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Abstract The main theoretical and experimental results
from the literature about steady pressure-driven gas
microflows are summarized. Among the different gas
flow regimes in microchannels, the slip flow regime is the
most frequently encountered. For this reason, the slip
flow regime is particularly detailed and the question of
appropriate choice of boundary conditions is discussed.
It is shown that using second-order boundary conditions
allows us to extend the applicability of the slip flow
regime to higher Knudsen numbers that are usually
relevant to the transition regime.

The review of pulsed flows is also presented, as this
kind of flow is frequently encountered in micropumps.
The influence of slip on the frequency behavior (pressure
gain and phase) of microchannels is illustrated. When
subjected to sinusoidal pressure fluctuations, microdif-
fusers reveal a diode effect which depends on the fre-
quency. This diode effect may be reversed when the
depth is shrunk from a few hundred to a few lm.

Thermally driven flows in microchannels are also
described. They are particularly interesting for vacuum
generation using microsystems without moving parts.

Keywords Microfluidics Æ Gas microflow Æ
Rarefaction Æ Microchannel

Nomenclature

a Aspect ratio, h/b (dimensionless)
ai Widths of microdiffusers (m)
Ai Coefficients for second-order slip flow models

(dimensionless)
b Width (m)
c Mean-square molecular speed (m s�1)

d Molecular diameter (m)
E Diode efficiency (dimensionless)
Eck Eckert number (dimensionless)
h Microchannel depth (m)
k Boltzmann constant (J K�1)
Kn Knudsen number, k/2h (dimensionless)
L Characteristic length of the studied volume (m)
Li Lengths of diffusers parts (m)
l Microchannel length (m)
lSV Characteristic length of a sampling volume (m)
m Mass of a molecule (kg)
Ma Mach number (dimensionless)
n Number density (m�3)
_N Molecular flux (s�1)
P Pressure (Pa)
p Fluctuating pressure (Pa)
P* Pressure gain (dimensionless)
p* Fluctuating pressure gain (dimensionless)
Pra Prandtl number (dimensionless)
q Mass flow rate (kg s-1)
q* Reduced mass flow rate, q/qNS0 (dimensionless)

r Specific gas constant (J mol�1 K�1)
Re Reynolds number (dimensionless)
Sc Schmidt number (dimensionless)
T Temperature (K)
U Tangential velocity (m s�1)
P Inlet over outlet pressure ratio, Pi/Po (dimen-

sionless)

Greek letters

a Diffuser angle (rad)
d Mean molecular spacing (m)
u Phase (rad)
c Ratio of specific heats (dimensionless)
k Mean free path (m)

q Density (m3s�1)
r Tangential momentum accommodation coefficient

(dimensionless)
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rT Thermal accommodation coefficient (dimension-
less)

s Characteristic time of intermolecular collisions (s)

Subscripts

i Inlet
n Normal direction
NS0 Navier-Stokes model with no-slip boundary

conditions
NS1 Navier-Stokes model with first-order slip flow

boundary conditions
NS2 Navier-Stokes model with second order slip

flow boundary conditions
QHD1 Quasihydrodynamic model with first-order slip

flow boundary conditions
o Outlet
t Tangential direction
w Wall

1 General properties of gas microflows

In microfluidics, knowledge for gas flows is currently
more advanced than that for liquid flows. Concerning
the gases, the issues are actually more clearly identified:
the main microeffect that results from shrinking
down the devices size is rarefaction. This allows us to
exploit the strong—although incomplete—analogy be-
tween microflows and low pressure flows, extensively
studied for more than fifty years, particularly for aero-
space applications.

1.1 Scale effects and rarefaction

Modeling gas microflows requires us to take into ac-
count several characteristic length scales. At the molec-
ular level, we may consider the mean molecular
diameter, d, the mean molecular spacing, d, and the
mean free path, k.

Gases that satisfy:

d
d
� 1 ð1Þ

are said to be dilute gases. In this case, most of the in-
termolecular interactions are binary collisions. Con-
versely, if Eq. 1 is not verified, the gas is said to be a
dense gas. The dilute gas approximation, along with the
equipartition of energy principle, leads to the classic
kinetic theory and the Boltzmann transport equation.
For a simple gas, composed of identical molecules con-
sidered as hard spheres at thermodynamic equilibrium,
the mean free path,

k ¼ 1
ffiffiffi

2
p

pd2n
ð2Þ

depends on the diameter, d, and the number density
n=d�3 (Bird 1998).

