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Abstract
Advances in various imaging modalities for breast lesions have improved diagnostic capabilities not only for tumors but also 
for non-tumorous lesions. Contrast-enhanced ultrasound (CEUS) plays a crucial role not only in the differential diagnosis 
of breast lesions, identification of sentinel lymph nodes, and diagnosis of lymph node metastasis but also in assessing the 
therapeutic effects of neoadjuvant chemotherapy (NAC). In CEUS, two image interpretation approaches, i.e., qualitative 
analysis and quantitative analysis, are employed and applied in various clinical settings. In this paper, we review CEUS for 
breast lesions, including its various applications.
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Introduction

In recent years, with the inclusion of testing for hereditary 
breast and ovarian cancer syndrome (HBOC) under insur-
ance coverage, there has been an increase in the number of 
patients diagnosed with HBOC. The cumulative incidence 
risk of breast cancer by age 80 is reported to be 72% for 
BRCA1 mutation carriers and 69% for BRCA2 mutation car-
riers, while the cumulative incidence risk of ovarian cancer 
is 44% for BRCA1 and 17% for BRCA2 [1]. Magnetic reso-
nance imaging (MRI) screening is recommended for follow-
up of BRCA​-positive breast cancer patients and screening 
of asymptomatic individuals [2], yet the inability of certain 
patients to undergo MRI for various reasons remains prob-
lematic. Triple-negative breast cancer is prevalent in BRCA1 
mutation carriers, whereas estrogen receptor-positive, 
HER2-negative luminal breast cancer is more common in 
BRCA2 mutation carriers [3]. While mammography detects 
calcifications in BRCA2-related breast cancer, reports indi-
cate a lack of calcifications in BRCA1-related breast cancer 

[4, 5]. Due to the difficulty in diagnosing HBOC-related 
breast cancer using mammography or conventional ultra-
sound (US), there is a potential increase in the importance 
of contrast-enhanced US (CEUS) as an alternative imaging 
modality to MRI [6]. CEUS, being capable of clearly dem-
onstrating the microvascular perfusion within and around 
tumors, represents an innovative diagnostic technique allow-
ing for more accurate real-time evaluation of microvascular 
structures of breast lesions [7–9]. Additionally, CEUS can 
depict small vessels that may not be detected on MRI [10].

In CEUS, either qualitative analysis through contrast-
enhanced pattern analysis or quantitative analysis through 
contrast-enhanced kinetic analysis, or both, are employed 
for differentiation between benign and malignant lesions 
[8]. CEUS proves beneficial in various aspects of breast 
cancer management, including differential diagnosis of 
breast lesions, assessment of tumor spread, staging of inva-
sive cancer, evaluation of the effectiveness of neoadjuvant 
chemotherapy (NAC), and diagnosis of axillary lymph node 
metastasis.

In recent years, the availability of new therapeutic agents 
tailored to the biology and intrinsic subtype of breast cancer, 
as evidenced by clinical trial results, has led to a diversified 
treatment approach, necessitating personalized treatment 
strategies. Selection of available therapeutic agents is deter-
mined based on pre-treatment evaluations such as the recur-
rence score derived from the 21-gene breast cancer assay 
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and the number of metastatic lymph nodes, even within the 
same intrinsic subtype of breast cancer [11, 12]. Evaluation 
of lesions, including lymph node metastasis status, is cru-
cial across all patient groups, and accurate determination of 
treatment strategies through CEUS-based assessment and 
diagnosis may lead to improved treatment outcomes. The 
aim of this review is to discuss the various utilities of CEUS 
with the objective of elucidating its effectiveness.

History of CEUS

Contrast-enhanced methods in US imaging had their origins 
in 1969 when Gramiak et al. first utilized indocyanine green 
(ICG) as a contrast agent in cardiovascular US imaging [13]. 
By the late 1970s, it was discovered that the source of echo 
enhancement in CEUS was microbubbles [14]. In 1982, 
Matsuda et al. initiated CEUS of liver tumors using the CO2 
microbubble injection method, establishing diagnostic crite-
ria and paving the way for its widespread adoption [15–19]. 
Subsequently, the availability of Levovist, a contrast agent 
suitable for intravenous administration at high mechanical 
index (MI) values, became feasible [20]. Furthermore, the 
development of second-generation contrast agents such as 
Optison, Definity, SonoVue, and Sonazoid [21–25] enabled 
visualization of blood flow signals at low to moderate MI 
values, expanding the application of CEUS to areas includ-
ing the liver, biliary tract, pancreas, and breast regions.

