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Abstract
Delay-and-sum (DAS) beamforming is widely used for generation of B-mode images from echo signals obtained with an 
array probe composed of transducer elements. However, the resolution and contrast achieved with DAS beamforming are 
determined by the physical specifications of the array, e.g., size and pitch of elements. To overcome this limitation, adaptive 
imaging methods have recently been explored extensively thanks to the dissemination of digital and programmable ultrasound 
systems. On the other hand, it is also important to evaluate the performance of such adaptive imaging methods quantitatively 
to validate whether the modification of the image characteristics resulting from the developed method is appropriate. Since 
many adaptive imaging methods have been developed and they often alter image characteristics, attempts have also been 
made to update the methods for quantitative assessment of image quality. This article provides a review of recent develop-
ments in adaptive imaging and image quality assessment.

Keywords  Medical ultrasound image · Adaptive imaging · Image quality

Introduction

This article provides a review of recent developments in 
medical ultrasound imaging. This review starts with a brief 
description of the beamforming process in medical ultra-
sound imaging. Then, rather “traditional” adaptive imag-
ing methods that enhance some image quality evaluation 
metrics, i.e., resolution, contrast, and contrast-to-noise ratio 
(CNR), are described, and they are compared in terms of 
performance. Furthermore, the limitations of such traditional 
adaptive imaging methods are discussed, and new evaluation 
metrics that have been developed recently for more appropri-
ate evaluation of image quality are described. Finally, recent 
studies that tackle the limitations of traditional adaptive 
imaging methods will be introduced, and a few examples 
of the results obtained with the methods developed in such 
studies are also shown.

Beamforming

Beamforming is an indispensable part of the process for 
generating ultrasound images. Although the beamforming 
process is important for controlling the ultrasonic field in 
transmission, the beamforming process in reception is dis-
cussed in this article. Delay-and-sum (DAS) beamforming is 
well known and widely used in clinical ultrasound scanners. 
As illustrated in Fig. 1, a DAS beamformer creates a beam-
formed signal at a point of interest (focal point). By setting 
a focal point, the beamformer can estimate the propagation 
time between the focal point and each transducer element by 
assuming the speed of sound in the propagation medium. By 
delaying the echo signals received by individual elements 
(channel signals) based on the estimated propagation time, 
echoes from the focal point become in phase. Consequently, 
the echo from the focal point is enhanced, and out-of-focus 
echoes are suppressed, by accumulating the delayed signals 
across the aperture. This procedure is expressed as

(1)pDAS =
1

M

M−1∑

m=0

sm,
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where pDAS is the output of the DAS beamformer, sm is 
the delay-compensated radio-frequency (RF) echo signal 
received by the m-th transducer element, and M denotes the 
number of elements in the receiving aperture. The spatial 
resolution of the DAS beamformer is limited by the aper-
ture size, and side and grating lobes cannot be suppressed 
perfectly due to the finite aperture size and insufficient ele-
ment pitch.

A nonlinear beamformer, namely, delay multiply-and-
sum (DMAS) beamformer, which was first developed for 
microwave radar imaging of breast cancers [1], was also 
introduced in medical ultrasound imaging [2, 3]. The output 
of the DMAS beamformer pDMAS is expressed as

With respect to the output of the DMAS beamformer, DC 
and 2f0 components, where f0 is the center frequency of sm , 
are generated by multiplication of the signals. Therefore, a 
band-pass filter is required to obtain the final output of the 
beamformer:

where BPF[⋅] denotes band-pass filtering. This beamformer 
is called a filtered-delay-and-multiply-sum (FDMAS) beam-
former. The FDMAS beamformer realizes superior resolu-
tion and contrast in comparison with the DAS beamformer 
because the multiply-and-sum operation corresponds to 
evaluation of signal coherence [2]. The FDMAS method is 
also used for coherent compounding in plane-wave imaging 
[4–6].

Adaptive imaging methods

To overcome the limitation of the DAS beamformer, vari-
ous adaptive imaging methods with data-dependent output 
have been introduced in ultrasound imaging. Since numerous 

(2)pDMAS =

M−1∑

i=1

M∑

j=i+1

sign
(
si ⋅ sj

)
⋅

√
|||si ⋅ sj

|||.