The continuum assumption, when applicable, is very
convenient since it erases the molecular discontinuities
by averaging the microscopic quantities on a small
sampling volume. The continuum approach requires the
sampling volume to be in thermodynamic equilibrium.
Consequently, the characteristic times of the flow have
to be large compared with the characteristic time,

s ¼ k
c

ð3Þ

of intermolecular collisions, defined from the mean-
square molecular speed:

c ¼
ffiffiffiffiffiffiffiffi

3rT
p

ð4Þ

where r is the specific gas constant and T is the tem-
perature. For the thermodynamic equilibrium to be
respected, the number of collisions inside the sampling
volume must also be high enough. It implies that the
mean free path must be small compared with the char-
acteristic length, lSV, of the sampling volume, itself being
small compared with the characteristic length L of the
studied volume. As a consequence, the thermodynamic
equilibrium requires that the Knudsen number satisfy:

Kn ¼ k
L
� 1 ð5Þ

Moreover, the Knudsen number, which characterizes
the rarefaction of the flow, is related to the Reynolds
number, Re, and the Mach number, Ma, by:

Kn ¼
ffiffiffiffiffi

cp
2

r

Ma
Re

ð6Þ

Equation 6 shows the link between rarefaction and
compressibility effects, the latter having to be taken into
account if Ma>0.2. Finally, the microscopic fluctua-
tions should not generate significant statistical fluctua-
tions of the averaged quantities. It may be considered
that sampling a volume that contains 10,000 molecules
leads to 1% statistical fluctuations in these quantities.
Such a fluctuation level needs a sampling volume such
that its characteristic length verifies lSV/d=104/3�22.
Consequently, the control volume must have a much
higher characteristic length, i.e.,

L
d
� 104=3 ð7Þ

so that the flow could be precisely modeled with a
continuum approach. As an example, for air in
standard conditions (i.e., for T=273.15 K and
P=1.013 · 105 Pa), d=0.37 nm, d=3.3 nm, k=65 nm,
n=2.7 · 1025 m–3, s=1.34 · 10–10 s, and lSV=72 nm is
close to the value of the mean free path, k.

1.2 Flow regimes classification

The limits that correspond to Eqs. 1, 5, and 7, with the
indicative values (d/d=7, L/d=100, and k/L=0,1)
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proposed by Bird (1998), are shown in Fig. 1. It is clear
that the similitude between low pressure and confined
flows is not complete, since the Knudsen number is not
the only parameter to take into account.

However, it is convenient to differentiate the flow
regimes as a function of Kn, and the following classifi-
cation, although tinged with empiricism, is usually
accepted:

1. For Kn<10�3, the flow is a continuum flow (C) and it
is accurately modeled by the Navier-Stokes equations
with classical no-slip boundary conditions

2. For 10�3<Kn<10�1, the flow is a slip flow (S) and
the Navier-Stokes equations remain applicable, pro-
vided a velocity slip and a temperature jump are
taken into account at the walls

3. For 10�1<Kn<10, the regime is a transition regime
(T) and the continuum approach of the Navier-
Stokes equations is no longer valid. However, the
intermolecular collisions are not yet negligible and
should be taken into account

4. For Kn>10, the regime is a free molecular regime (M)
and the occurrence of intermolecular collisions is
negligible compared with the one of collisions
between the gas molecules and the walls

The limits of these different regimes are only indica-
tive and could vary from one case to another, partly
because the choice of the characteristic length, L, is
rarely unique. In complex geometrical configurations, it
is generally preferable to define L from local gradients
(for example, the density q : L ¼ 1= rq=qj j) rather than
from simple geometrical considerations (Gad-el-Hak
1999); the Knudsen number based on this characteristic
length is the so-called local rarefaction number (Len-
grand and Elizarova 2004). Figure 1 locates these dif-
ferent regimes for air in standard conditions, considered
as a dilute gas, along a gray vertical line.

The relationship with the characteristic length, L,
expressed in lm is illustrated in Fig. 2, which shows the
typical ranges covered by fluidic microsystems presented
in the literature. Typically, most of the microsystems
which use gases work in the slip flow regime, or in the
early transition regime. In simple configurations, such
flows can be analytically or semi-analytically modeled.
The core of the transition regime relates to more specific
flows that involve lengths under one hundred lm, as in
the case of hard disk drives. In that regime, the only
theoretical models are molecular models that require
numerical simulations. Finally, under the effect of both
low pressures and small dimensions, more rarefied
regimes can occur, notably, inside microsystems dedi-
cated to vacuum generation.