Differences between CEUS in the liver 
and breast regions

The liver is characterized by a dual vascular supply from 
the artery and portal vein, resulting in two distinct vascular 
phases: the arterial-dominant phase and the portal-dominant 
phase. Moreover, in CEUS using Sonazoid, unlike other con-
trast agents such as Definity or SonoVue, Kupffer cells in the 
liver’s reticuloendothelial system uptake Sonazoid, resulting 
in the presence of two contrast enhancement phases: the 
vascular phase and the post-vascular phase (Kupffer phase, 
typically observed 10 min after contrast agent injection) 
[26–28].

While blood flow in normal liver tissue is abundant, 
it is relatively less so in normal breast tissue. However, 
relatively strong enhancement effects may be observed 
in premenopausal breast tissue. Therefore, in contrast-
enhanced MRI, it is recommended to consider the men-
strual cycle and perform imaging between days 5 and 
12 after the onset of menstruation. Due to the relatively 
deeper imaging depth in the liver, probes with frequencies 
around 3.5 MHz are used, whereas for breast imaging, 

probes with relatively higher frequencies are utilized as 
lesions may be present up to 3–5 cm deep under the skin.

Advances in CEUS imaging, coupled with the develop-
ment of second-generation contrast agents, have endowed 
CEUS with the ability to sensitively and accurately depict 
tumor vasculature. Consequently, significant improve-
ments have been achieved in the diagnosis of focal liver 
lesions, including hepatocellular carcinoma (HCC) [29]. 
By utilizing Sonazoid, which does not contain Kupffer 
cells, the diagnostic sensitivity for malignant liver tumors 
is increased. Sonazoid CEUS enables the detection of 
small malignant liver lesions, including metastatic liver 
tumors, determination of the surgical approach for liver 
resection, appropriate guidance for non-surgical ablation 
techniques such as radiofrequency ablation, and accurate 
evaluation of treatment response to drug therapies, includ-
ing those for HCC [30–32] (Fig. 1).

In the Kupffer phase of Sonazoid CEUS, it is possible 
to scan the entire liver, allowing for the detection of HCC 
even when lesions are relatively small, making it valu-
able for HCC surveillance [29–32]. Furthermore, utilizing 
reperfusion techniques involving reinjection of contrast 
agents enables the diagnosis of newly detected lesions in 
the Kupffer phase [30].

CEUS Diagnostic criteria for breast lesions

Contrast agents

When using SonoVue as the contrast agent, imaging is 
typically performed at a low MI value, generally around 
0.06–0.08. On the other hand, when using Sonazoid, imag-
ing is usually conducted at a moderate MI value, typically 
around 0.2. SonoVue is composed of sulfur hexafluoride 
and is a stable aqueous suspension of microbubbles encap-
sulated by a lipid shell [33]. Sonazoid, on the other hand, 
is considered to exhibit higher stability than SonoVue due 
to its stable outer shell containing hydrogenated egg phos-
phatidylserine, which enables it to withstand pressure and 
minimize bubble collapse and signal loss [22, 33, 34].

The gas in microbubbles can pass through pulmonary 
capillary filters and be exhaled through lung respiration. 
Long-term safety has been confirmed in the liver and 
breast regions [21, 24, 25, 35]. The size of second-gen-
eration contrast agents is comparable to that of red blood 
cells, preventing them from passing through the vessel 
wall into the interstitial space. As a result, these contrast 
agents can directly and accurately reflect the microcircula-
tion perfusion of lesions, thereby improving the diagnostic 
agreement rate of breast lesions [36].
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Qualitative diagnostic evaluation

The following diagnostic criteria have been utilized in clini-
cal trials of Sonazoid CEUS for breast lesions and have been 
widely adopted clinically due to their relatively straightfor-
ward application and favorable diagnostic performance [25]:

Enhancement patterns indicative of benign lesions 
include strong or homogeneous enhancement of the 
entire lesion, or lack of enhancement of the entire lesion. 
Enhancement patterns indicative of malignant lesions 
include heterogeneous enhancement with or without clear 
defects (Fig. 2, Fig. 3), rapid washout from the lesion com-
pared to washout from the surrounding mammary tissues, 
and the degree of enhancement being greater than that of 
the surrounding tissue, and the area of enhancement being 

larger than the hypoechoic lesion on the precontrast (or 
conventional US) images (Fig. 4, 5, 6).

