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Abstract The eccentric electrophoretic motion of a
spherical particle in an aqueous electrolyte solution in
circular cylindrical microchannels is studied in this pa-
per. The objective is to investigate the influences of
separation distance and channel size on particle motion.
A theoretical model is developed to describe the electric
field, the flow field and the particle motion. A finite
element based direct numerical simulation method is
employed to solve the model. Numerical results show
that, when the particle is eccentrically positioned in the
channel, the electric field and the flow field are not
symmetric, and the strongest electric field and the
highest flow velocity occur in the small gap region. It is
shown that the rotational velocity of the particle in-
creases with the decrease of the separation distance.
With the decrease of the separation distance, the trans-
lational velocity increases in a smaller channel; while it
decreases first and then increases in a relatively large
channel. When a particle moves eccentrically at a
smaller separation distance from the channel wall, both
the translational velocity and the rotational velocity in-
crease with the decrease of the channel size.

Keywords Electrophoresis Æ Particle Æ Eccentric
motion Æ Microchannel

1 Introduction

Electrophoresis is one of the most important electroki-
netic phenomena, and it has various applications in
colloidal and biomedical sciences. Electrophoretic mo-
tion of rigid particles in unbounded electrolyte solutions

has been investigated extensively, and mathematical
models have been developed to describe this phenome-
non in detail. Reviews of electrophoresis can be found in
books by Hunter (1981), Lyklema (1991) and Van de
Ven (1998). However, with the emergence of microflui-
dic devices, the study of boundary effects on the elec-
trophoretic motion of particles becomes more and more
important. Recent publications on the boundary effects
can be classified into two categories: thick electrical
double layers (Zydney 1995; Ennis and Anderson 1997;
Shugai and Carnie 1999) and thin electrical double lay-
ers (Keh and Anderson 1985; Keh and Chen 1988; Keh
and Lien 1991; Ye et al. 2002, 2004; Yariv and Brenner
2003a, b).

In most practical applications, the ionic concentra-
tion of the buffer solution is high so that the electrical
double layer thickness is of the order of nanometers
(Stone and Kim 2001). Under the thin electrical double
layer consideration, Keh and Anderson (1985) studied a
spherical particle moving in the middle of a cylindrical
pore using the reflection method; their results are accu-
rate for the separation distance larger than half of the
spherical particle radius. Yariv and Brenner (2003a, b)
studied a spherical particle eccentrically moving in a
cylindrical pore using the reciprocal theorem; their re-
sults are restricted to a closely fitted spherical particle in
a cylindrical pore.

In practical applications, particles often move in mi-
crochannels whose sizes may be very close to the parti-
cle’s size or several times larger than the particle size.
Furthermore, particles move eccentrically in a micro-
channel when there is a density difference between the
particle and the solution. It is very important to inves-
tigate the influences of the separation distance and
channel size on the particle electrophoretic motion.

This paper considers a spherical particle moving
eccentrically in circular cylindrical microchannels. The
objective is to investigate the influence of the separation
distance on the particle motion with a constant channel
size, and the influence of the channel size on the particle
motion when the separation distance is the same. In the
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following sections, first, a theoretical model governing
the electric field, flow field and particle motion is intro-
duced; secondly, a direct numerical simulation method
to solve the theoretical model is described; and finally,
the numerical results are presented and discussed.

2 Methodology

2.1 Definition of the problem and assumptions

Electrophoretic motion of a spherical particle in a cir-
cular cylindrical microchannel filled with an aqueous
electrolyte solution is considered. When the density of
the particle is larger than that of the solution, the par-
ticle will settle down to the channel wall by the gravi-
tational force. Eventually, the particle reaches an
eccentric position with a small separation distance from
the channel wall, where the gravitational force will be
balanced by the buoyancy force, the electrical double
layer interaction force and the van der Waals force.
Thereafter, under the applied electrical field along the
channel length direction, the particle moves steadily in
the horizontal direction along the channel. Different
densities and sizes of particles will result in different
separation distance between the particle and the channel
wall (the eccentric position), which can be determined by
the force balance on the particle in the vertical direction
(Ye and Li 2002). The main focus of this paper is to
compute the steady-state eccentric electrophoretic mo-
tion of the spherical particle in microchannels in the
horizontal direction under the applied electric field. The