2 Pressure-driven steady microflows

2.1 Slip flow regime—analytical models and experiments

Due to its great occurrence in gas microsystems, the slip
flow regime has been widely studied, since it leads to
quite simple models which further the optimization of
these microsystems. The first boundary condition:

Fig. 2 Characteristic lengths of typical fluidic microsystems, with
the range of Knudsen number corresponding to standard condi-
tions (Karniadakis and Beskok 2002)

Fig. 1 Limits of the main approximations for the modeling of gas
microflows (Bird 1998)
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Ut � Uw ¼
2� r

r
Kn

@Ut

@n
þ 3

2p
c� 1

c
Kn2Re

Eck
@T
@t

ð8Þ

which expressed a slip of velocity at the wall, was pro-
posed by Maxwell (1879), and that which expressed a
jump of temperature:

T � Tw ¼
2� rT

rT

2c
cþ 1

Kn
Pra

@T
@n

ð9Þ

was proposed by Smoluchowski (1898). They are written
above in a non-dimensional form. The subscript w re-
lates to the wall and the subscripts t and n to the tan-
gential and normal (exiting the wall) directions,
respectively. In the gas, at the contact point with the
wall, the tangential velocity is denoted as Ut and the
temperature as T. The ratio of the specific heats is
denoted as c. The Reynolds Re, the Prandtl Pra, and the
Eckert Eck numbers play a role if the flow is not
isothermal. Actually, there are only three independent
non-dimensional parameters (Pra, Re, and Kn), since

Eck ¼ c� 1ð Þ T0

DT
Ma2 ð10Þ

and

Kn ¼
ffiffiffiffiffi

cp
2

r

Ma
Re

ð11Þ

The tangential momentum and thermal accommo-
dation coefficients, r and rT, respectively, account for
the interactions of the gaseous molecules with the wall.
Their precise determination remains problematic, be-
cause it depends on the nature of the gas and the wall, as
well as on the state of the surface. A purely specular
reflection corresponds to r=0, whereas a totally diffuse
reflection corresponds to r=1. Likewise, after a colli-
sion with the wall, a molecule acquires the temperature
of the wall if rT=1 and keeps its own initial temperature
if rT=0.

The second term in Eq. 8 is responsible for the ther-
mal creep (or transpiration) effect, which can cause a
pressure variation and, consequently, the fluid motion
(from cold to hot temperatures) in the sole initial pres-
ence of tangential temperature gradients. In the absence
of this wall tangential gradient (@T=@t ¼ 0), the
boundary conditions in Eqs. 8 and 9 are called first-or-
der (i.e., # Knð Þ) boundary conditions; the velocity slip
(respectively, the temperature jump) is then proportional
to the transverse velocity (respectively, the temperature)
gradient and to the Knudsen number, Kn.

From a theoretical point of view, the slip flow regime
is particularly interesting because it generally leads to
analytical or semi-analytical models. These analytical
models allow us to calculate velocities and flow rates for
isothermal and locally fully developed flows between
plane plates or in cylindrical ducts with simple sections:
circular (Kennard 1938), annular (Ebert and Sparrow
1965), rectangular (Ebert and Sparrow 1965; Morini and
Spiga 1998), etc. These models proved to be quite precise

for moderate Knudsen numbers, typically, up to about
0.1 (Harley et al. 1995; Liu et al. 1995; Shih et al. 1996;
Arkilic et al. 2001).

For Kn>0.1, experimental studies (Sreekanth1969)
or numerical studies (Piekos and Breuer1996) with the
direct simulation Monte Carlo (DSMC) method show
significant deviations with models based on first-order
boundary conditions. Since 1947, several authors have
proposed second-order boundary conditions, hoping to
extend the validity of the slip flow regime to higher
Knudsen numbers. Second-order boundary conditions
take more or less complicated forms, which are difficult
to group together in a sole equation. Actually, according
to the assumptions, the second-order terms (# Kn2

� �

)
may be dependent on r (Chapman and Cowling 1952;
Karniadakis and Beskok 2002) and may involve tan-
gential second derivatives @2U

�

@t2 ¼ 0 (Deissler 1964).
In the simple case of a developed flow between plane
plates, the tangential second derivatives are zero, and
one may compare most of the second-order models
which take the generic form:

Ut � Uw ¼ A1Kn
@Ut

@n
þ A2Kn2

@2Ut

@n2
ð12Þ

In the particular case of a fully diffuse reflection
(r=1), the coefficients A1 and A2 proposed in the liter-
ature are compared in Table 1.