Several scoring systems and qualitative evaluation cri-
teria have been proposed, generally focusing on similar 
evaluation parameters. Specifically, benign lesions typi-
cally exhibit synchronous or delayed enhancement, homo-
geneous or low enhancement, clear margins, and regular 
shapes, whereas malignant lesions often show early heter-
ogeneous over-enhancement, indistinct margins, irregular 
shapes, and an expanded area of enhancement compared to 
conventional US tumor size [37–39]. Regarding expansion 
of tumor size, it is defined as enlargement when either the 
length or width increases by more than 3 mm compared to 
conventional US measurements [40].

Fig. 1   Metastatic liver tumors. a, b, c, Sonazoid contrast-enhanced ultrasound enables the detection of small malignant liver lesions

Fig. 2   Invasive ductal carci-
noma. a Conventional ultra-
sound shows a hypoechoic area. 
b Contrast-enhanced ultrasound 
shows heterogeneous enhance-
ment with a clear defect
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Other findings indicative of malignant lesions through 
qualitative evaluation include heterogeneous and centrip-
etal enhancement, as well as the presence of peripheral 
radial or penetrating vessels, whereas benign lesions pre-
dominantly demonstrate homogeneous and centrifugal 
enhancement [8]. Regarding the characteristics of vascular 

architecture assessed qualitatively, malignant lesions 
typically exhibit tortuous and irregular vessels, whereas 
benign lesions show gently curved vessels along the tumor 
margins. Arteriovenous shunting is observed in malignant 
lesions but not in benign lesions [41, 42]. Additionally, 
malignant lesions often show heterogeneous distribution 

Fig. 3   Invasive ductal carci-
noma. a Contrast-enhanced 
ultrasound shows heterogeneous 
enhancement without a clear 
defect (circle). b Conventional 
ultrasound shows a hypoechoic 
area (circle)

Fig. 4   Invasive ductal carcinoma. a Conventional ultrasound shows a hypoechoic area (circle). b Contrast-enhanced ultrasound shows heteroge-
neous enhancement extending outward beyond the expected border of the lesion (circle)

Fig. 5   Invasive ductal car-
cinoma. a Conventional 
ultrasound shows a mass with 
a small hypoechoic daughter 
lesion (arrow). b Contrast-
enhanced ultrasound of a small 
hypoechoic daughter lesion 
(arrow) shows heterogeneous 
enhancement
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of vessels and frequently exhibit local perfusion defects 
[8, 41–43] (Fig. 7).

Quantitative diagnostic evaluation

Quantitative parameters obtained from the time-intensity 
curve (TIC) include the following: peak intensity (%), which 
is defined as the maximum intensity value in the time-inten-
sity curve; time-to-peak (TTP) (sec), defined as the duration 
between the moment when the contrast medium first reaches 
the lesion and the time of maximum signal intensity after 
contrast medium administration; mean transit time (MTT) 
(sec), defined as the duration of enhancement of the lesion; 
regional blood volume (RBV) (mL), which represents the 
area under the TIC, reflecting the total volume of contrast 
medium passing through the lesion of interest; and regional 
blood flow (RBF) (mL/sec), calculated as the fraction area 
under the curve divided by MTT, reflecting the relative 
blood flow in the selected lesion’s area [44].

