we ignored
the surface tension effect for a simplified model prob-
lem.)

Fig. 2 An infinitesimal control
volume of fluid with the applied
forces inside circular
microchannel in which flow is
driven by centrifugal force

Ry
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3.2 Governing equations

The local continuity equation for an axial downchannel
flow assumption (u,.=1uy=0) is simply,

Ou,
_ |
0z 0, ()

which implies that the symmetric velocity profile of u. is
independent of z, i.e., u,=u. (r, ?).

As for the momentum conservation equation, from
the free body diagram depicted in Fig. 2, one can obtain
the following relationship:

pn((r +dr)? - rz) —(p+ dp)n((r +dr)? — rz)
+ pwzzn((r +dr)’ — r2) dz + 7(2nr)dz

— (t 4+ d7)(2n(r 4+ dr))dz

= pn((r +dr)? — rz)dz%,

where p, t© and D/Dt are pressure, shear stress and
material derivative, respectively. Since u. is a function of
r and ¢ only, Du./Dt becomes just the time derivative,
du./dt and Eq. 2 can be reduced to

Oou, 1

-1 = 3
a T e e G)
For a Newtonian fluid case, the shear stress, with a sign
convention defined in Fig. 2, can be expressed as

Ou,

o

T(rt) = —p o (4)
Then Eq. 3 becomes

Ou: azuz_'_lﬁ‘uz __@_’_ o’
Por " am Tvar)” "oz TPYE (5)

for Lo<z<I(¢) and ¢ > 0.

Equation 5 is a partial differential equation for
velocity field, u. (r, ) and pressure field, p(z, ). The
domains of interest for z and ¢ are also expressed in
Eq. 5. It should be noted that the region occupied by the
fluid is increasing as flow proceeds since /(¢) increases
with the time, which is a peculiar nature of this transient
flow. One might recognize that the domain of z at t=0is
null so that the velocity field is not defined at the time of
t=0. In this regard, the conventional initial velocity of
u. is not to be considered in this study. Therefore, one
has to solve Eq. 5 to obtain wu.(r, ) and p(z, ) just with
appropriate boundary conditions. The boundary con-
ditions are as follows:

u.(r =Ry, t) =0 (no-slip on the wall) (6a)
(1t . )
u 8(r ) =0 (symmetry of velocity profile). (6b)
r r=0

and

p(Lo, 1) =0
p(1(8), 1) = 0.

Equation 7a indicates that the pressure head of the
inlet reservoir is zero. The pressure head at the inlet is
induced by the gravity force in the reservoir and the
pressure at the inlet is generally much less than the vis-
cous and centrifugal forces inside the microchannel. In
this regard, we neglected the pressure head at the inlet to
simplify the problem in the present study. The pressure
at the flow front, i.e., at z=1[(7), is set to be zero in Eq. 7b
by the assumption of neglecting the surface tension effect
(Assumption 3).

In addition to the continuity and momentum equa-
tions, as a peculiar feature of this particular problem,
one has to take into account the global mass conserva-
tion with regard to the flow front advancement. From
the expression of the total flow rate, Q(¢), one can obtain
the equation for the flow front advancement, namely
(1), as below

(7a)
(7b)

Ry
R} dé—(;) = / 2nru.(r,t)dr,

0

o) = (8)

the second part of the equation in Eq. 8 is the governing
equation for /(z) with the associated initial condition

I(t)y=Ly att=0.

©)

Once the velocity field is obtained, the flow advancement
can be determined through Eq. 8.

In summary, one has to obtain analytic solutions for
u,(r, t), p(z, t) and /() from Eqgs. 5 and 8 with boundary
conditions, Egs. 6 and 7 and initial condition, Eq. 9.

4 Analytic solutions

In this section, we first manipulate the basic governing
equations further to obtain more convenient forms of
equations to deal with. Then we will introduce dimen-
sionless forms of governing equations for the sake of
understanding the nature of the flow more efficiently.
From the dimensionless equations, we will derive two
types of analytic solutions: (1) for a pseudostatic flow as
an approximation of low Reynolds number-limiting
case, and (2) for the general transient flow case as an
exact solution.
Equation 5 can be recast to the following form,

op o2 Ou, 5u, n 10u,

—-— = z— — - .

oz P Por Mo T or

One can easily integrate the above equation with re-
spect to z from L, to z at instant time ¢, recognizing

that three terms in the bracket are independent of z, to
result in
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Substituting /(¢) for z in Eq. 10, along with boundary
conditions of Eq.7a and 7b at z=Ly, and z=I[(7),
respectively, gives rise to an interesting equation as be-
low,

Ou, 0%u,
ot or?

p(z1) = p(lot) =

)
(10)

10u.\  po?
155 =55 0+ )

3 (11)

o

Making use of Eq. 11 and boundary condition of
Eq. 7a, one can rewrite Eq. 10 as

0)2
o= L) (2 = 1(0).