We note significant differences, essentially for the
second-order term. Moreover, some models based on a
simple mathematical extension of Maxwell’s condition
predict a decrease of the slip compared to the first-order
model, while other models predict an increase of the slip.

The latter, based on a physical approach of the
behavior of the gas near the wall, follow the same trend
of some recent experimental observations. Lalonde
(2001) measured the rate of helium and nitrogen flows in
microchannels and showed that, for outlet Knudsen
numbers Kno higher than 0.05, a first-order model
underestimates the slip. A second-order model (Aubert
and Colin 2001) based on the boundary conditions of
Deissler (1964) was in very good agreement with the
experimental data up to Kno�0.25, with an accommo-
dation coefficient of r=0.93 both for helium and

Table 1 Coefficients of the main models of second-order boundary
conditions proposed in the literature

Source A1 A2

Maxwell (1879) 1 0
Schamberg 1947
(Karniadakis and Beskok 2002)

1 �5p/12

Chapman and Cowling (1952) j0 (�1) j0
2/2 (�1/2)

Cercignani 1963
(Karniadakis and Beskok 2002)

1.1466 �0.9756

Deissler (1964) 1 �9/8
Hsia and Domoto 1983
(Karniadakis and Beskok 2002)

1 �0.5

Mitsuya (1993) 1 �2/9
Karniadakis and Beskok (2002) 1 1/2
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nitrogen (Colin et al. 2004). Figure 3 shows the com-
parison between experimental and theoretical data rel-
ative to the reduced flow rate q*=q/qNS0 for an inlet
over outlet pressure ratio of P=1.8.

This trend was confirmed later by Maurer et al.
(2003). The latest precise experimental data provided in
the literature (Table 2) follow the same trend; they
concern different gases and are relative to microchannels
with rectangular sections of comparable lengths, l, and
depths, h, but manufactured with different processes.
Arkilic et al. (2001) used two silicon wafers facing each
other, Colin et al. (2004) studied microchannels etched
by deep reactive ion etching (DRIE) in silicon and
covered with a glass sealed by anodic bonding, whereas
Maurer et al. (2003) used microchannels etched in glass
and covered with silicon.

A smart comparison of the data provided by these
authors is also tricky, since the aspect ratio, a (ratio of
the depth, h, over the width, b), of the sections are dif-
ferent from one study to another. Moreover, if a is larger
than 1%, the effects of the lateral walls are no longer

negligible, and the plane flow model should be dropped
and replaced by a model appropriate to rectangular
sections (Aubert and Colin 2001). The two latter studies
(Maurer et al. 2003; Colin et al. 2004) confirm that an
adequate slip flow model based on second-order
boundary conditions can be precise for high Knudsen
number that usually come under the transition regime. It
should be noted that the resolution of the Navier-Stokes
equations with the second-order boundary conditions
summarized in Table 1 may turn out to be problematic
with some geometrical configurations, searching both
numerical and analytical solutions.

Actually, the Navier-Stokes equations correspond to
an approximation of the Boltzmann equation, which is
first-order in Knudsen (# Knð Þ), and should be, strictly
speaking, associated only with first-order boundary
conditions (Karniadakis and Beskok 2002). The obvious
interest in using high-order boundary conditions led
some authors to propose new conditions which fit the
Navier-Stokes equations better. Thus, Beskok and
Kardianakis (1999) put forward a high-order form,

Fig. 3 Inverse reduced flow rate
(1/q*) in rectangular
microchannels. Comparison of
experimental data with first-
order (NS1) and second-order
(NS2) slip flow models. P=1.8;
T=294.2 K. Gas: N2 (circles)
and He (squares). Microchannel
1 (white): h=1.88 lm;
a=0.087. Microchannel 2
(gray): h=1.16 lm; a=0.055.
Microchannel 3 (black):
h=0.54 lm; a=0.011

Table 2 Recent experimental data of gas flows in rectangular microchannels

Reference Arkilic et al. (2001) Colin et al. (2004) Maurer et al. (2003)