Regarding quantitative parameters, malignant lesions 
typically exhibit significantly shorter TTP, higher peak 
intensity, and increased wash-in slope. While the TICs of 
malignant lesions are predominantly plateau and wash-
out types, benign lesions mainly demonstrate plateau and 
slow-rise types [39, 45]. Factors involved in the differen-
tiation between benign and malignant lesions using CEUS 
with Sonazoid include not only enhancement patterns but 
also the slope of the tangent at the starting point of the 
TIC (Axk value), as demonstrated by Fujimitsu et al. [46]. 
The Axk value is defined as the slope of the tangent at the 
beginning of the TIC.

Fig. 6   Invasive ductal carci-
noma. a Contrast-enhanced 
ultrasound of a small hypo-
echoic daughter lesion 
(arrow) shows heterogeneous 
enhancement. b Conventional 
ultrasound shows a mass with 
a small hypoechoic daughter 
lesion (arrow)

Fig. 7   Invasive ductal car-
cinoma. a Conventional 
ultrasound shows a hypoechoic 
area. b Contrast-enhanced 
ultrasound shows heterogeneous 
enhancement with a clear defect 
extending outward beyond the 
expected border of the lesion
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Characteristics of CEUS in non‑mass 
abnormalities

With respect to terminology related to non-mass abnor-
malities, other terms such as non-mass lesions, non-
mass-like lesions, and non-mass breast lesions may be 
used interchangeably with similar definitions. Guidelines 
for non-mass abnormalities (NMAs) in conventional US 
were established by the Japan Society of Ultrasonics in 
Medicine in 2023, and several review articles have been 
published [47–53]. However, reports on the diagnosis of 
NMAs using CEUS are currently limited [54–56]. Malig-
nant NMAs are characterized by early wash-in time, 
hyper-enhancement degree, unclear enhancement mar-
gin, enlarged enhancement area, and early wash-out time. 
Conversely, benign NMAs are primarily characterized by 
the absence of radial or penetrating vessels and perfusion 
defects [45, 56, 57]. In non-mass abnormalities, CEUS can 

clearly demonstrate the area of the lesion and the status 
of internal vessels, enabling accurate guidance for biopsy 
sites [38]. Factors predicting malignant ductal lesions 
among non-mass abnormalities include the presence of 
microcalcifications and enlargement of the enhancement 
area [58] (Figs. 8, 9,10).

Characteristics of CEUS in pathological 
prognostic factors

The majority of HER2-positive breast cancers exhibit het-
erogeneous enhancement, while ER-negative breast can-
cers often demonstrate centripetal enhancement. Perfu-
sion defects are frequently observed in cancers with high 
malignancy grades such as HER2-positive, ER-negative, and 
Ki-67-positive tumors, serving as indicators of increased 
microvessel density (MVD). Radial vessels or perforator 
vessels are commonly found in lesions with high histological 

Fig. 8   Ductal carcinoma in situ. a Contrast-enhanced ultrasound of a small hypoechoic lesion (between arrows) shows heterogeneous enhance-
ment. b Conventional ultrasound shows a hypoechoic area of a non-mass abnormality (between arrows)

Fig. 9   Invasive ductal carci-
noma. a Contrast-enhanced 
ultrasound shows heterogene-
ous enhancement with a clear 
defect. b Conventional ultra-
sound shows a hypoechoic area
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grades of breast cancer or those accompanied by lymph node 
metastasis [39, 44, 59–61]. In metastatic lymph nodes, het-
erogeneous enhancement within the lymph nodes is a char-
acteristic feature [44] (Fig. 11). All four subtypes of breast 
cancer show an increase in area post-enhancement, but the 
rate of increase in the transverse diameter allows for the pre-
diction of the histological malignancy of malignant tumors 
[62, 63]. Regarding quantitative parameters, studies have 
shown that the upward slope serves as the best discriminator 
for proliferative activity [64].

CEUS assessment of treatment response 
to neoadjuvant chemotherapy (NAC)

Patients achieving pathological complete response (pCR) 
after NAC generally exhibit improved disease-free survival 
and overall survival compared to non-pCR patients [65]. 
CEUS enables early prediction of pCR and recurrence-free 
survival (RFS) in patients with locally advanced breast 

cancer undergoing NAC therapy by assessing changes in 
microvascular perfusion [30].