Now, in summary, the governing equations for u. (r,7)
and /() are Egs. 11 and 8, respectively, along with
boundary conditions, Eq. 6, and an initial condition,
Eq. 9. Note that they are coupled with each other.
Once u.(r, t) and /(¢) are known by solving them, one
can calculate the pressure distribution from Eq. 12. It
may be noted that Eq. 12 shows that pressure distri-
bution is parabolic in the axial direction at any instant
time .

pz 1) = (12)

4.1 Dimensionless governing equations

Dimensionless form of equations would be more con-
venient to identify a group of dimensionless parameters
which affect the flow rather than the dimensional form
of equations, thus enabling one to gain the physical
insight to the problem more clearly. In this regard,
Egs. 11 and 8 are nondimensionalized. For this pur-
pose, we introduced characteristic quantities as listed
below:

— Characteristic lengths: (1) R}, (hydraulic radius of the
microchannel defined by R,=2A./P, where 4. and P
are the cross-sectional area and perimeter of the mi-
crochannel, respectively) and (2) L (characteristic
downchannel length, e.g., distance from the center of
a CD plate to inlet reservoir)

— Characteristic velocities: (1) U (mean downchannel
velocity of the fluid flow) and (2) V' (rotational
velocity defined by V= Lw,., where w. is the charac-
teristic angular velocity)

— Characteristic times: (1) 7. (characteristic time for
downchannel flow defined by T.=L/U) and (2) 1/w.
(characteristic time for rotational motion defined by
ljw.=L/V)

— Characteristic pressure:

PJ1 U?
¢ = 5P
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The dimensionless variables using such characteristic
quantities are listed below:

* r * z * t
ro=—, z =—, [ =—=
Ry L Tc
. o oL wrw o u(r)0)
= = — t —
) PR ur(r', 1) T (13)
) = = ) = —=
p (27 ) P, (pU2)7 ( ) L

where superscript asterisk stands for corresponding
dimensionless parameters.

Then, dimensionless form of Eq. 11 could be stated
as,

w1 our ou; 1 .
_ z _ 4 R A z — _R A * * * L*
ors2  r* Or* eAR o 2 eAr V70 (l () + 0)

(14)
with the corresponding boundary conditions
ou: (r, t*)

w(l, ) =0, L

= 0,
r*=0

(15)

where Re, Ar and V denote the Reynolds number, Re = p
URy/u, aspect ratio of hydraulic radius of microchannel
to downchannel length, Agx = Ry/L, and ratio of rota-
tional velocity to downchannel flow velocity, V = V /U,
respectively. It should be noted that the first two terms on
the left-hand side of Eq. 14 represent the viscous force
effect; the third term on the left-hand side expresses the
inertia force effect; and the term on the right-hand side
comes from the centrifugal (rotational) force effect. It is
found from Eq. 14 that the two different dimensionless
groups dominantly affect the fluid flow behavior: ReAr
and Vo*. ReAr represents the ratio of inertia force to
viscous force, which enables us to estimate the inertia
force effect on the flow system. Vw* is equal to w L/U,
which is in fact the ratio of the rotational velocity of a
disk to the downchannel flow velocity, associated with
the centrifugal force as shown in Eq. 14.
Dimensionless form of Eq. 8 can be written as

I
nR2 U dt* /
0

with an initial condition

I(0) = L.

o = (16)

(17)

Finally, a dimensionless equation for pressure distri-
bution was also derived from Eq. 12 as,

P ) = P (@ — L) (2 - I'()). (18)

In summary, one has to solve u(r*,¢*) and /* (¢*) from
the coupled Eqgs. 14 and 16. Once they are solved, one
can determine the pressure distribution from Eq. 18.
For most of the microfluidic applications, the fluid
flow usually has a small Reynolds number due to the
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small characteristic length of a microchannel. In this
regard, we present two types of analytic solutions: (1) a
pseudostatic approximate solution, which is corre-
sponding to the relatively simple case when Redr < <1,
and (2) an exact solution. It might be mentioned that the
pseudostatic solution enables us to check the validity of
the exact solution since the pseudostatic solution is
corresponding to the asymptotic behavior of the exact
solution as Redg — 0.

4.2 Pseudostatic approximate solution

The microchannel flow usually has a small Re (i.e.,
Re < <1). The very small aspect ratio, A, also justifies
ReAgr < <1, even when Reis relatively large. For the case
of ReAg < <1 while maintaining Redr V*>w*>~O(1), the
effect of inertia force in Eq. 14 becomes negligible com-
pared with the effects of viscous and centrifugal forces so
that Eq. 14 can be reduced to

Pur 1ou 1 _
- ——Z —_ReAd V2 *2 (¢ L 1
o2 o 2 ARV@ ( () + 0)’ (19)

with the boundary conditions of Eq. 15, at instant time
t*. The solution of Eq. 19 is called the pseudostatic
approximate solution since the inertia term does not
play a role as if the viscous force were just balanced with
the centrifugal force. It should be noted that the
dimensionless velocity u¥ is still a function of geometry,
r*, and time, t*, although we neglect the inertia force
term when Redgr < <1.

From Eq. 19 with boundary conditions (Eq. 15), one
can easily obtain a dimensionless velocity profile inside
the circular microchannel,

(1) = %ReARf/zw*z(l — ) (1) + L)

Applying Eq. 20 to Eq. 16 yields the following equation
for I* (%),

(20)

drr 1 _

= —Redr V0> (I'(t") + L}).
ar ~ TeReARV () + L)
One can integrate Eq. 21 and apply the initial condition
(Eq. 17) to obtain the final solution of a dimensionless
pseudostatic flow front advancement, /* (#*):

(1)

I (1) = Ly (2ekFetn o ), (22)
Equation 22 shows that the filled region of the micro-
channel exponentially increases with time, with ReAgr
V2w*? appearing as an exponent. The fluid flow front is
thus strongly affected by ReAr and 7?w*2. The flow
front is also found to be just proportional to Lj, the
entrance location of microchannel.