schematic diagram of the particle-channel system is
shown in Fig. 1a, where the channel is positioned hori-
zontally, with x in the horizontal direction and y in the
vertical direction. The two ends (i.e., the inlet and the
outlet) of the channel are connected to two reservoirs
containing electrodes and the electrolyte solution. The
two reservoirs are open to the atmosphere, i.e., there is
no overall pressure gradient along the microchannel.
Electrical potentials can be applied via the electrodes.
Both the spherical particle surface and the microchannel
surface carry uniform negative charges that are charac-
terized by their respective zeta potentials: fp and fw. To
further simplify the analysis, four assumptions have
been made:

1. The particle and the channel wall are rigid and non-
conducting.

2. The aqueous electrolyte solution is Newtonian and
incompressible, and the flow is a Stokes flow.

3. The electrical double layers are thin.
4. The Brownian effects are negligible.

2.2 Theoretical model

Under the assumption of the thin electrical double lay-
ers, we divide the liquid phase into two regions: an inner
region that is defined as the electrical double layers
adjacent to the particle and the channel wall and an
outer region that is defined as the remainder of the li-
quid. For the inner region, the characteristic length scale
is the Debye length, j�1. The electroosmotic flow
velocity is used to describe the flow in the inner regions
adjacent to the particles and the channel wall (Keh and
Anderson 1985). In the outer region, as shown in
Fig. 1b, W denotes the domain of the outer region, Gw

denotes the outer edge of the electrical double layer
adjacent to the channel wall, Gp denotes the outer edge
of the electrical double layer adjacent to the particle, and
Gin and Gout denote the inlet and the outlet of the
channel respectively. The model governing the distribu-
tion of electric potential and the flow field in the outer
region and the particle motion are described in the fol-
lowing sections.

2.2.1 Distribution of the electric potential

In the outer region, since the local net charge density is
zero, the distribution of the electric potential is governed
by

r2w ¼ 0 in X ð1Þ

with the following boundary conditions:

n � rw ¼ 0 on Cw [ Cp ð2Þ

w ¼ / on Cin; w ¼ 0 on Cout ð3Þ

where w is the applied electric potential and n is the unit
normal vector pointing into the liquid phase.

Fig. 1 The schematic diagrams of a the particle-channel system, b
the outer region, and c the x–y plane sliced in the A–A direction
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2.2.2 Flow Field

Under the assumption of thin electrical double layers,
the electroosmotic flow velocities are employed to de-
scribe the flow in the inner regions adjacent to the par-
ticles and the channel wall. In the outer region, since the
local net charge density is zero, no electrostatic force
acts on the liquid. The steady-state liquid flow in the
outer region is governed by

r � v ¼ 0 in X ð4Þ

gr2vþrp ¼ 0 in X ð5Þ

where v is the liquid flow velocity vector, g is the vis-
cosity of the electrolyte solution, and p is the pressure in
the outer region.

Under an applied electric field, a charged particle will
be driven to move by the electrostatic force, while the
bulk liquid will undergo an electroosmotic flow due to
the presence of the electrical double layers near the
channel wall and the spherical particle. For the liquid
flow, the channel wall is a fixed boundary, while the
particle surface is a moving boundary. In addition to the
particle’s absolute velocity, the liquid immediately next
to the particle surface also experiences an electroosmotic
flow (flow slip at the particle surface) due to the presence
of the electrical double layer around the charged parti-
cle. Therefore, the liquid flow boundary condition at the
particle surface is the sum of the particle’s velocity and
the liquid electroosmotic flow velocity. Here, the elec-
troosmotic flow velocities at the particle surface and at
the channel wall surface are named as the slipping flow
boundary velocities. Therefore, the slipping flow
boundary conditions for flow field in the outer region are

v ¼ ee0fw
g
ðI� nnÞ � rw on Cw ð6Þ

v¼Vpþxp�ðxp�XpÞþ
ee0fp

g
ðI�nnÞ �rw onCp ð7Þ

where e is the dielectric constant of the electrolyte
solution, e0 is the permittivity of vacuum, I is the unit
dyadic, Vp;xp;xp;Xp and fp are, respectively, the
translational velocity of the particle, the angular velocity
of the particle, the position vector on the particle sur-
face, the position vector of the particle center and the
zeta potential of the particle. Equation 6 is the slipping
flow boundary condition at the channel wall, and Eq. 7
is the flow boundary condition on the particle surface. In
Eq. 7, the first term is the particle’s translational veloc-
ity, the second term represents the particle’s angular
velocity, and the last term is the electroosmotic velocity
of the liquid around the particle.