Microchannel dimensions l (lm) 7,490 5,000 10,000
h (lm) 1.33 0.54–4.48 1.14
a (%) 2.5 1.1–8.7 0.6

Experimental conditions Gas Ar N2 CO2 N2 He N2 He
Kno 0.05–0.41 0.05–0.34 0.03–0.44 0.002–0.16 0.029–0.47 0.054–01.1 0.17–1.46

Theoretical comparison r 0.80 0.80 0.80 0.93 0.93 0.87 0.91
Model Plane, first-order Rectangular, second-

order A2=�9/8
(Deissler conditions)

Plane, second-order
A2=�0.23(N2),
A2= �0.26(He)
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Ut � Uw ¼
2� r

r
Kn

1� cKn
@Ut

@n
ð13Þ

that involves the sole first derivative of the velocity and
an empirical parameter c. As for Xue and Fan (2000),
they proposed:

Ut � Uw ¼
2� r

r
tanh Knð Þ @Ut

@n
ð14Þ

that leads to results close to that calculated by the
DSMC method, up to high Knudsen numbers, of the
order of 3. Other hybrid boundary conditions, such as
(Jie et al. 2000):

Ut � Uw ¼
2� r

r
Kn

@Ut

@n
þ Kn

2
Re
@P
@t

� �� �

ð15Þ

were also proposed in order to allow a more stable
numerical solution, while giving results comparable to
that from Eq. 14 for the cases that were tested.

Lastly, it is also possible to keep the boundary con-
dition of Maxwell, and to replace the Navier-Stokes
(NS) equations by the quasihydrodynamic (QHD)
equations (Elizavora and Sheretov 2001). The latter
differ from the Navier-Stokes equations by a small
parameter which introduces some corrections on the
flow rate, second-order in Knudsen (# Kn2

� �

) (Elizarova
and Sheretov 2003). The QHD model with first-order
boundary conditions (QHD1) predicts flow rates close to
those calculated with the NS model with Deissler sec-
ond-order boundary conditions (NS2) (Colin et al.
2003). For example, for a flow between parallel plates
with an inlet over outlet pressure ratio of P, the
dimensionless mass flow rates:

q�QHD1 ¼ 1þ 12
2� r

r
Kno

Pþ 1
þ 48

pSc
Kn2

o

lnP

P2 � 1
ð16Þ

and:

q�NS2 ¼ 1þ 12
2� r

r
Kno

Pþ 1
þ 27Kn2

o

lnP

P2 � 1
ð17Þ

only differ by the coefficient of the second-order term
(# Kn2
� �

).
In Eqs. 16 and 17, the mass flow rates, q, are non-

dimensionalized by the mass flow rate, qNS0, of a non-
rarefied flow (q*=q/qNS0). Since the Schmidt number,
Sc, is 0.77 for a monatomic gas and 0.74 for a diatomic
gas, the deviation between the last terms of Eqs. 16
and 17 is of the order of 25%.

Thus, as the Knudsen number increases, the devia-
tion between the QDH1 and NS2 models increases. For
outlet Knudsen numbers, Kno, higher than 0.1, the
experimental data of Lalonde (2001) fit the QHD1
model (Elizavora and Sheretov2001) better than the NS2
model (Aubert and Colin 2001), but with a higher value
of the accommodation coefficient: rQHD1=1, whereas
rNS2=0.93 (Fig. 4).

2.2 Transition regime—numerical simulation

The methods used for the numerical simulation of gas-
eous microflows depend on the rarefaction level of
the flow. So, as long as the regime is a continuum regime
(Kn<10�3), a classic simulation (finite difference, finite
volume, spectral element, etc.) of the Navier-Stokes
equations is appropriate, whatever the characteristic
lengths of the domain.

In the slip flow regime, roughly for 10�3<Kn<10�1,
the continuum approach remains valid, provided slip
boundary conditions are properly taken into account.
Karniadakis and Beskok (2002) developed the l Flow
code, which resolves the Navier-Stokes equations by the
spectral element method. In its compressible version,
this code is able to treat 2-D or axi-symmetric subsonic
or shock-free transonic flows with high-order slip
velocity and temperature jump conditions at the wall.