Substitution of Eq. 22 to Eq. 20 gives the final solu-
tion of the dimensionless pseudostatic velocity profile:

wl(r, 1) = %ReARI_/zw*ZLae%ReARVlw*zt* (1 _ r*z)' (23)
It is interesting to mention that the pseudostatic velocity
profile of the centrifugal force-driven flow remains par-
abolic just like that of the pressure-driven flow and that
the velocity increases exponentially with the time.
Finally, by substituting Eq. 22 to Eq. 18, one can
obtain a final form of the dimensionless pseudostatic

pressure distribution:
P 1) = P (@ — 1) (2 + L - 2gehfersl™o™ ).
(24)

In summary, for the given fluid properties, geometry of
microchannel and processing conditions (i.e., rotational
speed), one can determine the pseudostatic filling flow
characteristics: filling flow front advancement, velocity
profile and pressure distribution as the filling flow pro-
ceeds from Egs. 22, 23 and 24, respectively.

4.3 Exact solution

In this section, we just present the exact solution to the
coupled differential equations 14 and 16. One may refer
to Appendix 1 for the detailed derivation of /* (¢*) and
ur(r ).

The exact solution of the dimensionless filling flow
front advancement is found to be
() = Ly [2eP" — 1], (25)
indicating that the filled region of the microchannel
exponentially increases with the time as in the case of the
pseudostatic approximation. The exponential growth
rate is denoted by the exponent D which can be deter-
mined from the following nonlinear equation

D> 1 1 I;(v/RedrD)
V2w 2 \/ReArD I;(\/ReArD)

(26)

where I§ and If is the modified Bessel functions of the
first kind, of order 0 and 1, respectively. It should be
noted that the exponent D is the most important
parameter to govern the centrifugal force-driven tran-
sient filling flow into the microchannel. D represents an
inverse of a characteristic time indicating how fast the
filling flow front into the microchannel advances: the
higher the D is, the faster the flow front advances.
Comparison between Eqs. 22 and 25 leads to the defi-
nition of Dguye, exponential growth rate for the
pseudostatic case as,

1 _
= — RedAr V?w*>.

D static 16

(27)

The exact dimensionless velocity profile was also
obtained as



V2w*2 L I*(\/Re ARD r* .
w (i) = 0k ) B VREARDI)) pe g
D I;(v/Re ArD)

It is noted that the velocity profile of the exact case
deviates from the parabolic shape of the pseudostatic
approximation case. Furthermore, the dimensionless aver-
age velocity, U, (¢*), can be obtained from Eqgs. 16 and 25,

avg
dr(¢ .
Usoo() = df* ): 2DLeP". (29)

Finally, the exact dimensionless pressure distribution
can be expressed as
P ) =T (2" — L) [25 + Ly — 2Lge"" (30)
In summary, for the given fluid properties, geometry of
microchannel and processing conditions, one can cal-
culate the exponent D through Eq. 26 and then deter-
mine the transient filling flow front advancement,
velocity profile and pressure distribution as a function of
time from Egs. 25, 28 and 30, respectively.

Meanwhile, it may be noted that the asymptotic
behaviors of the exact solutions (Egs. 26, 25, 28 and 30)
as ReAr — 0 are reduced to those of the pseudostatic
case (Eqgs. 27, 22, 23 and 24, respectively) while main-
taining Redr V*w*? ~ O(1), as they should. Proofs are
provided in Appendix 2.
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Finally, for the convenience of readers, we also
summarized important results of the analytic solutions
in a dimensional form in Appendix 3 since it is some-
times easier to understand the flow behavior if equations
are expressed in a dimensional form rather than in a
dimensionless form.

5 Analysis results and discussion
5.1 Parametric study for exponent D

As discussed above, the exponent D is the most impor-
tant governing parameter in this transient flow, repre-
senting how fast the front of filling flow advances into
the microchannel. In this regard, we will discuss the
parametric study of D in this section.

As shown in Eq. 26, D is determined by two sets of
dimensionless parameters, RedAr and Vw*, which are
associated with fluid properties, geometric data and
processing conditions. Therefore, once Redr and Vo'
are determined from the information on sample fluid,
microchannel geometry and processing conditions, it is
rather straightforward to determine D by solving the
nonlinear Eq. 26. For the parametric study, we exten-
sively carried out computations of D for various com-
binations of ReAr and Vw*.

Fig. 3 The calculated exponent a
D as a function of (a) ReAr and
(b) Vw* (symbols from exact D,
and curves from pseudostatic
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Figure 3 shows the calculated D for both pseudo-
static (curves) and exact (symbols) cases as a function of
ReAg (Fig. 3a) and Vw*(Fig. 3b). Since Dy for the
pseudostatic case is proportional to ReAr and square of
Vw* as expressed in Eq. 27, the Dgic varies linearly for
ReAg and Vo* in logarithmic scale, which are repre-
sented as linear lines in Fig. 3a and b. It might be
mentioned that the gap between the adjacent linear
curves as shown in Fig. 3a (one order change of Vw*)
is wider than that of Fig. 3b (one order change of ReAR)
due to the square proportionality of D to Vw*. Since D
for the exact case asymptotically behaves like the
pseudostatic Dy, under the condition of Redr < <1
(Appendix 2), the calculated exact D lies on the lines of
the pseudostatic Dy, as shown in Fig. 3a and b while
ReAgr < <1 even at high Vw*, as expected. But, as ReAg
increases, the exact D becomes smaller than the
pseudostatic Dy, Which implies that the flow
advancement in the exact solution is not as fast as the
pseudostatic approximation case. This deviation is due
to the inertia force effect (the third term in Eq. 14) which
tends to restrain fluid mass from accelerating rapidly. As
ReAg increases further, the exact D deviates more and
more from the curves of the pseudostatic Dy and

Fig. 4 Filling flow front a 100
advancements for both cases of
the pseudostatic (dotted curves) 50

and exact (solid curves)
solutions with respect to the
variation of time: a effect of
ReAgr and b effect of Vw*

I'(f)

(39 ]

(8]

eventually approaches the limit value of I_/w*/\/z as
ReAr — oo, as clearly indicated in both Fig. 3a and b.
Refer to Appendix 2 for the detailed derivation of this
limit case of ReAr —> oo.