(3)pF-DMAS = BPF
[
pDMAS

]
,

imaging methods have been developed, some representative 
methods are described in this article to discuss recent trends 
in adaptive imaging.

Coherence‑based adaptive imaging

The quality of an ultrasonic image is degraded by phase 
aberrations from an inhomogeneous distribution of sound 
speeds in a biological tissue. The coherence factor (CF) 
[7–9] was developed for evaluation of such degradation in 
image quality. It was defined as the ratio of the coherent 
energy to the total received energy [7]:

where s̃m is the complex analytic signal of the delay-compen-
sated RF signal received by the m-th elements in the receiv-
ing aperture. Li PC and Li ML suppress incoherent signals 
by weighting DAS beamformed signals by CF as [10]:

where pCF is the output of the beamformer with CF weight-
ing. The resolution and contrast of an ultrasonic image are 
improved by suppressing incoherent components. The coher-
ence among channel signals has also been evaluated using 
the phase of the channel signals, namely, phase coherence 
factor [11–13]. Similarly to CF, incoherent signals can be 
suppressed by weighting DAS beamformed signals by the 
phase coherence factor in the same way as Eq. (5).

As can be seen in Eq. (1), CF of a perfectly coherent signal 
will be 1, and that of a perfectly incoherent signal will be 0. To 
further increase the difference between coherent and incoher-
ent signals, the mean-to-standard-deviation (MSD) factor [14] 
and signal-to-noise-ratio (SNR) factor [15] were introduced. 
The CF value for a perfectly coherent signal is limited to 1 
because CF is defined as the ratio of coherent energy to “total 
energy”. By evaluating the ratio of coherent energy to energy 
of “noise” (incoherent component), MSD and SNR factors will 

(4)CF =

���
1

M

∑M−1

m=0
s̃m
���
2

1

M

∑M−1

m=0
��s̃m��

2

(5)pCF = CF ⋅ pDAS,

Fig. 1   Illustration of delay-and-
sum (DAS) beamforming
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be infinite with respect to a perfectly coherent signal. However, 
infinite amplification of the signal makes the beamformer out-
put unstable. Therefore, a stabilization term is introduced in 
the SNR factor as

where � is a stabilization parameter and p̃DAS is the output of 
the DAS beamformer obtained using complex analytic sig-
nals of channel RF signals. The numerator in Eq. (6) is the 
same as that in Eq. (4). The beamformer output pSNR with 
SNR weighting is obtained in the same way as that with CF 
weighting shown in Eq. (5).

By weighting DAS beamformed signals with the MSD or 
SNR factor, contrast between coherent and incoherent com-
ponents can be increased in comparison with CF. The differ-
ence between coherent and incoherent signals, in particular, 
is amplified to infinite using the SNR factor when the sta-
bilization parameter � is zero. However, such amplification 
would not be infinite because the aperture size is finite in real 
situations. The ratio of the power of the coherent component 
to that of the incoherent components in the output of each 
beamformer is expressed as follows [15]:

where RDAS , RCF , and RSNR are the ratios for the DAS beam-
former, DAS beamformer with CF weighting, and that with 
SNR weighting, respectively, M is the number of elements 
in the receiving aperture, p is the amplitude of the echo from 
the focal point, and �n is the mean amplitude of noise. Fig-
ure 2 shows the theoretical ratios of coherent to incoherent 
components obtained by setting M in Eqs. (7)-(9) at 64. Note 
that the values plotted in Fig. 2 were normalized by ||p∕�n||

2 , 
and the minimum value of the stabilization parameter � for 
the SNR factor was set at 0.01. As can be seen in Fig. 2, 
CF and the SNR factor significantly increase the difference 
between coherent and incoherent components. The SNR 
factor is identical to CF when � = 1. Compared with CF, 
the SNR factor amplifies the ratio of coherent to incoherent 
components when 𝛾 < 1.