CEUS allows for easy dynamic observation and quan-
tification of tumor perfusion [66] (Fig. 12), enabling dif-
ferentiation between fibrosis and residual tumor after NAC 
treatment without exposing patients to the risks of radia-
tion [67–73].

Qualitative and quantitative assessment of changes in 
tumor blood flow during NAC therapy is feasible with 
CEUS [18–20, 22, 24, 25], and it demonstrates a strong 
correlation with pathological response outcomes [66–68, 
74–79].

The time-to-peak (TTP) on CEUS at the 5th week of 
NAC is significantly prolonged in responders compared to 
non-responders, thus serving as a useful tool for evaluation 
of early response to NAC [67, 80].

Combining conventional US with qualitative CEUS eval-
uation methods allows for accurate prediction of axillary 
lymph node status after NAC in breast cancer patients. Stud-
ies have shown associations between lymph node medulla 

Fig. 10   Ductal carcinoma 
in situ. a Conventional ultra-
sound shows a hypoechoic area 
in the mammary gland with 
echogenic foci. b Contrast-
enhanced ultrasound shows 
heterogeneous enhancement 
with a clear defect

Fig. 11   Metastatic lymph node. a Contrast-enhanced ultrasound shows heterogeneous enhancement  (between arrows). b Conventional ultra-
sound shows an axillary lymph node with cortical thickening (between arrows)
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boundary, lymph node aspect ratio, CEUS pattern, and post-
NAC lymph node pCR [81].

CEUS for lymph nodes

US evaluation is useful for assessing axillary lymph nodes, 
but performing CEUS provides more perfusion information, 
thereby improving the diagnostic accuracy for lymph node 
metastasis [81–90].

Lymph nodes consist of two vascular systems: lymphatic 
circulation and blood circulation. In the evaluation of axil-
lary lymph nodes, two CEUS techniques, namely perfusion 
CEUS and lymphatic CEUS, are utilized.

Lymphatic CEUS

Lymphatic CEUS identifies sentinel lymph nodes through 
percutaneous contrast agent administration via lymphatics 
to diagnose lymph node metastasis. Studies have classified 
lymph node CEUS enhancement into four enhancement 
groups, leading to reduced false-positive rates and improved 
specificity. Niu et al. categorized sentinel lymph nodes into 
four enhancement patterns, showing that Patterns I & II had 
a 91.7% negative metastasis rate (Fig. 13, 14), while Patterns 
III & IV had a higher probability of metastasis [91].

•	 Pattern I: Homogeneous

•	 Pattern II: Featured inhomogeneous
•	 Pattern III: Focal defect
•	 Pattern IV: No enhancement

Perfusion CEUS

The primary aim of perfusion CEUS is to diagnose lymph 
node metastasis through contrast agent administration via 
veins, similar to diagnosing lesions in the breast (Fig. 15). 
When performing perfusion CEUS after lymphatic CEUS, 
microbubbles within lymphatic vessels and lymph nodes 
are shattered using high acoustic pressure before perfu-
sion CEUS is performed. Du et al. concluded that combin-
ing conventional US with CEUS enables the appropriate 
evaluation of axillary lymph nodes.

The arterial phase begins when the contrast agent 
reaches the lymph nodes, while the venous phase (delayed 
phase) begins approximately 30–45 s after contrast agent 
administration [18].

Perfusion CEUS is classified into the following two 
types:

•	 Type A: Homogeneous enhancement in the arterial phase 
and homogeneous regression in the venous phase.

•	 Type B: Inhomogeneous regression in the venous phase.

Fig. 12   Contrast-enhanced ultrasound (CEUS) before and after neo-
adjuvant chemotherapy (NAC). a Arrival time parametric imaging 
before NAC. b CEUS imaging before NAC. c Arrival time para-

metric imaging after two cycles of NAC. d CEUS imaging after two 
cycles of NAC. e Time-intensity curve before  (blue-line) and after 
NAC (red-line)
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Fig. 13   Conventional ultra-
sound (US) and lymphatic 
contrast-enhanced ultrasound 
(CEUS). a Conventional US 
shows a sentinel lymph node 
(arrow). b An oval-shaped 
contrast-enhanced lymph node 
(arrow) is visualized within 
a few minutes after Sonazoid 
injection

