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Abstract A fundamental understanding of the transport
phenomena in nanofluidic channels is critical for sys-
tematic design and precise control of such miniaturized
devices towards the integration and automation of Lab-
on-a-chip devices. The goal of this study is to develop a
theoretical model of electroosmotic flow in nano chan-
nels to gain a better understanding of transport phe-
nomena in nanofluidic channels. Instead of using the
Boltzmann distribution, the conservation condition of
ion number and the Nernst equation are used in this new
model to find the ionic concentration field of an elec-
trolyte solution in nano channels. Correct boundary
conditions for the potential field at the center of the
nanochannel and the concentration field at the wall of
the channel are developed and applied to this model. It is
found that the traditional plug-like velocity profile is
distorted in the center of the channel due to the presence
of net charges in this region opposite to that in the
electrical double layer region. The developed model
predicted a trend similar to that observed in experiments
reported in the literature for the area-average velocity
versus the ratio of Debye length to the channel height.

Keywords Nanofluidic channel - Electroosmotic flow -
Lab-on-a-chip - Numerical simulation

1 Introduction

In order to realize the concept of Labs-on-a-chip for
biomedical applications, integration and miniaturization
are critical. There has been great success over the last
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decade in the development of microfluidic devices
towards the integration of Lab-on-a-chip devices
(McDonald et al. 2000; Reyes et al. 2002). It is a natural
progression to extend these systems to the nanoscale re-
gime with at least one of the dimensions on the nanometer
scale since such devices offer unprecedented control over
single cell transport, in manipulation as well as in detec-
tion (Jonas et al. 2001; Levene et al. 2003). A number of
methods have been developed to fabricate nanofluidic
devices in glass, silicon oxide, silicon nitride and polymide
with good resolution (Guo et al. 2004; Kutchoukov et al.
2004; Eijkel et al. 2004). It has also been demonstrated
that nanofluidic channels can be used for single cell
analysis. Campbell et al. (2004) studied the electropho-
retic behavior of single, fluorescently labelled DNA
molecules in rectangular silicon nanochannels with a
cross-sectional area down to 150x180 nm. The active
control of single molecules of DNA in such small chan-
nels was achieved through electrokinetic transport. Han
and Craighead (2000) separated long DNA molecules by
electrokinetically pumping the molecules through a
nanofluidic device consisting of alternating thin and thick
regions with different depths. This alternative change in
depth caused size-dependent trapping of DNA, which
created an electrophoretic mobility difference enabling
separation without the use of a gel matrix or pulsed
electric field. Although a nanofluidic channel has great
potential in single molecule analysis and the development
of drug delivery systems, application of such devices in
biomedical diagnosis and treatment is not yet practical.
The bottleneck is the lack of fundamental understanding
of transport phenomena in nanoscale devices, which has
largely hindered the systematic design and precise control
of such devices. To date, there are limited reports
regarding fluid flow in nanofluidic channels, where elec-
trical double layer is overlapped in most applications.
The first work on electroosmotic flow in a channel on
the order of electrical double layer thickness (i.e. nano-
meter) was done by Burgeen and Nakache (1964). They
produced results for the velocity field and potential field
with the assumption of the Boltzmann distribution for



species ionic concentration. However, as previous studies
have shown (Ren and Li 2004), when the electrical double
layer is overlapped, it is not proper to use the Boltzmann
distribution for ionic concentration prediction. Recently,
Jacobson et al. (2001) experimentally studied electroos-
motic flow in channels with a height varying from 98 nm
to 10.4 um. Their experiments for the 98-nm-depth
channel showed that electroosmotic mobility increased
when the double layer thickness increased, however,
when the double layer thickness extended significantly
into the channel (44% of the half channel depth), elec-
troosmotic mobility decreased. Pennathur and Santiago
(2004) reported both numerical and experimental studies
on electroosmotic flow in nanofluidic channels. In their
experiments, it is found that the area-average velocity
decreased nonlinearly when the channel dimensions ap-
proached the double layer thickness, which was also ex-
pected through analytical analysis (Rice and Whitehead
1965). In their numerical studies, finite but non-over-
lapped double layer was assumed and thus Poisson-
Boltzmann equation was used to describe the applied
electrical potential field. Their experimental data agreed
with their numerical predictions for area-average veloc-
ity. Conlisk and McFerran (2002) solved a 1-D numerical
model of mass transfer and fluid flow in rectangular mi-
cro- and nanochannels for ideal electrolytes (i.e. NaCl),
where the channel height was down to 1 nm. In their
numerical model, the wall boundary conditions for spe-
cies ionic concentration were assumed. Their results
showed that the continuum mechanics was valid for li-
quid flow in nanochannels through comparison between
their numerical model predictions and the experimental
data received from iMEDD, Inc.