(6)SNR =
��p̃DAS��

2

1

M

∑M−1

m=0
��p̃m − p̃DAS

��
2
− 𝛾 ⋅ ��p̃DAS��

2
,

(7)RDAS = M
||||
p

�n

||||

2

,

(8)RCF = M3
||||
p

�n

||||

2

,

(9)RSNR =
M|M + (� − 1)|2

�2

||||
p

�n

||||

2

,

Adaptive beamforming

The minimum variance (MV) beamformer [16–23] is a 
representative method for adaptive beamforming. In DAS 
beamforming, the apodization scheme, which applies 
weights to channel signals, is in general used to lower 
the side-lobe level. The MV beamformer adaptively deter-
mines the weights depending on the received channel sig-
nals, while the apodization weights in DAS beamforming 
are fixed. Also, the apodization weights in DAS beamform-
ing are real values controlling only amplitudes of channel 
signals. On the other hand, the weights in MV beamform-
ing are complex-valued, and the MV beamformer also 
controls time delays applied to channel signals so that the 
output power becomes minimum while keeping the all-
path characteristics with respect to the desired direction 
(focal point). This problem is expressed as follows: The 
channel echo signal is expressed in a vector form as

where T denotes transpose. The beamformer weights wm are 
also expressed in a vector form as

Since the output of the MV beamformer is expressed as 
pMV = w

H
⋅ s̃ , the expected power of the MV beamformer 

is expressed as

where H, E[∙], and R denote the Hermitian transpose, expec-
tation, and covariance matrix, respectively. The minimiza-
tion problem is described as

(10)s̃ =
[
s̃0s̃1s̃2 … s̃M−1

]T
,

(11)w =
[
w0w1w2 …wM−1

]T
.

(12)E
[
||pMV

||
2
]
= w

HE
[
s̃s̃

H
]
w = w

H
Rw,

Fig. 2   Theoretical ratios of coherent to incoherent components
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where a is a steering vector. The solution to this problem 
is given by

The steering vector a becomes a vector of ones when 
the differences in time delays of channel signals due to the 
differences in propagation distances between elements and 
focal point are compensated. Also, diagonal loading, which 
adds small values to the diagonal components of a matrix, is 
applied to covariance matrix R to stabilize the beamformer 
output.

Various attempts have been made to improve the per-
formance of the MV beamformer. The forward–backward 
estimation of a covariance matrix improved image con-
trast and robustness in MV beamforming [24]. Eigen-
value decomposition of the covariance matrix was used in 
MV beamforming and applied to imaging of hard tissues 
for better delineation of edges [25, 26], and a covariance 
matrix obtained from combinations of different sub-arrays 
improved image contrast in MV beamforming [27]. Also, 
the MV beamformer was combined with coherence factors 
to improve resolution and contrast further [28–30]. Further-
more, Wiener filtering was used in the beamforming process 

(13)
�wMV = argmin

w
E
[
|ws̃|2

]
= argmin

w
w
H
Rw, subject to wH

a = 1,

(14)ŵMV =
R
−1
�

aHR
−1
a

.

and coherence estimation [31–33]. The MV beamformer can 
also be applied to determination of the weights in coherent 
compounding of plane-wave images obtained at different 
steering angles [34–36].

Assessment of image quality

Figures 3(1-a) to (1-e) show B-mode images of string targets 
obtained by DAS, FDMAS, DAS with CF, DAS with SNR 
factor, and MV, respectively. Figures 3(2-a) to (2-e) show 
similar results on an anechoic cyst target. Those images were 
obtained by coherent plane-wave compound imaging with 
a 7.5-MHz linear array at an element pitch of 0.2 mm [37]. 
Plane waves were emitted at steering angles from −10 to 10 
degrees at angle intervals of 0.5 degrees (21 angles). The 
F-number was set at 2.08, which was calculated from the 
full width at half maximum (FWHM) of Gaussian apodiza-
tion. Gaussian apodization was used in DAS, FDMAS, and 
DAS with CF. Channel data from an aperture with a width 
of FWHM of Gaussian apodization was processed for lin-
ear regression beamforming [15] for estimation of the SNR 
factor and MV beamforming. In Fig. 3, each beamforming 
method was applied to RF signals received by individual 
transducer elements to obtain beamformed RF signals at 
each transmit steering angle. Such beamformed RF signals at 

Fig. 3   B-mode images of string (1) and cyst (2) phantoms obtained with different beamforming methods. a DAS. b FDMAS. c DAS with CF. d 
DAS with SNR factor (γ = 500). e MV (sub-aperture size: 2/3 of total aperture, diagonal loading: 0.1 of received power)
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all steering angles were coherently compounded (summed) 
to obtain the final beamformed RF signals.