5.2 Parametric study for flow behavior

In order to provide a physical insight into the micro-
fluidic system in this study, we extensively performed
parametric studies on the flow behavior in terms of the
flow front advancement, the velocity profile and the
pressure distribution as functions of the time and vari-
ous combinations of ReAgr and Vo*.

5.2.1 Filling flow front advancement

Figure 4 shows the effects of Redr (Fig. 4a) and Vw*
(Fig. 4b) on the behavior of the dimensionless filling
flow front advancement, /* (¢¥), with respect to dimen-
sionless time, t*, for both the pseudostatic (dotted
curves) and exact (solid curves) cases. For the case of
Fig. 4a, various values of ReAgr are chosen: 0.01, 0.1,

— Exact
= = Pgeudo-static

— Exact
- - Pgeudo-static
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0.4, 0.8, 1, 2, 4 and 10 when L¥=1 and Vw* = 1. The
pseudostatic Dy, corresponding to those values of
ReAg are found to be 0.000625, 0.00625, 0.025, 0.05,
0.0625, 0.125, 0.25 and 0.625, respectively, from Eq. 27,
and exact D corresponding to them are 0.000625,
0.00624935, 0.0249585, 0.0496711, 0.0618624, 0.120191,
0.218354 and 0.383823, respectively (Eq. 26). And, for
the case of Fig. 4b, we vary the values of Vw* as 0.1, 0.4,
0.8, 1, 2, 4 and 10 while maintaining L; =1 and
ReAr=1. The values of pseudostatic Dy, corre-
sponding to these Vw*/s become 0.000625, 0.01, 0.04,
0.0625, 0.25, 1 and 6.25, respectively, and the exact D are
0.000624925,  0.00998339, 0.0397368, 0.0618624,
0.240381, 0.873416 and 3.83823, respectively.

It is noted that /* (r*) shows, in the logarithmic scale
of the ordinate, a nonlinear behavior near *=0 due to
the term —1 inside the bracket of Egs. 22 and 25, as
plotted in Fig. 4a, b. However, as ¢* is sufficiently large,
the term, — 1 becomes negligible in comparison with the
exponential term of 2¢””, and therefore /* (t*) shows a
linear behavior in the logarithmic scale of the ordinate.
It might also be noted that since the values of pseudo-
static D, e and the exact D are almost the same at small
ReAy and Vw*, the curves of pseudostatic and exact /*
(%) almost coincide with each other.

As clearly shown in Fig. 4, the behavior of /* (¢¥) is
more sensitively affected by the change of Vw* than
ReAg due to the fact that the exponent D is proportional
to the square of Vw* while it is linearly proportional to
ReAgr. Meanwhile, as ReAgr increases, the deviation
between the pseudostatic and exact cases gets larger as
indicated in Fig. 4a, due to the inertia force effect as
discussed earlier. On the other hand, Fig. 4b shows a
very small deviation between the pseudostatic and exact
cases due to a relatively small ReAr (in this case,
ReAR = l)

5.2.2 Velocity profile

Plotted in Fig. 5 are typical behaviors of velocity profile
with respect to (a) #*, (b) Redr and (¢) Vw* for both
cases of pseudostatic (dotted curves) and exact (solid
curves) solutions. Figure 5a shows the typical velocity
profile development according to the increase of time (in
this case * = 20, 40, 60, 80 and 100) for a specific case
of ReAx=10 and Vo* =0.2 with L; = 1. The corre-
sponding pseudostatic Dy, ;. and exact D are 0.025 and
0.0240381, respectively. The pseudostatic flow keeps the
parabolic velocity profiles, like those of a pressure-dri-
ven flow. But the maximum velocity exponentially in-
creases with the time as expressed in Eq. 23. Since the
flow front position gets exponentially away from the
center with the time as illustrated in Fig. 4, the induced
centrifugal force which is a flow driving force in the
system exponentially increases with the time, resulting in
the exponential increase of maximum velocity. It is no-
ted that due to a smaller value of D than the pseudo-
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static Dga4ic, the exact velocity profile is getting smaller
than the pseudostatic one as time proceeds. In other
words, since the inertia force restrains the rapid velocity
increase, the real velocity profile development becomes

6 7

more deviated from the pseudostatic case with the time
even at ReAr = 10.

The variations of velocity profile in response to ReAr
and Vw* are shown in Fig. 5b and c, respectively, for



both cases of pseudostatic (dotted curves) and exact
(solid curves) solutions at the same instant time, ¢*=35.
In Fig. 5b, ReAR varies as 0.6, 1, 2, 4 and 6 when L; = 1
and Vo* =1. The corresponding calculated pseudo-
static Dg,e are 0.0375, 0.0625, 0.125, 0.25 and 0.375,
respectively, and exact D are 0.0373604, 0.0618624,
0.120191, 0.218354 and 0.291029, respectively. For the
case of Fig. 5c, Vw* varies as 0.8, 1, 2 and 4 when Ly=1
and ReAr=1. The corresponding pseudostatic Dggic
are calculated as 0.04, 0.0625, 0.25 and 1, respectively,
and exact D are 0.0397368, 0.0618624, 0.240381 and
0.873416, respectively. Due to the dependency of the
exponent D on square of Vw*, the velocity profile is
more sensitively affected by the change of Vw* (Fig. 5c)
than ReAr (Fig. 5b). However, it is noted that the
higher the ReAg is, the more the deviation between the
pseudostatic and exact cases, which is the same trend as
I* (t*), due to the inertia force effect restraining a rapid
velocity increase. It might be mentioned that Fig. 5c
plots the velocity profile only in the vicinity of the wall
for the case of Vw* = 4 since the velocity magnitude in
the other region exceeds the given range of the ordinate.