In the above theoretical studies, either the Boltzmann
distribution or the wall boundary conditions for species
ionic concentration was assumed, which are not proper
for overlapped double layer applications. The justifica-
tion is detailed below. The derivation of the Boltzmann
distribution requires an infinitely large aqueous phase so

Fig. 1 Illustration of the net
charge distribution in the liquid
and the electroosmotic flow in a
channel
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that the electrical potential is zero in the liquid far away
from the charged surface and that the ionic concentra-
tions in the region far away from the charged surface are
equal to the original bulk ionic concentration (Hunter
1981; Masliyah 1994). Mathematically, this condition
can be expressed as:

x=o00, Y =0, and n,-:n? (1)

where x is the distance in the normal direction to the
channel wall, s is the electrical potential, and n is the
original bulk concentration. It is well known that the
presence of charged solid—liquid interface will result in an
excess of counter-ions and a deficit of co-ions in the EDL
region. At neutral pH levels, the source of protons from
the surface is low and can be neglected for this study;
hence the counter-ions are supplied by the solution.
Therefore, it should be expected that there is a deficit of
counter-ions and a surplus of co-ions in the bulk liquid
outside of the electrical double layer, as illustrated in
Fig. 1. The conventional Boltzmann distribution cannot
show this logical expectation. This is because a key
underlying assumption of the Boltzmann distribution is
an infinitely large liquid phase, as specified by the con-
dition given in Eq. 1. It is understandable that if the size
of the system is sufficiently large and/or bulk ionic con-
centration is sufficiently high, deficit and surplus are
negligible and the Boltzmann distribution is acceptable.

However, when the channel is scaled down to nano-
meter scale, the excess of counter-ions and the deficit of
co-ions in the EDL region will result in significant
changes in the concentrations of counter-ion and co-ion
in the region outside the EDL. In order to satisfy the
conservation condition that the total ion number is con-
stant in a given system, the concentration of counter-ion
in the bulk liquid region is expected to be lower than the
original bulk concentration due to the accumulation of
counter-ions in the EDL region; the concentration of co-
ion in the bulk liquid region is expected to be higher than

Net Charge Distribution

Net Charges in
the bulk liquid

Bulk Flow Direction

e 66 65 0 o650 &
e 50606
+ o5 SRCRPNECING @@@O@
o o o o o

Negatively Charged
Surface




358

the original bulk concentration due to the deficit of co-
ions in the EDL region. Consequently, neither the con-
centration of counter-ion nor the concentration of co-ion
at the center of the microchannel is equal to the original
bulk concentration. Therefore, the assumption that the
ionic concentration in the bulk liquid region (far away
from the EDL) is equal to the original bulk concentra-
tion, which is used to derive the Boltzmann distribution,
is not correct and hence the Boltzmann distribution
cannot be applied to such a system. In addition, the
species ionic concentration at the channel wall is un-
known and should be determined by satisfying the con-
servation condition that the total ion number is constant.

In this paper, a numerical model will be developed to
examine electroosmotic flow in cylindrical nanochannels
with radii R, and with the z-axis along the channel
length. Pressure driven flow and electroosmotic driven
flow are the commonly used methods for pumping liquid
in microchannels. Each has its own advantages and
disadvantages and the selection of pumping method is
driven by applications. However, when the channel
dimension is scaled down to nanometer, pressure driven
flow is not feasible, which can be understood as follows.
Consider a pressure driven flow in a nanochannel with a
channel diameter d, where the area-average velocity can
be evaluated by:

d> =

ﬁave = —EVP (2)
where p is the viscosity of liquid and VP is the pressure
gradient applied over the channel length. Assuming the
viscosity is 1.0 x107 kg/(m s) and the diameter, d, is
chosen as 100 nm, in order to achieve a velocity on the
order of mm/s, the required pressure gradient is as high
as 3.2x10° Pa/m or 320 atm/cm (1.0 x10° Pa is assumed
to be 1 atm). It is not practical to integrate such a high
pressure pump into Lab-on-a-chip devices. Electroos-
motic driven flow offers great advantages over pressure
driven flow for nanoscale devices such as: its ease of
control, no dead volume, easy integration and plug-like
velocity profile, and therefore is chosen as the pumping
method in this study. The purpose of this study is to gain
a better understanding of electrokinetic transport phe-
nomena in nanoscale devices by examining the flow field,
potential field and concentration field in nanochannels
with the consideration of double layer overlapping and
the application of continuum mechanics. Strong sym-
metric electrolytes such as KCI are considered as the
working liquids although this model can easily be ex-
tended to asymmetric electrolytes.