2.2.3 Particle motion

Generally, Newton’s second law governs the particle
motion. For steady-state particle motion, the net force

acting on the particle equals zero. In cases considered
here, the forces responsible for the particle’s motion
along the channel are the electrostatic force, FE, and the
hydrodynamic force, Fh. At steady-state, we have

FE þ Fh ¼ 0 ð8Þ

The hydrodynamic force can be divided into two com-
ponents:

Fh ¼ Fho þ Fhin ð9Þ

where Fhin is the hydrodynamic force acting on the
particle surface by the electroosmotic flow in the inner
region, and Fho is the hydrodynamic force acting on the
particle surface by the flow field originated in the outer
region.

In this model, we assume that the electrical double
layers are so thin that the Debye length can be neglected
in comparison with the size of the particle (1–30 lm)
and the size of the channel (20–100 lm). For example, in
a solution with a high electrolyte concentration such as
10�2 M, the Debye length is approximately 3 nm. Thus,
we do not consider the detailed flow field in the inner
region, and simply replace the flow field in the inner
region by the electroosmotic velocity as a slipping flow
boundary condition for the flow field in the outer region.
In this way the flow field around the particle is the flow
field which originated in the outer region and is subject
to the slipping flow boundary condition at the particle
surface. It can be shown that FE and Fhin have the same
value but operate in the opposite directions; therefore,
the net force acting on the particle becomes:

Fho ¼ 0 ð10Þ

Similarly, the torque on the particle equals zero:

Th ¼ 0 ð11Þ

where Th is the torque on the particle caused by the flow
field in the outer region.

The hydrodynamic force and the torque are given by

Fho ¼
Z

r � n dCp ð12Þ

Th ¼
Z
ðxp � XpÞ � ðr � nÞdCp ð13Þ

where r is the stress tensor that is given by

r ¼ �pIþ g½rvþ ðrvÞT� ð14Þ

In order to non-dimensionalize the equations, we
chose l=a (a is the radius of the particle) as a charac-
teristic length, the electric potential, / ¼ wjCin

as a
characteristic electric potential, and U=(e e0/g)fw (//l)
as a characteristic velocity. Letting x = lx*, v = Uv*,
p = (gU/l)p* and w = / w*, we can derive the fol-
lowing dimensionless governing equations:

r�2w� ¼ 0 in X ð15Þ
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r� � v� ¼ 0 in X ð16Þ

r�2v� þ r�p� ¼ 0 in X ð17Þ

The dimensionless boundary conditions become

n � r�w� ¼ 0 on Cw [ Cp ð18Þ

w� ¼ 1:0 on Cin; w� ¼ 0 on Cout ð19Þ

v� ¼ ðI� nnÞ � r�w� on Cw ð20Þ

v� ¼V�pþx�p�ðx�p�X�pÞþcðI�nnÞ �r�w� onCp ð21Þ

where c is the ratio of the zeta potential of the particle to
that of the channel.

Defining Fho=gUlFho
* , Th=gU l2 Th

* and r=(gU/l)r*

where F�ho ¼
R

r� � n dC�p; T
�
h ¼

R
ðx�p � x�pÞ� ðr� � nÞ dC�p

and r*=� p* I+[�* v*+(�* v*)T ], we can write the
dimensionless governing equations for the particle mo-
tion as follows:

F�ho ¼ 0 ð22Þ

T�h ¼ 0 ð23Þ

The quantities with a star in the above equations are
dimensionless variables.