5.2.3 Pressure distribution

Plotted in Fig. 6 are typical pressure distributions with
respect to (a) r*, (b) RedAgr and (c) Vw* for both cases
of pseudostatic (dotted curves) and exact (solid curves)
solutions. Figure 6a shows the typical development of
the pressure distribution as time increases (in this case
t*=40, 60, 80 and 100) for a specific case of ReAg =10
and Vo* =02 with L;=1. The corresponding
pseudostatic Dq,c and exact D are calculated as 0.025
and 0.0240381, respectively. As expected from Eq. 18,
both the pseudostatic and exact pressure distributions
show parabolic shapes and negative value of pressure
over the microchannel. The first zero pressure of one
fixed end point of the parabola represents the starting
position, i.e., the reservoir, L, (in this case, Lj=1),
and the second zero pressure of the other moving end
point corresponds to the filling flow front, i.e., the
advancing position of flow front, /* (¢*), at the indi-
cated time, ¢*. Due to the difference of the pseudostatic
Dg.ic and exact D, the positions of the second zero
pressure point at the same instant time deviate more
and more from each other as time proceeds. The filled
portion of a microchannel could be divided to two
distinctive regions: (1) the left half region from the
starting point (the reservoir) to the center (the center of
filled region inside the microchannel at the indicated
time) having a negative pressure gradient; (2) the right
half region from the center to the other second end
point (the position of the filling flow front) showing a
positive pressure gradient. At the center of the filled
channel, i.e., between the two regions, the pressure
gradient is zero. These trends can be explained by the
force balance between the centrifugal force, pressure
gradient and the shear stress based on the assumptions
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in this study. It might be reminded that the velocity
component, u., is a function of r only (not z) at any
instant time, thus the shear stress becomes a function of
r only at an instant time, thus remaining the same over
the entire filled region of the microchannel. The cen-
trifugal force linearly increases with the radial location
of the CD plate. In response to the increasing centrif-
ugal force with the radial direction, the pressure is
developed to maintain the same shear force throughout
the filled region inside the microchannel as follows. A
small centrifugal force in the left half region needs a
negative pressure gradient (a favorable pressure gradi-
ent to the flow), while a positive pressure gradient (an
adverse pressure gradient to the flow) should compen-
sate for a large centrifugal force in the right half region,
in order to match exactly the average centrifugal force
(with zero pressure gradient) at the center. This is how
a parabolic and negative pressure distribution is built
up in the microchannel.

Figure 6b, ¢ shows the pressure distributions with
regard to the change of Redr and Vw*, respectively,
for both the pseudostatic (dotted curves) and exact
(solid curves) solutions at the same instant time, *=>5.
For the case of Fig. 6b, ReAyr varies as 0.6, 1, 2 and 4
when Lj=1 and Vo*=1. The -corresponding
pseudostatic Dy, are 0.0375, 0.0625, 0.125 and 0.25,
respectively, and exact D are 0.0373604, 0.0618624,
0.120191 and 0.218354, respectively. In Fig. 6¢c, Vw*
varies as 0.8, 1 and 2 when Lj =1 and RedAr=1. The
corresponding pseudostatic Dy, are calculated as
0.04, 0.0625 and 0.25, respectively, and exact D are
0.0397368, 0.0618624 and 0.240381, respectively. Like
the change of velocity profile, the pressure distribution
is more sensitively influenced by the change of Vo*
(Fig. 6¢) than ReAg (Fig. 6b). And the higher ReAy is,
the more deviation one can observe between the
pseudostatic and exact pressure distributions as ex-
plained above.

Finally, we want to comment on the limitations and
potentials of the modeling and analysis developed in
this study with respect to applications. First, we ne-
glected the Coriolis force in obtaining the analytic
solutions of this transient filling flow problem. This
assumption is valid under the relatively low rotational
speed, e.g., below 1,000 rpm with a typical micro-
channel size of the order of 100 um. The analytic
solutions presented in this study may not be accurate at
a very high rotational speed. However, the analytic
solutions still enables us to get a physical insight into
the centrifugal force-driven fluid flow and help us de-
sign such a microchannel system for a wide range of a
rotational speed. One may refer to Appendix 4 for the
detailed magnitude analysis for the centrifugal force
and the Coriolis force. Second, we neglected surface
tension effect at the boundary of the flow front. As
discussed before, if one applies a plastic substrate of
which the contact angle of sample liquid is nearly 90°,
the assumption is valid. When the surface tension plays
an essential role in the hydrophilic/phobic fluidic con-
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trol, incorporating the surface tension effect into the
analytic approach might become important. In this
regard, we are currently investigating the effect of sur-
face tension in the context of the present model prob-
lem, which will be the subject of a separate paper in the
future.

6 Design application examples

As already described above, one of the principal objec-
tives of this work is to provide a simple analytic design
tool at the first design step. In this regard, we present
two different application examples as typical design
problems in which the hydraulic radius of a micro-
channel or the processing condition of rotational speed
is determined so as to meet the design requirements by
means of the results of modeling and analysis performed
in this study.