Figure 4 was obtained by applying FDMAS for com-
pounding beamformed RF signals obtained at different 
transmit steering angles. Also, DAS with CF, DAS with 
SNR factor, and MV were used to determine the weights 
to compound those beamformed RF signals. In Fig. 4, the 
beamformed RF signal at every transmit steering angle was 
obtained by DAS beamforming. Then, RF signals obtained 
at all steering angles were compounded using FDMAS, DAS 
with CF, DAS with SNR factor, and MV. Figures 4(1-a) to 
(1-d) show images of string targets obtained with com-
pounding by FDMAS, DAS with CF, DAS with SNR factor, 
and MV, respectively. Figures 4(2-a) to (2-d) show similar 
results on a cyst target.

Image quality is in general evaluated using metrics such 
as spatial resolution, contrast, and CNR [38, 39]. The spatial 
resolution is often evaluated using the FWHM of an echo 
from a point (string) target. Contrast and CNR are defined as

where �T and �2
T
 are the mean and standard deviation of 

amplitudes of beamformed echo signals in a target region, 
and �B and �2

B
 are those in a background speckle region.

(15)Contrast =
�B

�T

,

(16)CNR =
||�T − �B

||√
�2
T
+ �2

B

,

Fig. 4   B-mode images of string (1) and cyst (2) phantoms obtained with different methods for coherent compounding. a FDMAS. b DAS with 
CF. c DAS with SNR factor (γ = 500). d MV (sub-aperture size: 2/3 of total aperture, diagonal loading: 0.1 of received power)

Table 1   Evaluation metrics obtained by different beamforming meth-
ods

FWHM [mm] Contrast [dB] CNR gCNR

DAS 0.449 − 32.37 1.830 0.984
FDMAS 0.264 − 24.84 1.110 0.869
CF 0.332 − 67.62 0.767 0.690
SNR 0.441 − 37.91 1.622 0.986
MV 0.265 − 28.19 1.600 0.966
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The metrics described above were evaluated with respect 
to the images shown in Fig. 3 and summarized in Table 1 
and Fig. 5. Also, Table 2 and Fig. 6 summarize metrics eval-
uated with respect to the images in Fig. 4. Figures 7 and 8 
show lateral amplitude profiles of echoes from a string target 

at a depth of about 10 mm in Figs. 3 and 4, respectively. The 
lateral resolution is improved by adaptive imaging meth-
ods, i.e., the weighting-based methods and MV beamformer. 
Also, the contrast value was improved by adaptive methods, 
except for the MV beamformer. On the other hand, CNR was 
degraded by the adaptive methods.

As described in “Coherence-based adaptive imaging”, 
the weighting-based adaptive imaging methods suppress 
beamformed echo signals with low coherence. As a result, 
the contrast between partially coherent (speckle background) 
and incoherent (anechoic cyst) regions is increased. This 
could alter the dynamic range of the beamformed signals. 
As can be seen in Fig. 3(2-c), speckles in B-mode images 
obtained by the weighting-based method seem “well-
resolved.” However, such an effect is caused by the change 
in signals’ dynamic range. Improvement in the spatial reso-
lution can also be caused by such an effect. As described 
above, adaptive imaging methods can alter signals’ dynamic 
range and speckle statistics [40, 41], and such effects damage 

Fig. 5   Evaluation metrics obtained from the images in Fig. 3

Table 2   Evaluation metrics obtained by different methods for coher-
ent compounding

FWHM [mm] Contrast [dB] CNR gCNR

FDMAS 0.440 − 45.72 1.571 0.963
CF 0.335 − 55.42 1.297 0.893
SNR 0.438 − 33.16 1.736 0.961
MV 0.189 − 18.50 1.166 0.710

Fig. 6   Evaluation metrics obtained from the images in Fig. 4

Fig. 7   Lateral amplitude profiles of an echo from a string target at a 
depth of about 10 mm obtained with different beamforming methods

Fig. 8   Lateral amplitude profiles obtained with different methods for 
coherent plane-wave compounding
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speckles. This means that a clinically relevant metric, CNR, 
is degraded significantly.