3 Numerical method

To solve the above system of equations, a finite element
based direct numerical simulation method is preferable
since it evaluates the hydrodynamic interactions with
no averaging or approximation. We employed a gen-
eralized Galerkin finite element method (Hu 1996;
Glowinski et al. 1999), which incorporates both equa-
tions of the fluid flow and equations of the particle
motion into a single variational equation where
hydrodynamic interactions are eliminated and explicit
calculation of the hydrodynamic interactions is not re-
quired. We use GAMBIT (a mesh generator developed
by Fluent Inc.) to generate unstructured tetrahedral
meshes. A program based on Taylor-Hood tetrahedral
elements (Johnson 1987; Zienkiewicz and Taylor 2000)
has been developed to solve the above set of dimen-
sionless equations.

To verify our numerical simulation programs, we
considered a test case: a non-conducting spherical
particle carrying uniform surface charge is freely sus-
pended in the center of a large circular cylindrical
channel. An external electric field is applied along the
axis of the channel. The channel wall carries no sur-
face charge and the radius of the channel b is 30 times
larger than the radius of the particle, a. Therefore, the
channel wall has a negligible boundary effect on the
particle motion. Furthermore, we assume that the
electrical double layer surrounding the particle is very

thin, i.e., j a fi ¥, and that the double layer is not
affected by the applied electric field. The conditions of
this test case match that of Henry’s solution for the
electrophoresis of a spherical particle in unbounded
solution. For j a fi ¥, according to Henry’s for-
mula, the electrophoretic velocity of the particle is
given by:

Uh ¼
ee0
l

fpEx ð24Þ

where Ex is the electric field in the x direction. Using Uh

as a characteristic velocity, the calculated dimensionless
velocity for the spherical particle in the large channel
based on our code is Vp

*=Vp/Uh=0.9988664. The dis-
crepancy between our calculated result and Henry’s
solution is approximately 0.113%.

Furthermore, we use our numerical simulation pro-
gram to test Keh’s solution. Keh and Anderson (1985)
considered the electrophoretic motion of a rigid spheri-
cal particle with radius a along the axis of a circular
cylindrical pore of radius b. Considering a thin electrical
double layer, they derived the following approximate
solution by a method of reflections:

Uk ¼ 1� 1:28987
a
b

� �3
þ1:89632 a

b

� �5
�1:02780 a

b

� �6�

þO a
b

� �8� ��
ee0
l
ðfp � fwÞEz~ez ð25Þ

where Uk is the velocity of the spherical particle. From
the above equation, the following dimensionless particle
velocity can be derived:

U�k ¼
Uk

Uh
¼ 1� 1:28987

a
b

� �3
þ1:89632 a

b

� �5�

�1:02780 a
b

� �6
þO a

b

� �8� ��
ð1� cÞ ð26Þ

We found that the discrepancy between our numerical
solution results and Keh’s solution is less than 1.0%
when a/b is within the range from 1/4 to 1/30.

However, numerical simulation has its own limita-
tion, i.e., it could not carry out the computation in the
case where the separation distance between the particle
and the channel is too small (e.g., d<50 nm). This is
because both the electric field and the flow field change
dramatically in the small gap region so that very fine
elements are required to compute the electric field and
the flow field with reasonable accuracy. The use of very
fine elements introduces at least two concerns: (1) ele-
ments which are too small will complicate numerical
computation significantly and decrease computation
accuracy; and (2) there exists a limit for the finest size of
the elements in order to guarantee that the continuum
and Stokes equations remain valid in each element. In
this study, we consider the particle-channel systems with
a separation distance no smaller than 50 nm.
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4 Results and discussion

In the system studied here, the electric field (i.e., the
gradient of the electric potential) is the driving force for
both the particle motion and the flow field in the chan-
nel. Since the size of the channel is comparable to the
particle size, the boundary effects on the particle motion
are significant. In the numerical computation, we con-
sider a spherical particle with a radius of a = 5.25 lm
and zeta potential of fp=� 30 mV, and circular cylin-
drical microchannels with diameters of 16, 20, 30, 50 and
100 lm and a zeta potential of fw=� 50 mV.