Suppose a microfluidic designer wants to deliver a
sample fluid from the reservoir location, Lo, to the de-
sired radial downchannel location, Ly, at a desired time,
tq. There are two possible design cases: (1) case I, where
one has to design the hydraulic radius for a new mi-
crofluidic system to be fabricated with a specific rota-
tional speed of a disk-driving system already fixed, and
(2) case II, where one has to determine a rotational
speed of a disk with a given hydraulic radius in an
existing microfluidic system fabricated already.

To meet the design requirement, one can use the
following design equations in sequence. The first design
equation can be obtained by rearranging Eq. 60 in
Appendix 3 as follows:

1 1 /L
Design equation I: D = —In {— ( 44 1)} (31)

tq 2 L_O
which is to determine a dimensional value of D for the
given values of Ly, Lo and t4. And the second design
equation is Eq. 63 in Appendix 3 as duplicated below:

D,
Ry [, h(y/5Re)

R2
Design equation II: —}ZID2 ==
w

SV )
(32)

from which the hydraulic radius, Ry, or the rotational
speed, w, is subsequently determined for given condi-
tions with the calculated D.

As a specific design example, let the sample fluid
properties and design requirements be as follows:

— Fluid properties: p=10°kg m™> and u=10"°Pas,
which are the same order as those of water

— Position of reservoir (i.e., entrance location of mi-
crochannel): Lo=5 mm

— Design requirements: Ly = 40 mm and #4=2 s.

— Therefore, for the given values of Ly, Ly and t4, D is
determined as D=0.752s~' from Design Eq. I,

Eq. 31. Then, depending on the design case, one can
determine the other parameter as below

6.1 Case I: determine Ry, for a given rotational speed, w

Suppose that a designer wants to deliver the sample to
the desired radial position on a CD plate which is ro-
tated with a specific rotational speed, «. This problem is
typically encountered at the design step.

If the CD is rotated with =40 rad s~ ' ~382 rpm,
the corresponding hydraulic radius can be determined
through Design Eq. II, Eq. 32 as R,=86.8 um.

6.2 Case II: determine w for a given hydraulic radius,
Ry, of a microchannel

The cross-sectional area of microchannel may be given
already in an existing microfluidic system or may be first
assigned in the design step of a new system especially
when the sample volume to be delivered is specifically
given. The sample fluid can be delivered to the desired
radial position at a desired time by adjusting the rota-
tional speed. This problem is typically encountered at
the experimental step.

If the hydraulic radius of a microchannel on the CD
plate is assigned to (or given by) R,= 100 um, the
corresponding rotational speed can be determined as
w=34.72 rad s~' ~330 rpm from Design Eq. II, Eq. 32.

As illustrated through Cases I and 11, a microfluidic
designer can determine the hydraulic radius of micro-
channel or the rotational speed for given experimental
conditions and design requirements by means of Design
Egs. I and II (Eqgs. 31, 32).

7 Concluding remarks

In this paper, we have first developed the physical
modeling and carried out the analysis for the transient
filling flow into the circular microchannel driven by
centrifugal force. By means of the modeling and analy-
sis, we have successfully provided not only a physical
insight into such a microchannel flow but also a simple
design tool.

The governing equations for the filling flow were
developed from the fundamental force balance (among
viscous force, inertia force and centrifugal force) for an
infinitesimal control volume in the microchannel to-
gether with the continuity equation. With the developed
physical modeling in a dimensionless form, first, a
pseudostatic approximate solution was derived for the
case when the inertia force is negligible, and secondly, an
exact analytic solution was derived with the inertia force
effect included.

The analytic results showed that the filled region into
the microchannel exponentially increases with the time



for the centrifugal force-driven filling flow. The transient
flow behavior is very sensitively affected by the dimen-
sionless parameters of Vw* (associated with the centrif-
ugal force effect) and Redr (related with the inertia
force effect) which are combinations of fluid properties,
microchannel geometries and processing conditions.

The exponent D which represents an inverse of a
characteristic time for flow front advancement, i.e.,
indicating how fast the microchannel is filled, is found to
be the most important parameter in this study. The
parametric study on D showed that the filling flow
behavior is more sensitively influenced by the change of
Vw* than ReAg since D is proportional to the square of
V* and linearly proportional to ReAr. And as ReAg
increases, the inertia force effect becomes more impor-
tant in the system, resulting in the increase of the devi-
ation between the pseudostatic approximation solution
and exact one since the inertia force effect tends to re-
strain flow velocity from a rapid acceleration.

The parametric studies on filling flow front
advancement, /* (¢*), velocity profile, u¥ (+*, t*) and
pressure distribution, p* (z*, t*), were also carried out to
understand the flow behavior. All /* (¢*), u¥ (r*, t*) and
p* (z*, t*) are more sensitively affected by the change of
Vw* than ReApg as expected from the behavior of D. It is
also expected that the higher the ReAr induces the larger
the deviation between the pseudostatic and exact solu-
tions for all three flow characteristic variables. It is noted
that the velocity profile of the pseudostatic case is par-
abolic like the pressure-driven flow and that the inertia
force makes the exact velocity profile deviated from the
parabolic profile. The pressure is negative and has a
parabolic distribution along the downchannel direction
for both pseudostatic and exact cases so as to maintain
the force balance in the filled region of a microchannel.

With regard to the design tool for the system, two
design equations have been proposed and two types of
design application examples are demonstrated success-
fully. By means of two design equations, a microfluidic
designer can easily determine the hydraulic radius of a
microchannel or the rotational speed to meet the design
requirements for given conditions.