2 Theoretical model
2.1 Electrical potential field

Consider a cylindrical channel and a simple symmetric
(e.g., zzz = 1:1) electrolyte solution. According to the

theory of electrostatics, the relationship between the
electrical potential,\s, and the net charge density per unit
volume, p,, at any point in the liquid is described by the
Poisson equation:

1d/ dy Pe
Bl sk ) I o
rdr\  dr €08
where ¢, is the dielectric constant of the solution and g,
is the permittivity of vacuum. The net charge density is

proportional to the ionic number concentration differ-
ence between positive ions and negative ions, via

(3)

(4)

where e is the elemental charge, nj; and ng, are the
number densities of K* and Cl™ ions, respectively.
Substituting Eq. 4 into Eq. 3, the Poisson equation be-
comes,

1d/ dy 7_e( —n)
rar\"ar) = &80 e -

In order to numerically solve Eq. 5, the following
boundary conditions are employed,

pe = e(ng+ —ncr)

(5)

r=0, %:0 (6a)
r=R, Y= (6b)

where ( is the electrical potential at the solid-liquid
surface. Introducing dimensionless parameters:

r _zey . M

* *
ryr = — = n. =
Ra ’10 ka7 i I’l?,

u

UCO

Equation 5 and the associated boundary conditions are
reduced to:

1d /o dy" R*z2e’n° ) 7
Far \ A ) T kpTe, My — -
c g G
r 0, a (83.)
* * ek ﬁ
Pt y=r= (8b)

where ky, is the Boltzamnn constant, T is the temperature
of the electrolyte solution, R is the radius of the channel,
and U, is the velocity predicted by the Helmholtz-
Smoluchowski model for electroosmotic flow with thin
double layer thickness taking the form of

Ueo = SrSOCEx/#,

where E, (V/m) stands for the external applied electrical
field in the axial direction of the channel. Since we
consider a symmetric electrolyte solution (z:z = 1:1)
where the original bulk concentration for both positive
and negative ions is the same (n) =n® =), n) is re-
placed by »n° and it will be the same in the following



discussions, except stated otherwise. For non-overlap
double layers, the Boltzmann distribution is valid,

n = n?exp (— Zl;:?) 9)

which is derived based on the assumption

r=o0, Y=0 and m=n’ (10)

As discussed above, the Boltzmann distribution is
not valid when channel dimensions are scaled down to
nanometer where the electrical double layer is
overlapped because electroneutrality in the bulk liquid,
which is used to derive the Boltzmann distribution,
does not exist any more. Therefore, the Boltzmann
distribution cannot be applied to such systems and the
ionic number concentrations of species have to be ob-
tained through the Nernst equation and the ionic
number conservation equation. The derivation will be
introduced in the following section.

2.2 lonic concentration field

The relationship between the ionic concentration and
the electrical double layer potential can be described by
the Nernst equation,

Tdn__zedy
n; dr kT dr

(11)

Integrating Eq. 11 from the wall, where

r=R, m=n_gya, ¥=¢ (12)
to a point in the bulk liquid, we get
=~ 25 - 0)) (13)

where n;_y.y 1s the ionic concentration of the ith ionic
species at the wall, which can be determined by satisfy-
ing the conservation condition of the ion number, given
below,

R ze 1 02
, MeowallxP TR WO rdr=2nR (14a)

/Rn ex ﬁ(l//—() rdr—anR2 (14b)
0 —_wall®XP ko T )

The dimensionless forms of the above equations are:

n; = n;;wauexp(—§(lﬂ* - C*)) (15)

R
1
/0 0 wall®P(=" = ))rdr = §R2 (16a)

R
* * * 1
/0 n* aexpt — {)rdr = 5R2 (16b)
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2.3 Flow field

Once the potential distribution and the ionic concen-
tration distribution are found, the fluid motion equation
can be solved. The general equation of motion for
laminar flow of a liquid with constant density and vis-
cosity is given by:

O LA - T
,DE-l-p(wV)u:—Vp—l-,uVu—}—F (17)
where p is the density of the liquid, # is the velocity
vecor, p is the pressure, p is the viscosity of the liquid,
and F represents the body force. Assuming the flow is
steady, one-dimensional, and fully developed, the
velocity components satisfy u=u(r), the velocity com-
ponents in the r- and O-direction are zero, and _the
transient term, 0ii/0t, and the inertia term, (#-V )i,
vanish as well. Also, no pressure difference is' applied
along the channel and the two reservoirs are open to air,
therefore, the pressure gradient, d p/d x, disappears. If
the gravity effect is negligible, the body force, F, is only
the external applied electrical driving force. Under the
above conditions, Eq. 17 is reduced to:

1d/ du 1 B
——(r==) = —=Eup,
rdr\" dr U P
The above equation of motion is subjected to the fol-
lowing boundary conditions:

du
dr
r=R, u=0

(18)

r=20, 0 (19a)

(19b)
The dimensionless form of the above equations is
1 d du* R?

— * - _—__— E

r* dr <r dr*) Ueolt *Pe

The above equation of motion is subjected to the fol-
lowing boundary conditions:

(20)

. du*
ro= 0, @ =0 (21a)
=1 u'=0 (22b)

The finite difference method was employed to
numerically solve this model with the proper boundary
conditions. A non-uniform grid system was applied
(Anderson et al. 1984) with the minimum grid near the
wall in order to capture the information of potential field
and flow field inside the double layer. The EDL potential
field, the ionic concentration field and the velocity field
in nanochannels can be determined based on the
simultaneous solution to the above governing equations.

3 Results and discussions

As discussed before, for a given solid-liquid system,
when the channel height is sufficiently large, the accu-



360

mulation of counter-ions in the EDL region has very
little effect on the ionic concentrations in the bulk liquid
region. In other words, the concentration of counter-ion
in the bulk liquid region remains the same as the original
bulk concentration. Mathematically, the ionic concen-
tration can be predicted by the traditional Boltzmann
distribution and it should satisfy the ionic number
conservation condition as well. Therefore, there should
be no difference in the potential field and ionic concen-
tration fields predicted by the traditional P-B equation
and the newly developed model here. This logic analysis
is used to validate the developed model considering a
case with a large channel. Figure 2 shows the compari-
sons of the model predicted potential field and ion
concentration field between the conventional Poisson-
Boltzmann model and the developed model for a 1 mM
KCI solution in a 200 um diameter channel. In this

-1
) i

around 10 nm, which is 0.01% of the channel radius.
The coincidence between the two model predictions of
potential field and ionic concentration fields validated
the developed model.

As the channel diameter is reduced, the non-dimen-
sional Debye length, A4/d increases. The accumulation of
counter-ions in the EDL region has significant effects on
the ionic concentration distribution and potential dis-
tribution in the region outside the EDL. The excess

2z2e2n°
kb T&‘ré‘(]

particular case, the Debye length, /1; = (

positive net charges in the EDL, for a negative zeta
potential, have to be balanced by negative net charges in
the centre of the channel in order to conserve continuity.
This phenomenon was observed in a 2 pm diameter
channel with a 1 mM KCI solution and a corresponding
zeta potential of —102 mV. The zeta potential value
selected was the same as that reported by Pennathur and
Santiago (2004) for the same non-dimensional Debye
length. Figure 3a shows the non-dimensional potential
field predicted by the traditional P-B equation and by
the developed model for the above conditions. The po-
tential field predicted by the P-B equation reaches zero
outside the EDL, while a positive non-dimensional po-
tential field of 0.0099 is observed by applying the
developed model. Similarly, Fig. 3b illustrates the dif-
ference between the traditional P-B and the developed
model for the ion distribution and net charge. A strong
positive net charge density occurs in the EDL and a non-
dimensional negative net charge density of —0.039 exists
outside the EDL when the new model is applied.

Due to the presence of the net charges outside the
EDL, when the electric potential is applied along the
channel length for electro-osmotic driven flow, the
negative net charges present in the region outside the
double layer are attracted to the anode while the positive
net charges within the EDL are drawn to the cathode, as
illustrated in Fig. 1. As a result, the traditional plug-like
electroosmotic velocity profile is distorted in the region