As the rarefaction increases, typically for Kn>10�1, a
molecular approach is required. The direct numerical
resolution of the Boltzmann equation,

@f
@t
þ v � @f

@x
þ F � @f

@v
¼ Q f ; f �ð Þ ð18Þ

is complex in most cases, and, thus, remains reserved for
problems with a quite simple geometry, or when sim-
plifying hypotheses may be assumed. This is the case in
the free molecular regime, for which molecular collisions
can be neglected. It is also the case when Kn fi 0: the
method of moments proposed by Grad (1949) or the
Chapman–Enskog method (Chapman and Cowling
1952) allows us then to semi-analytically solve the
Boltzmann equation.

On the other hand, in the transition regime, its
numerical resolution is only possible with approximate
methods based on the simplification of the integral term,
Q(f, f*), which describes the intermolecular collisions.
Sharipov and Seleznev (1998) provided a description of
the different available methods—the BGK equation
(Bhatnagar et al. 1954), linearized Boltzmann equation
(Cercignani et al. 1994), etc.—with their conditions of
validity.

Actually, the so-called molecular methods are better
suited to the simulation of the transition regime, which is
the case of the DSMC method developed by Bird (1998).
Initially extensively used for the simulation of low-
pressure rarefied flows (Bird 1978; Muntz 1989), it is
now widely used in microfluidics (Stefanov and Cercig-
nani 1994; Piekos and Breuer 1996; Mavriplis et al. 1997;
Chen et al. 1998; Oran et al. 1998; Hudson and Bartel
1999; Pan et al. 1999; Wu and Tseng 2001).

The statistical error tied to the DSMC method be-
comes tricky when the macroscopic velocities are low.
Some modifications were proposed to overcome this is-
sue, leading to the DSMC-IP (Fan and Shen1999) or the
MB-DSMC (Pan et al. 2001) methods. Moreover, some
hybrid DSMC/Navier-Stokes methods allow the simu-
lation of microflows which involve different regimes
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(Hash and Hassan1997; Roveda et al. 1998). It seems
that this kind of issue could be treated by the lattice
Boltzmann method. This method is detailed by Chen
and Doolen (1998), but its application to microflows
remains rare to date.

3 Pressure-driven unsteady microflows

In the literature, little work is reported on unsteady
microflows, even in the slip flow regime. Norberg et al.
(1997) have experimentally studied transient flows in
microchannels with a mass spectrometric system, but for
very low transients (of the order of 10 s) and in the
molecular regime. Bestman et al. (1995) have considered
the Rayleigh problem for slip flow. Arkilic and Breuer
(1993) have modeled an unsteady microflow induced by
oscillating plates. But since their primary interest was

the study of viscous losses due to the oscillating surface,
the governing equation only represented a balance be-
tween the unsteady and viscous forces. More recently,
Caen et al. (1996) presented a model of a pulsed slip flow
in microtubes with circular cross-section.

The case of pulsed microflows in rectangular micro-
channels was modeled by the Navier-Stokes equations
combined with first-order slip and temperature jump
conditions at the walls (Colin et al. 1998b). The inlet of
the microchannel was submitted to a sinusoidal pressure
fluctuation with a small amplitude. The gain of the mi-
crochannel, i.e., the ratio of the outlet over inlet fluctu-
ating pressure amplitudes, was calculated. For example,
in the simple case of a microchannel closed at its outlet,
the gain takes the form:

p� ¼ Dpo
Dpi

	

	

	

	

	

	

	

	

¼ 1

cosh blð Þ

	

	

	

	

	

	

	

	

ð19Þ

Fig. 4a, b Experimental data
from Lalonde (2001) (outlet
flow rate h and inlet flow rate
r), compared to NS2 and
QHD1 models. Microchannel 3:
Po=75 kPa, T=294.2 K. a
Gas: N2; g=17.8 · 10�6 Pa s;
r=2.962 · 102 J kg�1K�1;
Sc=0.74. The encircled data
correspond toKno=0.15. b Gas:
He; g=19.6 · 10�6 Pa s;
r=2.079 · 103 J kg�1K�1;
Sc=0.77. The encircled data
correspond to Kno=0.47
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where b f ;Knð Þ �
ffiffiffi

f
p

W Knð Þ depends on the frequency,
f, and the Knudsen number. It was shown that the band
pass of the microchannel was underestimated when slip
at the walls was not taken into account (Fig. 5).