As a final remark, this study might become a plat-
form for the analytic approaches not only for an arbi-
trary channel path but also for a complex microchannel
network system in which the fluid flow is driven by
centrifugal force.
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Appendix 1

Detailed solution procedures for dimensionless exact
filling flow front advancement, /* (£*), and dimensionless
exact velocity profile, u} (r*, t¥)

The governing equation for u¥* (r*, ¢t*) and the corre-
sponding boundary conditions are stated in Eqs. 14 and
15, respectively. And the governing equation for /* (¢*)
and the corresponding initial condition are written in
Eqgs. 16 and 17, respectively. Equations 14 and 16 are
coupled with each other.

For this particular problem, the separation of vari-
able technique turns out to be successful to lead to an
exact solution with the following form
w(r ) = U (r)T (1), (33)
where U¥ and T* are geometrical and temporal velocity
components which are the functions of r* only and ¢*
only, respectively. With the solution form of Egs. 33, 14
can be rewritten by

B [dzUj 1 dUZ*} dr+

T" + Re ARU”
dr2 o dr +Redr

Zdr

1 _
= SRe dr V(I (t°) + L). (34)

Observing that the right-hand side in Eq. 34 is the
function of ¢* only, i.e., independent of r*, one can
decompose the left-hand side of Eq. 34 by functions of
r* and t* so that the part of the function of r* only
could set to be constant. With this in mind, the following
relation is assumed

dr*
dr*

where A is constant. Then from Egs. 34 and 35, one can
obtain the following equations

— AT (1) (35)

d*ur  1dur
2 ——Z L ReAR AU =B 36
dr*Z 7 d}"* + Re R z ( )
1 _
BT*(t") = sRe Ar V™ (I"(t") + L) (37)

2

where B is constant.

By substituting Eqgs. 33 and 37 to the governing
equation for /* (¢¥), Eq. 16, one can obtain the following
equation:

Q
de*

Urs(r*)

1
= Redy Vo (I'(") + L) / = g
0

(38)

We define the constant part by D as follows
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1

D = ReAr 17260*2/ r sz(; )dr*. (39)
0

Then Eq. 38 is rewritten as

dr

3 = D) + L), (40)

By applying the initial condition of Eq. 17, one at-
tains a final form of the dimensionless exact filling flow
front advancement

() = Ly [2eP" — 1] (41)
which corresponds to Eq. 25.
From Eqgs. 37 and 41, one can find T* (¢*) as
1 _ .
T*(t") = 3 Redr Var?Lel! (42)

Since Eq. 42 holds, one can recognize that Eq. 35 is
satisfied if 4 appearing in Eq. 35 is no more than D
defined in Eq. 39, i.e.,

A=D. (43)
Reflecting Eq. 43, one can rewrite Eq. 36 as
d*ur  1dur

— Z - ——Z2 4+ ReAr DU =B 44
dr2 o dr +RedrDU; (44)

which is the differential equation for the geometrical
(spatial) velocity component to be solved along with the
boundary conditions,

Us(r*=1)=0 (no-slip on the wall) (45)

du;

dr* r*:OZ 0

(symmetry of velocity profile). (46)

It may be mentioned that Eq. 44 becomes an integro-
differential equation for U¥ if D defined in Eq. 39 is
explicitly substituted to Eq. 44. This integro-differential
equation is difficult to be solved analytically. Thus, in
the present approach, we regard Eq. 44 as a differential
equation just for U¥ considering D as a parameter given,
even if D could be determined only after U¥ is solved.

It is rather straightforward to solve Eq. 44 which has
a standard differential equation form of the modified
Bessel function of order zero. The solution U¥* (r*) in-
cludes a homogeneous solution part, U%,(r*), and a
particular solution part, U¥*(r*), as follows,

D2

| LVReArD + L (ReAr D) + 5L (Re Ar D) + O((ReARD)7/2)

UZ (") = U5 () + UL, ()

= c1lj(\/Re ARDr") + c2K;(\/Re ARD r")
B
Re ArD
where I and K¢ are the modified Bessel function of
order zero of the first kind and second kind, respectively,

and ¢, and ¢, are integral constants. By applying
boundary conditions of Egs. 45, 46, one attains the final
solution of U¥* (r*) as

+ (47)

Uz(r)

z

B {1 5 EWV*)]. (48)
0

~ RedrD I (/ReARD)

Finally, from Eqgs. 33, 42 and 48, the dimensionless
exact velocity field is expressed as

_ VoL {1 _ I5(vRedrD r*)] e
D I3(v/Re AxD)

which corresponds to Eq. 28.

Now to complete the solution, one needs an expres-
sion for D. By substituting Eq. 48 to Eq. 39, one can
obtain the following relation for D,

D> 1 1 I;(vV/RedrD)
w2 2 \/ReArD I;(\/ReARrD)

u(r, 1)

(49)

(50)

which corresponds to Eq. 26. IT is the modified Bessel
function of the first kind, of order one.

Appendix 2

Asymptotic behaviors of exact solutions

The asymptotic behaviors of the exact solutions
(Egs. 26, 25, 28 and 30) as ReAg — 0 must be reduced
to those of the pseudostatic case (Eqgs. 27, 22, 23 and 24,
respectively) while maintaining Redg V>w*? ~ O(1), as
they should.