Fig. 2 Comparison between the
P-B theoretical model and the
developed model simulation
results for a non-dimensional
ionic concentration,

nix = n;/n?, and net charge,
n*g + —n*ci_, distribution for
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Fig. 3 Comparison of model predicted results between the P-B
theory and newly developed model for a 1 mM KCI solution in a
2 um diameter channel with —102 mV zeta potential. Shown are
enlarged views of (a) non-dimensional potential field, y*, and b
non-dimensional ion concentration, njx = n; /n?7 and net charge,
n¥g ¢ —n*c_

outside the EDL. Figure 4 shows the distorted flow field
predicted by the developed model for a 1 mM solution
in a 2 um diameter channel, where negative net charges
are present in the centre of the channel. The driving
force occurs in the EDL due to the net positive charges,
resulting in a non-dimensional velocity at the edge of the
EDL close to 1, observed for both the tradition P-B
model and the newly developed model here. Outside the
EDL, the excess negative ions cause a flow in a direction
opposite to that within the EDL that alters the velocity
profile and reduces the area-average velocity. The
amplitude of this reduction is dependent on the applied
electrical potential, the concentration of the electrolyte
solution, the valences of the electrolyte ions, and surface
properties. For the particular case studied here, the
developed model predicted a reduction of 3.5% in the
area-average velocity as compared to that predicted by
the traditional P-B model.
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Fig. 4 Comparison of model predicted non-dimensional velocity
field, u* =u/U,,, between the P-B theory and the developed model
for a 1 mM KCI solution in a 2 pm diameter channel with
—102 mV zeta potential

It was found that Poisson-Boltzmann theory can only
be applied to accurately predict fluid flow in channels
when the non-dimensional Debye length is small. For a
1 mM KCI solution in a 15 um diameter channel with a
—102 mV zeta potential, a small difference in the model-
predicted potential field and concentration field between
the P-B model and the developed model was observed.
For dimensions below this the developed model should
be applied to account for the ion distribution effects on
the velocity field. The negative net charge density is very
small outside the EDL for the 15 pm diameter channel
(—0.005 non-dimensional charge density in the centre of
the channel), and does not become a major factor until
the non-dimensional Debye length reaches 0.02. Figure 5
shows the area-averaged velocity as a function of the
non-dimensional Debye length predicted by the devel-
oped model. At non-dimensional Debye lengths above
0.02, the area—average velocity decreases significantly. A
19% decrease in area—average velocity is observed from a
non-dimensional Debye length of 0.025 to a length of
0.25. This indicates that the ion distribution has an
increasing effect on the velocity as the EDL thickness
increases relative to the channel diameter. It also implies
that the continuum mechanics might not be valid when
the channel diameter is smaller than 1 pm. However,
further validation of this statement requires extensive
theoretical and experimental investigations later. At low
non-dimensional Debye lengths, the average velocity
becomes stable as the EDL effects are reduced in signif-
icance. This trend agrees with the experimental results
reported by Pennathur and Santiago (2004). The simu-
lation predicted area-average velocity for the same non-
dimensional Debye length is higher than their experi-
mental results. This may be attributed to the use of an
ideal solution model instead of the buffer solution mix-
tures in the experiments. Buffer solutions normally have
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Fig. 5 Model prediction of area—averaged velocity as a function of
non-dimensional Debye length for a 1 mM KCL solution in
different channels with —102 mV zeta potential

multivalent ions, which are found to reduce the electro-
osmotic flow significantly (Zheng et al. 2003).

Increasing the non-dimensional Debye length can be
achieved by decreasing the channel diameter while
holding the solution concentration constant or by
reducing the ionic concentration for a given channel
diameter. Figure 6 displays the velocity field for the
latter of the two methods for 1 mM, 5 mM, and 10 mM
KCl solutions in a 100-nm channel diameter. The higher
concentrations, with a lower zeta potential, attract less
positive ions to the wall and therefore have a reduced
number of negative net charges in the channel centre.
This results in a velocity profile closer to that predicted
by the P-B theory. A 4% decrease in area-averaged
velocity is observed from the 10 mM KCl solution to the
1 mM solution.
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Fig. 6 Model predicted non-dimensional velocity field for 1 mM,
5 mM, 10 mM KCI solutions in a 100-nm diameter channel. The
corresponding zeta potentials are —102-mV, —78-mV, and —68-mV
(Mc Donald et al. 2000)

4 Summary

The Boltzmann distribution is not valid for ionic con-
centration distribution of electrolyte solutions in a
nanofluidic channel, where the double layer extends a
significant distance into the channel. The Nernst equa-
tion for ionic distribution in nanometer scale cylindrical
channels was applied in the developed model to deter-
mine the effects of excess negative ions outside the EDL
layer on the velocity field of electroosmotic driven flow.
Significant reductions in area-average velocity were ob-
served at high non-dimensional Debye lengths (above
0.02). The velocity field for small channels differed from
the conventional Poisson-Boltzmann theory with a re-
duced velocity profile in the centre of the channel. The
area—average velocity reaches a steady value as the De-
bye length decreases and the EDL effects become less
significant.
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