4.1 Electric field and flow field

When a spherical particle moves along the axis of a
circular cylindrical microchannel, the geometric config-
uration of the system is axisymmetric. However, when a
particle moves eccentrically in a circular cylindrical mi-
crochannel, the geometric configuration of this system is
not symmetric in the vertical direction. Since both the
channel wall and particle surface provide non-conduct-
ing boundary conditions to the electric field, the influ-
ence of the geometric configuration on the electric field
should be significant. Figure 2 shows the electric field
near the particle on the x–y plane (see Fig. 1c), where
the lines with arrows denote the direction of the electric
field and the grey levels denote the relative magnitude of
the electric field. The darker area represents the weaker
electric field and the lighter area represents the stronger
electric field. As seen in Fig. 2, the electric field sur-
rounding the particle is not symmetric in the vertical
direction and the electric field is squeezed in the small
gap region between the particle and channel wall. The
electric field in the small gap is very strong.

Consequently, the geometric configuration and the
electric field have a significant influence on the flow field.
Figure 3 shows the flow field near the spherical particle

on the x–y plane, where the lines with arrows denote the
streamlines and the grey contours denote the magnitude
of the flow velocity. The flow velocity (v¢) in Fig. 3 is the
calculated liquid flow velocity subtracting the calculated
particle translational velocity, i.e., v¢=v � Vp. The
darker area represents the lower flow velocity region and
the lighter area represents the higher flow velocity re-
gion. It can be seen that the flow field surrounding the
spherical particle is not symmetric in the vertical direc-
tion, and that the flow velocity is very high in the small
gap region between the spherical particle and the chan-
nel wall.

4.2 Particle motion

The influences of separation distance and channel size
on particle motion are considered in the following ways:
(1) changing the separation distance while the channel
size is kept constant; and (2) changing the channel size at
a fixed separation distance.

4.2.1 Influence of the separation distance

To capture the influence of the separation distance on
the particle motion, a 20 lm (diameter) channel and a
50 lm (diameter) channel are considered. Figure 4
shows the influence of the separation distance on the
particle motion in the 20 lm channel. The particle’s
radius is 5.25 lm in this case. It can be seen that, with
the decrease of the separation distance, both the trans-
lational velocity and the rotational velocity of the
spherical particle increase. The rotational velocity in-
creases at a much faster rate than the translational
velocity. Within the smaller separation distance range,
i.e., d < 1.75 lm, both the translational velocity and the
rotational velocity increase dramatically with the de-
crease of the separation distance. At the separation
distance d = 4.75 lm, the spherical particle is located in
the middle of the channel, and the electric field and the
flow field surrounding the spherical particle is symmetric

Fig. 2 The electric field surrounding a spherical particle
(a=5.25 lm) in a 20 lm channel on the x–y plane with a
separation distance of 0.75 lm. The lines with arrows denote the
direction of the electric field and the grey levels denote the
magnitude of the electric field

Fig. 3 The flow field surrounding a spherical particle (a=5.25 lm)
in a 20 lm channel on the x-y plane with a separation distance of
0.75 lm. The lines with arrows denote the streamlines and the grey
levels denote the magnitude of the flow velocity

238



in the vertical direction, and therefore the rotational
velocity is negligible.

Figure 5 shows the influence of the separation dis-
tance on the particle motion in a 50 lm channel. The
particle size is the same as in Fig. 4. Compared with
Fig. 4, the influence of the separation distance on the
rotational velocity in the 50 lm channel shares a similar
trend as that in the 20 lm channel, but the influence on
the translational velocity in the 50 lm channel has a
different trend from that in the 20 lm channel. In Fig. 5,
at the separation distance d=19.75 lm, the sphere is
located in the middle of the channel. With a decrease of
the separation distance, the translational velocity de-
creases slowly within the relatively large separation
distance range, i.e., d > 2.75 lm and then increases
dramatically within the relatively small separation dis-
tance range, i.e., d < 2.75 lm. A similar trend was re-
ported for a sphere moving parallel to a plane by Keh
and Chen (1988). In addition, by comparing Fig. 5 with
Fig. 4, it can be seen that the rotational velocity in-

creases at a faster rate with a decrease of the separation
distance in the 20 lm channel than that in the 50 lm
channel.