Obtaining experimental data to discuss these theo-
retical results is very hard, due to the very small size of
the pressure sensors required for these experiments.
However, first experimental data were obtained for mi-
crotubes down to 50 lm in diameter using a commer-
cially available pressure microsensor placed in a
minichannel, connected in series to one or several par-
allel microtubes (Colin et al. 1998a). The behavior of the
micro- and minichannels association was simulated and
compared to these data (Fig. 6). The agreement was
good, both for the gain and the phase of the association.

The previous model was extended to slowly varying
cross-sections (Aubert et al. 1998), in order to under-
stand the behavior of microdiffusers subjected to sinu-
soidal pressure fluctuations. This model was also used to
test the diode effect of a microdiffuser/nozzle placed in a
microchannel and subjected to sinusoidal pressure
fluctuations at its inlet. Two layouts (A and B) were
considered (Fig. 7).

In layout A, the tested element was a diffuser, with an
increasing section from inlet to outlet. In layout B, the
same element was used as a nozzle, with a decreasing
section from inlet to outlet. To obtain an exploitable
comparison between the two layouts, the dimensions
(a1, a2, a3, L1, L2, L3) were the same in both.

The analysis of the frequency behavior for each lay-
out showed significant differences, which is characteristic
of a dynamic diode effect. Therefore, in order to char-
acterize the dissymmetry of the pressure fluctuations
transmission, an efficiency, E, of the diode was intro-
duced. This efficiency,

E ¼ P �A
P �B
¼ Dpo=pij jA

Dpo=pij jB
ð20Þ

defined as the ratio of the fluctuating pressure gain in
layout A over the fluctuating pressure gain in layout B,
was studied as a function of the frequency. Some results
are shown in Fig. 8 for different values of the depth, h,
with L1=L2=L3=3 mm, a1=a3=467 lm, and
a2=100 lm, which corresponds to an angle a=3.5�.

The main result was: with a microdiffuser (h=6 lm),
E appears to be less than unity below a critical

Fig. 6 Experimental gain and phase compared to theory. Four
microtubes (d=52.5 lm, l=30.2 mm) in parallel connected to a
minitube (D=2.5 mm, L=30.5 mm) with a pressure sensor at its
closed end. a Gain. b Phase of the association

Fig. 7 Two layouts of a microdiode placed in a microchannel

Fig. 5 Influence of microchannel depth, h, on the gain, p*, for a
square microchannel closed at its outlet. l=100 lm, T=293 K,
P=0.11 MPa. 1, 2, 3=slip flow; 1¢, 2¢, 3¢=no-slip flow
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frequency. This denotes a reversed diode effect com-
pared with the case of a diffuser with millimetric or
submillimetric dimensions (h=100 lm in Fig. 8), for
which E is less than unity beyond a critical frequency.
Note also that the influence of slip (taken into account in
Fig. 8) is not negligible when h=6 lm. However, slip
has little influence on the values of characteristic fre-
quencies (i.e., the frequencies for which E is an extre-
mum or equal to unity).

4 Thermally-driven flows and vacuum generation

Generating vacuum by means of microsystems concerns
various applications, such as the taking of biological or
chemical samples, and the control of the vacuum level in
the neighborhood of some microsystems during their
manufacturing or their working.

The properties of rarefied flows allow unusual
pumping techniques. For high Knudsen numbers, the
flow may be generated without any moving mechanical
components, but only using a thermal actuation, which
is not possible with classical macropumps.

4.1 Thermal transpiration pumping

Currently, the most studied technique is based on ther-
mal transpiration. The basic principle requires two
chambers filled with gas and linked with an orifice whose
hydraulic diameter is small compared with the mean free
path of the molecules. Chamber 1 is heated, for example,
with an element, so that T1>T2. By analyzing the
probability that some molecules issuing from one
chamber cross the orifice, it can be shown that, if the
pressure is uniform (P1=P2=P), a molecular flux,

_N2!1 ¼ A
ffiffiffiffiffiffiffiffiffiffiffi

2pmk
p

P

ffiffiffiffiffi

T1

p
�

ffiffiffiffiffi

T2

p
ffiffiffiffiffiffiffiffiffi

T1T2

p ð21Þ

from chamber 2 towards chamber 1—from cold to hot
temperatures—appears (Muntz and Vargo 2002; Len-
grand and Elizarova2004), and, if the net molecular flux
is constant, the pressures necessarily verify:

P1

P2
¼

ffiffiffiffiffi

T1

T2

r

ð22Þ

In Eqs. 21 and 22, m is the mass of a molecule and k is
the Boltzmann constant. If P212

ffiffiffiffiffiffiffiffiffiffiffiffi

T1=T2

p

, there is a net
flow from 2 towards 1, which results in a decrease of P2

and/or an increase of P1: a basic working microscale
pump.