Several studies have been conducted to deal with such 
effects of the adaptive imaging methods and evaluate image 
quality more appropriately. Mallart and Fink [8] and Liu 
and Waag [42] introduced the van Cittert-Zernike (VCZ) 
theorem [43] to evaluate the spatial coherence of backscat-
tered ultrasonic waves. The spatial coherence is evaluated by 
correlation of the channel signal and is sensitive to factors 
degrading image quality, such as phase aberration, off-axis 
and reverberation clutters, and thermal noise. Owing to such 
a characteristic of the spatial coherence, Long et al. proposed 
a method for evaluation of image quality using lag-one spa-
tial coherence estimated from channel echo signals [44]. The 
spatial coherence is evaluated as

where n1 and n2 define the axial number of sampled sig-
nals used for estimation of the lag-one coherence, and ⟨⋅⟩ 
denotes averaging in an assigned region of interest (ROI). 
The lag-one coherence is obtained by setting m at 1. To 
obtain the traditional metrics, i.e., contrast and CNR, two 
regions of interest corresponding to target and speckle back-
ground regions are required, and it is preferable that those 
regions are homogeneous. Therefore, the traditional con-
trast and CNR are in general evaluated in phantom experi-
ments because it is in general difficult to find a homogeneous 
region in real tissue. The lag-one coherence can be evaluated 
in a single ROI as a measure of acoustic clutter and thermal 
noise.

Rodriguez-Molares, et  al. proposed another metric, 
namely, generalized CNR (gCNR) [45]. Adaptive imaging 
methods often improve image contrast significantly, which 
contributes to lesion detectability. On the other hand, they 
also damage speckles. Therefore, CNR is regarded as a more 
clinically important metric for evaluation of image quality. 
However, just compressing echo amplitude values using 
sigmoid curve can improve CNR when the traditional defi-
nition of CNR given by Eq. (16) is used [45]. The gCNR 
was developed as a metric that is less influenced by such 
alteration of signals’ dynamic range. The gCNR is obtained 
by analyzing the probability density distributions of echo 
amplitude values in target and background speckle regions 
and is defined as

(17)R(m) =
1

M − m

M−m�

i=1

∑n2
n=n1

si(n)si+m(n)
�∑n2

n=n1
s2
i
(n)

∑n2
n=n1

s2
i+m

(n)

(18)R̂(m) = ⟨R(m)⟩,

(19)gCNR = 1 − OVL,

where OVL is the area of the overlap region between both 
probability density distributions. Figure 9 shows examples 
of histograms of echo amplitudes in lesion (cyst) and back-
ground regions in the B-mode images shown in Fig. 3. The 
evaluated gCNRs are summarized in Tables 1 and 2. The 
gCNR can be used to evaluate the target detectability inde-
pendently of alteration of the dynamic range [45].

Recent trends in adaptive imaging

Coherence‑based method

Among the adaptive imaging methods described in “Beam-
forming”, short-lag spatial coherence (SLSC) imaging is a 
method that more pays attention to CNR [46, 47]. The lag-
one coherence is recently used for evaluation of image qual-
ity, but the SLSC imaging methods utilize the spatial coher-
ence described in Eq. (17) at multiple lags. SLSC RSLSC is 
obtained as follows:

where MSL determines the number of lags used for esti-
mation of SLSC. The SLSC imaging method directly 
maps SLSC RSLSC evaluated by Eq. (20), unlike a B-mode 
image, which maps amplitudes of echo signals. An SLSC 
image provides a better CNR than a conventional B-mode 
image, depending on the number of lags used for evaluation 
of SLSC. A better CNR value can be obtained by SLSC 
because the variance in the spatial coherence function at 
short lags is low in a diffuse scattering medium. Recently, it 
has also been shown that SLSC has potential for use in tis-
sue characterization [48]. On the other hand, SLSC values, 
which do not show differences in scattering strengths, are 

(20)R̂SLSC =

MSL∑

m=1

R(m),

Fig. 9   Examples of probability density distributions of echo ampli-
tudes in lesion (cyst) and background regions
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directly mapped as described above, and it is still unclear 
whether SLSC images can replace B-mode images.