First, the expression for D, Eq. 26, can be rewritten
by introducing the infinite series expansion form of the
modified Bessel functions of I§ and If as,

1
V2?2

v Re ARD

1 +1Re D + & (Re ArD)* + 0((ReARD)3)



Rearranging Eq. 51 with regard to D results in

1 1 1 2 i *
3—2Re2A§D3 +§ReARD2 + <2 ~ 5¢ (Re4r) 7w 2)1)
1 _

= gRed RV 0™ (52)
If ReAr < <1 while RedrV?w*> ~ O(1). Equation 52
can be reduced to an expression for D as

D= %ReARVza)*z
which is identical to the pseudostatic Dy, Eq. 27. And
consequently, the filling flow front advancement, Eq. 25,
and pressure distribution of the exact case, Eq. 30, be-
come the exactly same as those of the pseudostatic case,
Eqgs. 22 and 24, respectively.

Expanding [j(v/ReArDr*) and I;(v/ReArD) by
means of the infinite series form in the exact velocity
profile, Eq. 28, results in

(53)

u(r,r")
— 1 X2 2
_ Vza)*sz, - 1 +ZR€ARDV +0((R6ARD}" ) ) eDt*
D 1+1RedrD+ 0((ReARD)2>
(54)

Due to 1> >(1/4) ReArD under the assumption of
ReAg < <1, the above equation could be reduced to
w(r', ) ~ %ReARVzw*zLS(l —r?) el (55)
With D in Egs. 53, 55 becomes identical to Eq. 23 of the
pseudostatic case.

Therefore, the asymptotic behavior of the exact solu-
tions are proved to be completely identical to those of the
pseudostatic approximate solutions when Redr — 0
while maintaining Redgr V>w*? ~ O(1).

Finally, we further investigate the asymptotic
behavior of the exponent D as ReAg — oo. From the
infinite series expansion of /§ and If, one can show
that Iy (v/Re ArD)/I;(v/ReARD) — 0 as ReAr — oo,
Therefore, from Eq. 26, the exact exponent D is found
to deviate from the pseudostatic Dy, and to
approach a limit value of Vw*/v2 as Redgr — oo,
which is shown in Fig. 3a, b.

Appendix 3

Solutions in dimensional form

Dimensional forms of the pseudostatic solutions are
expressed below

A pseudostatic filling flow front advancement, /(7),
corresponding to Eq. 22:
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(56)

I(t) = Ly {2exp[(%t>] - 1}

A pseudostatic velocity profile, corresponding to Eq. 23

2 2p2
pw-L PWR
u(r,t) = 4luoexp{< 16uht)](R}21—r2).

A pseudostatic pressure distribution, corresponding
to Eq. 24

(57)

2 p2

2 oll}

pz.t) = %(z — Ly) {Z + Lo — 2Lgexp [(pw h
(58)

16u

A dimensional form of Dy, corresponding to
Eq. 27

pw*R}
lou

Dygagic = (59)

Dimensional forms of the exact solutions are ex-
pressed below. An exact filling flow front advancement,
(1), corresponding to Eq. 25
I(t) = Lo[2¢™ —1]. (60)

An exact velocity profile, corresponding to Eq. 28

/Dp
L()C()2 1 — ]0( K 7') eDt.
D 10(\/%13}1)

An exact pressure distribution, corresponding to
Eq. 30

u,(r,t) = (61)

2

p(z,t) = % (z — Lo) [(z + Lo) — 2Lee™]. (62)

A dimensional form of D, corresponding to Eq. 26

D,
R, R i, i)
2 =2 VD e
’ "R

(63)

Appendix 4

Comparison between the Coriolis force
and the centrifugal force

The ratio of the centrifugal force to the Coriolis force
corresponding to the characteristic dimensions defined
in this study be stated as follows:

Centrifugal force  pwil  wcL

V

2pUwc 22U 2U

| I

Coriolis force (64)
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This result indicates that the ratio of the centrifugal
force to the Coriolis force is equal to half the ratio of the
rotational velocity (V) to the mean downchannel veloc-
ity (U), V /2. Therefore, if V is large enough, one can
neglect the Coriolis force effect.

One can roughly estimate the mean downchannel
velocity, U, by equalizing the viscous force to the cen-
trifugal force, that is,

_ 2

'uRiﬁ = pocL. (65)

Then one can obtain the following estimation of U:
2LR2

U= POCER: (66)
u

Thus the force ratio of Eq. 64 becomes
Centrifugal force V' u (67)

Coriolis force  2U 2pwcRE

From Eq. 67, it is found that as the rotational speed
(wc) increases, the Coriolis force effect becomes impor-
tant. However, the effect of the Coriolis force becomes
negligible as the microchannel radius (Ry,) and the den-
sity (p) decrease, and as the viscosity (u) increases.

As a specific example with the real values, let the
sample fluid properties and microchannel geometry be
as follows:

Fluid properties p=10° kg m > and u=10""Pa s
Radius of microchannel R;, =50 pm.

Then, according to Eq. 67 the force ratio is deter-
mined as

Centrifugal force ¥ 200

Coriolis force 2 (68)

wc

Therefore, with wc= 10 rad s~ (=95 rpm), the force
ratio (¥ /2) becomes 20. However, if wc increases up to
200 rad s~' (~1,910 rpm), the force ratio becomes 1 so
that the Coriolis force cannot be neglected with the
above given characteristic values.

It should be mentioned that, in the previous works
(Dulffy et al. 1999; Madou et al. 2001) which were uti-
lizing the centrifugal force, the ranges of the hydraulic
radius and the rotational speed were from 10 to 170 um

and from 10 to 118 rad s~ !, respectively. In these ranges
of rotational speed and microchannel geometry, the
Coriolis force could be negligible.
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