The trend that the particle electrophoretic velocity
increases with a decrease of the separation distance can
be understood as follows. The presence of the non-
conducting channel wall gives rise to two competing
effects on the electrophoretic velocity: (1) the electric
field surrounding the particle is ‘‘concentrated’’ by the
wall in the gap region (see Figure 2b), which tends to
enhance the particle motion; and (2) the viscous retar-
dation to the liquid flow is enhanced by the wall, which
tends to slow down the particle motion. For a particle
moving in a relatively large channel with a relatively
large separation distance, the second effect is stronger.
For a particle moving in a relatively smaller channel or
in a relatively large channel with a smaller separation
distance, the first effect becomes dominant.

Figure 6 illustrates the spherical particle motion
(translation plus rotation) in a 20-lm channel at a 0.75-
lm separation distance in 6 s, where a small circular
point on the particle is a marker used to illustrate the
particle rotation. The trend of the rotational velocity of
the particle increasing with the decrease of the separa-
tion distance was also reported in other papers (Yariv
and Brenner 2003a, b) when the particle is close to
making contact with the channel wall.

4.2.2 Influence of the channel size

To study the influence of channel size on particle mo-
tion, five channels with diameters of 16, 20, 30, 50 and
100 lm are considered, and a fixed separation distance is

Fig. 4 Influence of the separation distance on the translational
velocity and rotational velocity of the spherical particle
(a=5.25 lm) in a 20-lm channel with fp=� 30mV and fw=�
50 mV

Fig. 5 Influence of the separation distance on the translational
velocity and rotational velocity of the spherical particle
(a=5.25 lm) in a 50-lm channel with fp=� 30 mV and fw=�
50 mV

Fig. 6 The translational and rotational motion of a spherical
particle (a=5.25 lm) motion in a 20-lm channel at a 0.75-lm
separation distance in 6 s, where a small circular point on the
spherical particle is a marker used to illustrate the rotational
motion
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chosen as 50 nm. The particle radius is 5.25 lm.
Figure 7 shows the influence of the channel size on the
particle motion at a 50 nm separation distance. It can be
seen that both the translational velocity and rotational
velocity increase with the decrease of the channel size.
Comparing the particle velocities between the 100 and
20 lm channels, it can be found that the translational
velocity increases by about 12%, and that the rota-
tional velocity increases by 87%. Therefore, the
rotational velocity is much more dependent on channel
size at the same separation distance.

In addition, the influence of the channel size on the
particle translational velocities are compared for the
following two cases: a spherical particle of 5.25 lm ra-
dius which moves: (1) at a 50 nm separation distance in
the channels, and (2) along the axis of the channels. As
seen in Fig. 8, the two curves show different trends: the
particle translational velocity increases with the decrease
of channel size at a 50 nm separation distance, while the
particle translational velocity along the axis of the
channel decreases with the decrease of channel size. As
discussed above, the two effects by the presence of a

non-conducting channel wall, one enhancing the particle
motion and the other slowing down the particle motion,
are competing with each other when a particle moves in
a microchannel. These two effects are responsible for the
behaviors shown in Fig. 8.

4.3 Conclusions

This paper considered the eccentric electrophoretic
motion of a spherical particle in circular cylindrical
microchannels. When the particle is eccentrically posi-
tioned in the channel, the electric field and the flow field
are not symmetric; in fact, the strongest electric field and
the highest flow velocity occur in the small gap region
between the particle and the channel wall. Numerical
results show that the rotational velocity of the spherical
particle increases with the decrease of separation dis-
tance when the particle moves eccentrically in circular
cylindrical channels. The translational velocity of the
particle increases with the decrease of separation dis-
tance in a smaller channel. In a relatively large channel,
the translational velocity decreases slightly with the de-
crease of separation distance when the separation dis-
tance is relatively large, and the translational velocity
increases with the decrease of the separation distance
when the separation distance is relatively small. For the
eccentric particle motion, both the translational and
rotational velocities increase with the decrease of chan-
nel size at smaller separation distances. This is an
opposite trend to the case of a particle moving along the
axis of the channels, where the translation velocity de-
creases as the channel size decreases.
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