Clutter reduction

Another way to improve image quality without degrading 
CNR and damaging speckles is to reduce clutter signals. 
Clutter signals, such as off-axis and reverberation echoes, 
significantly degrade image contrast. Among the recent 
developments in ultrasonography, harmonic imaging is 
the most powerful and widely implemented approach to 
reduce clutter signals [49–51]. The harmonic imaging 
approach significantly reduces clutter signals, but clut-
ter signals are still not eliminated perfectly. Byram et al. 
proposed a method, called aperture domain model image 
reconstruction (ADMIRE), for reduction of clutter sig-
nals contained in channel echo signals [52–54]. In their 
method, a model of the channel echo signal is expressed as

where x , t  , and � are the lateral position in the aperture, 
time, and angular frequency, respectively, k is the wavenum-
ber, xn and zn are the lateral and axial positions of a scatterer 
at time �n, respectively, �

(
x;xn, zn, �n

)
 is the time delay of the 

wavefront of a signal arriving from a point, which is located 
at lateral and axial positions of xn and zn , respectively, at 
time �n , N is the number of scatterers, and A

(
x;xn, zn, �n,�

)
 

is the amplitude modulation induced by windowing in Fou-
rier transform and element directivity. The ADMIRE method 
determines coefficients for fitting the model to the measured 
signals, and the components estimated from the models for 
positions outside an acceptance region are discarded as clut-
ter signals. Significant reduction of clutter signals could be 
achieved by the ADMIRE method in simulation, phantom, 
and in vivo studies.

Morgan et al. also decomposed received echo signals 
into components from main lobe, side lobe, and incoher-
ent noise using models of their covariance model, namely, 
constituent covariance models [55, 56]. The model of 
the covariance matrix R̂ of the received echo signal is 
expressed as

where P is the number of constituent components, Ai is the 
constituent covariance model of the i-th component, �2

i
 is the 

scalar variance, which corresponds to the power of the i-th 
component, and N is a noise matrix. The least-square esti-
mate of the scalar variance of each component is obtained as

(21)g(x;t,�) =

N−1∑

n=0

A
(
x;xn, zn, �n,�

)
ejk�(x;xn,zn,�n),

(22)R̂ =

P∑

i=1

�2
i
Ai + N,

where  �
2  i s  t he  P × 1 vec tor  o f  var iances 

�
2 =

[
�2
1
, �2

2
,… , �2

P

]T , and (F) and T denote the Frobenius 
norm and transpose, respectively. The square root of the esti-
mated variance of the main-lobe component was mapped to 
obtain a MIST (multi-covariate imaging of sub-resolution 
targets) image. Significant improvements in contrast and 
CNR as a result of the MIST method were shown in simula-
tion, phantom, and in vivo studies.

Estimation of speed of sound

An inhomogeneity in sound speeds in tissue also degrades 
ultrasonic image quality. Although ultrasonic computed 
tomography (USCT) was developed for estimation of the 
spatial distribution of sound speeds [57–62], it is not suitable 
for ultrasonography based on the pulse-echo method because 
USCT basically requires measurement of an ultrasonic wave 
transmitted through a medium. Recently, USCT in the pulse-
echo mode [63–66] is being studied intensively.

In the pulse-echo mode, an attempt to estimate the sound 
speed was made using the difference in propagation time 
delays of echoes from a target (or target region) obtained 
with two crossed beams arranged in two directions [67–70] 
or multiple directions [71, 72]. The arrival time of an ultra-
sonic echo was estimated from the temporal position of the 
pulse or correlation analysis applied to echo obtained from 
two directions. The sound speed was also estimated using 
the delay profile of an echo from a distinct scatterer [73].

In DAS beamforming in pulse-echo mode, it is neces-
sary to assume the sound speed in tissue. Various attempts 
have been made to estimate the average sound speed to 
improve the focusing quality in ultrasound beamforming. 
Ogawa et al. evaluated the magnitudes of the output of a 
DAS beamformer under different assumed sound speeds 
to determine the sound speed that maximizes the output 
[74–76]. A similar method was proposed by Cho et al. 
[77]. The output of the DAS beamformer becomes maxi-
mum when the wavefront of the scattered spherical wave 
from a receiving focal point is estimated most accurately, 
i.e., the sound speed is set appropriately. The speed of 
sound was also determined by evaluating the bandwidth 
of the beamformed signal in the lateral direction, which 
corresponds to the lateral resolution of an ultrasonic image 
[78]. Furthermore, the sound speed was estimated by max-
imizing spatial coherence evaluated using channel echo 
signals. The sound speed is estimated by maximizing the 
CF defined by Eq. (4) [79–83]. An example is shown in 
Fig. 10. Figures 10(1-a) and (1-b) show B-mode images 
of a phantom (model 040GSE, CIRS) obtained by DAS 