Thus, a Knudsen compressor (Fig. 9) can be
designed, connecting a series of chambers with very
small orifices which have a cold region (temperature T2)
on one side and a hot region (temperature T1) on the
other side by means of an adequate local heater placed
just downstream of the orifices. This multistage layout
leads to important cumulated pressure drops, whilst
keeping a satisfactory flow rate. In practice, the orifices
must be replaced by microchannels (Fig. 9) and this
complicates the modeling (Vargo and Muntz 1996).
Moreover, it is generally difficult to maintain simulta-
neously a free molecular regime in the microchannels
and a continuum regime in the chambers, which are the
conditions required for the optimal efficiency corre-
sponding to Eqs. 21 and 22. More elaborate models,
based on the linearization of the Boltzmann equation
(Loyalka and Hamoodi 1990) are able to take into
account the transition regime (0.05<Kn<10), both in
the microchannels and in the chambers (Vargo and
Muntz 1999). Several design studies are proposed in the
literature; they show the theoretical feasibility of
microscale thermal transpiration pumps.

Fig. 9 Multistage Knudsen compressor

Fig. 8 Diode efficiency for different values of the depth.
1: h=100 lm; 2: h=62 lm, 3: h=6 lm
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The first mesoscale prototypes, heated with an ele-
ment at the wall (Vargo and Muntz 1997; Vargo and
Muntz 1999; Vargo et al. 1999), were tested. An alter-
native solution with heating within the gas was also
proposed (Young 1999), but there are no available
experimental data for this layout.

Actually, there is yet much to do for the theoretical
optimization and almost everything is to be done for the
design of thermal transpiration micropumps with mic-
romanufacturing techniques. The performances of these
micropumps remain limited for technological reasons. A
high vacuum level may become incompatible with the
typical internal sizes of microsystems (Muntz and Vargo
2002): the regime in the chambers must be close to a
continuum regime, which requires sizes too big for the
lower pressures.

4.2 Accommodation pumping

The accommodation pumping is another pumping
technique. It exploits the property of gas molecules
whose reflection on specular walls depends on their
temperature. If the wall is warmer than the gas, the
mean reflection angle is greater than the incident angle.
Conversely, if the wall is colder than the molecules, they
have a more tangential reflection. Consequently, in a
microchannel with perfectly specular walls connecting
two chambers at different temperatures, a flow takes
place from the hot towards the cold chambers (Hobson
1970). If the walls of the microchannel give a diffuse
reflection, this effect disappears. This property was
confirmed with numerical simulations by the DSMC
method (Hudson and Bartel 1999). Linking two warm
chambers (1 and 3) to a cold chamber (2) on one
side with a smooth microchannel (1–2) and on the other
side with a rough microchannel (3–2), a difference of
pressure appears between the two chambers having the
same temperature (Fig. 10).

Connecting in series several stages of that type, the
pressure drops relative to each stage can be cumulated
and this allows to reach high vacuum levels. The
advantage of the accommodation pump is that it is
operational without theoretical limitations concerning
low pressures: contrary to the thermal transpiration
pumping, the accommodation pumping does not require
chambers with high dimensions. In compensation,
the accommodation pump requires more stages to reach
the same final pressure ratio. A pressure ratio, P=100,
requires 125 stages, whereas only 10 stages are enough
for a transpiration pump with comparable temperatures.
Lastly, although the concept seems attractive, no oper-
ational prototype was described in the literature so far.
The most high-performance design was proposed by
Hobson (1971; 1972); it requires a cold temperature,
T2=77 K, for an atmospheric temperature,
T1=T3=290 K.

5 Remaining issues

Theoretical knowledge is currently more advanced for
gas flows than for liquid flows in microchannels. How-
ever, there is yet a need for precise experimental data,
both for steady or unsteady gas microflows, in order to
definitely validate the choice of the best boundary con-
ditions in the slip flow regime. Determining the appro-
priate values of the accommodation coefficients also
remains an open issue. Relationships between these
values, the nature of the substrate, and the microfabri-
cation processes involved are currently not available.
Theoretical investigations relative to unsteady or
thermally-driven microflows would also need to be
supported by smart experiments.
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