Fig. 14   Conventional ultrasound 
(US) and lymphatic contrast-
enhanced ultrasound (CEUS). 
a Conventional US shows a 
sentinel lymph node (arrow). b 
A lymphatic vessel (arrow head) 
and an oval-shaped contrast-
enhanced lymph node (arrow) 
are visualized within a few min-
utes after Sonazoid injection

Fig. 15   Metastatic lymph 
node. a Contrast-enhanced 
ultrasound shows heterogene-
ous enhancement with a clear 
defect (between arrows). b 
Conventional ultrasound shows 
an axillary lymph node with 
cortical thickening (between 
arrows)
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Discussion

While evaluating minimal blood flow using color Dop-
pler imaging can be challenging [81], CEUS allows for 
the assessment of blood flow as small as 100 μm [68, 92]. 
Compared to contrast-enhanced MRI and CT, CEUS offers 
superior spatial and temporal resolution, enabling real-
time observation of tumor microcirculation [25, 45, 93]. 
Miyamoto et al. evaluated enhancement patterns and found 
that a diagnosis could be made with the detection of one or 
a few patterns, demonstrating significantly higher accuracy 
and specificity with CEUS for lesions both less than 1 cm 
and over 1 cm in size compared to conventional US and 
contrast-enhanced MRI [25].

Breast cancer relies on angiogenesis, but the number 
of vessels, blood flow velocity, and intratumoral vascu-
lar resistance do not clearly distinguish malignant from 
benign breast lesions [94–96]. Angiogenesis is a char-
acteristic pathological process common to most solid 
tumors, including breast cancer, and is associated with 
tumor growth, invasion, metastasis, and prognosis [40, 45, 
80, 97–104].

The diagnostic accuracy of CEUS varies depending 
on the size of the lesion [34], which is closely related to 
vascular density [39, 103, 105–107]. Microvessel density 
(MVD) and vascular endothelial growth factor (VEGF) 
expression serve as prognostic markers for breast cancer 
[108–111].

Benign lesions typically exhibit normal vascular 
caliber, while in malignant lesions, the distribution of 
nutrient vessels may be disrupted, sometimes accompa-
nied by arteriovenous shunts [112].

The occurrence rates of high enhancement and hetero-
geneous enhancement are higher in malignant lesions, 
whereas low enhancement and homogeneous enhance-
ment are more common in benign lesions. Centripetal 
enhancement reflects the actual density and distribution 
of microvessels in malignant lesions [40].

A significant increase in the extent of tumor enhance-
ment after contrast administration is a crucial indicator 
of malignant lesions and correlates with histopathologi-
cal findings [40, 64, 113–115]. Additionally, preoperative 
assessment of tumor spread with CEUS enables accurate 
evaluation of the extent of resection [113, 116].

While benign tumors mostly exhibit a normal vascular 
caliber with minimal neovascularization and homogeneous 
distribution, malignant tumors tend to have more neovas-
cularization and disrupted distribution of nutrient vessels, 
and may be associated with arteriovenous shunts [40, 112].

Furthermore, in malignant tumors, microvessel density 
(MVD) and expression of vascular endothelial growth fac-
tor (VEGF) tend to concentrate at the tumor periphery [47, 

64]. Some low-grade ductal carcinoma in situ (DCIS) may 
be nourished by normal peripheral vessels without the for-
mation of abnormal peripheral vessels [59, 115, 117–123].

CEUS offers short examination times and can be safely 
performed in patients with contraindications to gadolinium 
administration, claustrophobia, or implanted pacemakers. 
Additionally, it enables more accurate prediction of malig-
nant lesions, thus reducing the need for false-positive biop-
sies [118, 124, 125].

While benign breast lesions may sometimes yield false-
positive CEUS images, this could be attributed to cellular 
proliferation, hyperplasia, and inflammatory reactions [37, 
54, 56, 126–129]. Research on background parenchymal 
enhancement (BPE) on CEUS has shown similar patterns 
between patients with malignant tumors and those with 
benign tumors in each menstrual phase. Cases where BPE 
exhibits higher enhancement than breast tumors at the peak 
of contrast are all benign [130].