(23)�̂
2

ls
= argmin

�
2
R −

P∑

i=1

�2
i
A
2
iF
,



385Journal of Medical Ultrasonics (2021) 48:377–389	

1 3

beamforming at a constant sound speed of 1540 m/s and 
with average sound speeds estimated by maximizing the 
CF [82, 83]. In Fig. 10, the approximate positions of the 
enlarged regions are indicated by the green rectangles. 
Echo signals were acquired by the line-by-line sequence 
with a transmit beam focused at 20 mm. A 7.5-MHz linear 
array probe was used, and porcine tissue was placed on the 
top of the phantom as an aberrating medium. The lateral 
full width at half maximum of the echo from a string target 
was improved from 0.538 mm to 0.472 mm by correcting 
the sound speed. Figure 10(2) shows similar results for a 
human common carotid artery in a transverse plane. As 
can be seen in Fig. 10(2), echoes from the lumen-intima 

interface of the posterior wall were visualized in a wider 
region using the sound speed estimated by maximizing 
the CF.

Aberration correction

Inhomogeneity in tissue sound speeds distorts wavefronts 
of transmitted and reflected ultrasonic waves. Numerous 
studies have been conducted on measurement and correc-
tion of such aberrations [84–88]. Imbault et al. evaluated the 
spatial coherence based on Eq. (17) and estimated the local 
sound speed so that the spatial coherence was high in a wide 
range of lag [89–91]. They used an iterative time reversal 

Fig. 10   B-mode images of 
phantom with aberrating layer 
(1) and carotid artery (2). a 
With constant sound speed of 
1540 m/s. b With sound speeds 
estimated by maximizing the 
coherence factor
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focusing method [92] to obtain the aberration profile and 
create a virtual point reflector to more accurately estimate 
the spatial coherence in an inhomogeneous medium. Lam-
bert et al. stacked channel echo signals obtained by setting 
focal points at a point of interest and positions very close to 
the point of interest [93]. They used the same concept in the 
iterative time reversal focusing method in estimation of an 
aberration profile in the reflection matrix method, which also 
enables suppression of reverberation clutter. In their study, 
the aberration profile for the point of interest was extracted 
from those obtained from other focal points using singular 
value decomposition (SVD) [93]. This concept utilized SVD 
for aberration correction in coherent plane-wave compound-
ing, called “SVD beamformer” [94]. In SVD beamforming, 
beamformed complex RF signals in a local area of Nx × Nz 
samples are obtained from N� emissions of plane waves 
steered at different angles. This 3D matrix of a dimension 
of Nx × Nz × N� is reshaped into a 2D Casorati matrix of a 
dimension of NxNz × N� , and then SVD is applied to the 
2D matrix. The spatial singular vector with the largest sin-
gular value corresponds to the aberration-corrected image. 
Figures 11a and b show B-mode images obtained with 
conventional coherent plane-wave compounding and SVD 

beamforming, respectively. Ultrasonic echoes were acquired 
with plane-wave emissions at steering angles between -20 
and 20 degrees at angular intervals of 0.5 degrees (81 
angles). As can be seen in Fig. 9b, the contrast of the thin 
dark region was improved by correcting aberrations using 
SVD beamforming.

Conclusion and perspectives

Since image quality in ultrasonography is a key factor deter-
mining the accuracy of diagnosis, numerous studies have 
been conducted to investigate various phenomena affecting 
image quality and develop methods for improving image 
quality, as described in this article. Such investigations 
on methods for ultrasonic image formation have become 
increasingly active because programable ultrasound scanners 
[95–97] became widely available recently. Also, the wide 
availability of GPUs enables implementations of image for-
mation algorithms that require more intensive computations 
[98, 99]. Such a research environment should further accel-
erate explorations in this field, and the deep neural network 
should also provide a powerful option for medical ultrasound 

Fig. 11   Examples of B-mode 
images obtained with conven-
tional coherent plane-wave 
compounding (a) and SVD 
beamforming (b)
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beamforming [100–104], ultrasound image processing such 
as speckle reduction [105, 106], and image segmentation 
[107, 108], etc. Through such investigations, ultrasonogra-
phy will increase its value in medical diagnostics.
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