Although reports suggest that generally similar diagnostic 
criteria as for tumors can be applied to classifying malignant 
non-mass abnormalities (NMAs), due to the high proportion 
of hypoechoic areas in malignant NMAs, current criteria 
may not be sufficient. It is hoped that future research will 
elucidate evaluation criteria and diagnostic standards for 
CEUS based on NMA classification.

Clinical trial results regarding post-NAC treatment in 
cases where pCR is not achieved are informative [131, 132] 
as predicting the effectiveness of NAC plays a crucial role in 
treatment selection, including surgical methods [82].

Due to the difficulty in interpreting extracellular volume 
changes on DCE-MRI, there is often overestimation or 
underestimation of the response to NAC [133–135]. Since 
the contrast agents used in CEUS are present only in the 
vascular bed, it is possible to obtain results comparable to 
those of DCE-MRI [67, 73].

Huang et al. performed CEUS before and after two cycles 
of NAC, but various studies have examined CEUS after the 
first cycle or after four cycles, etc. [38, 68, 73].

In CEUS studies, various approaches have been taken for 
setting regions of interest (ROIs), including ROIs encom-
passing tumor margins, ROIs placed on tumor contours, and 
ROIs based on hotspots of a certain diameter [75, 112, 136]. 
Determining appropriate ROIs requires further analysis 
based on a large number of cases with various ROI settings 
tailored to the lesion characteristics and objectives.

Regarding sentinel lymph node biopsy using CEUS, 
Omoto et al. conducted a basic study using a 25% albumin 
contrast agent in 2002 [137], followed by the first report of 
identifying sentinel lymph nodes in breast cancer patients 
in 2006 [138]. Since 2009, evaluation of sentinel lymph 
nodes using Sonazoid CEUS has been widely performed, 
with favorable outcomes reported [139–141]. CEUS can 
provide high diagnostic accuracy in detecting metastatic 
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sentinel lymph nodes, with the risk of metastasis in sen-
tinel lymph nodes showing heterogeneous enhancement 
being approximately six times higher than those showing 
homogeneous enhancement [39, 90, 142, 143].

In breast cancer management, diagnosis and treatment of 
hepatic metastases may be necessary, and CEUS is useful 
for assessing the efficacy of treatments such as drug therapy 
due to its simplicity and low patient burden. Evaluation of 
metastatic liver tumors in the Kupffer phase with Sonazoid 
CEUS is extremely straightforward and useful [29, 30].

In cases of BRCA​-positive breast cancer and BRCA​
-positive unaffected individuals, contrast-enhanced MRI 
is recommended for follow-up, but there are patients who 
cannot undergo contrast-enhanced MRI [3]. Although data 
accumulation and analysis are needed in the future, diag-
nosis with CEUS is considered important as an alternative 
diagnostic modality to contrast-enhanced MRI.

Regarding the assessment of treatment efficacy for 
new minimally invasive treatment of breast cancer using 
microwave ablation, there are reports comparing CEUS 
and MRI, showing comparable results [144]. US-guided 
radiofrequency ablation therapy for small breast cancer, 
which became eligible for insurance coverage in Japan in 
2023, may be widely performed [145–148]. Similar to rad-
iofrequency ablation therapy for liver cancer [149–151], 
CEUS is expected to be used for preoperative diagnosis 
and assessment of treatment efficacy.

In recent years, diagnosis using artificial intelligence 
(AI) has been increasingly utilized in various fields 
[152–154]. In the future, combining CEUS with AI diag-
nosis is expected to further enhance the diagnostic capa-
bilities for breast cancer.

Conclusion

For the diagnosis of breast lesions, both qualitative and 
quantitative evaluations are utilized with CEUS. CEUS has a 
wide range of applications, including distinguishing between 
benign and malignant breast lesions, identifying sentinel 
lymph nodes, diagnosing lymph node metastasis, assessing 
the efficacy of NAC, and preoperative assessment of breast 
cancer spread. Additionally, CEUS is a useful diagnostic 
modality for evaluating treatment efficacy in liver metastases 
and for treatments such as radiofrequency ablation therapy, 
with no radiation exposure and minimal patient burden.
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