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Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD) is expected to increase because of the current epidemics of 
obesity and diabetes, and NAFLD has become a major cause of chronic liver disease worldwide. Liver fibrosis is associated 
with poor long-term outcomes in patients with NAFLD. Additionally, increased mortality and liver-related complications are 
primarily seen in patients with nonalcoholic steatohepatitis (NASH); however, nonalcoholic fatty liver (NAFL) is believed 
to be benign and non-progressive. Therefore, distinguishing between NASH and NAFL is clinically important. Liver biopsy 
is the gold standard method for the staging of liver fibrosis and distinguishing between NASH and NAFL. Unfortunately, 
liver biopsy is an invasive and expensive procedure. Therefore, noninvasive methods, to replace biopsy, are urgently needed 
for the staging of liver fibrosis and diagnosing NASH. In this review, we discuss the recent studies on magnetic resonance 
imaging (MRI), including magnetic resonance elastography, proton density fat fraction measurement, and multiparametric 
MRI (mpMRI) that can be used in the assessment of NASH components such as liver fibrosis, steatosis, and liver injury 
including inflammation and ballooning.

Keywords Magnetic resonance elastography · Proton density fat fraction · Corrected-T1 · Nonalcoholic fatty liver disease · 
Nonalcoholic steatohepatitis

Introduction

Nonalcoholic fatty liver disease (NAFLD) has become a 
major cause of chronic liver disease worldwide. Its preva-
lence is currently estimated to be 25% in the general popula-
tion [1, 2], 90% in those with obesity, and 60% in those with 
type 2 diabetes mellitus [3–5]. The prevalence of NAFLD 
is expected to increase because of the current epidemics of 
obesity and diabetes [6]. Additionally, liver fibrosis has been 
reported to be strongly associated with the long-term out-
comes in patients with NAFLD [7, 8].

Liver biopsy is the recommended gold standard method 
in the diagnosis of nonalcoholic steatohepatitis (NASH) 
and staging of liver fibrosis in patients with NAFLD [9]. 

However, because of high costs, possible risks, and require-
ment for healthcare resources, an invasive liver biopsy is a 
poorly suited diagnostic test for such a prevalent condition 
[10]. Therefore, alternatives to liver biopsy, including bio-
chemical tests and assessments of liver stiffness measure-
ment (LSM), are being developed [11]. LSM is a promising 
surrogate biomarker of the stage of liver fibrosis, and several 
elastography techniques are currently available for the same, 
including magnetic resonance elastography (MRE) [12, 13]. 
In this review, we discuss the recent studies on the use of 
magnetic resonance imaging (MRI), including MRE, in the 
assessment of liver fibrosis and other pathological findings, 
such as steatosis, inflammation, and ballooning in NAFLD.

Magnetic resonance elastography 
for the assessment of liver fibrosis in NAFLD

MRE was developed at the Mayo Clinic in 1995 [14], 
introduced into clinical practice in 2007, and approved 
by the FDA in 2010. It is an MRI-based technique for 
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quantitative imaging of tissue stiffness and is currently 
the most accurate noninvasive imaging method available 
for diagnosing liver fibrosis [15–18]. MRE is currently 
available on MR scanners of three major manufacturers 
(General Electric, Milwaukee, WI, USA; Philips Medical 
Systems, Best, Netherlands; Siemens Healthineers, Erlan-
gen, Germany) with 1.5-T and 3-T field strengths.

If there is a dedicated device and software for the gen-
eration and analysis of liver elastic wave propagation, 
quantitative stiffness images (elastograms) of the liver 
can be rapidly obtained during breath-holding and can, 
therefore, be readily included in the conventional liver 
MRI protocols [19]. The volume of the liver that is meas-
urable using MRE is typically ≥ 250 mL and up to a third 
of the liver volume [20, 21]. A more advanced version of 
three-dimensional (3D) MRE, which is commercially not 
available at present, can evaluate the entire liver volume 
and was used in a recent prospective study [22]. Therefore, 
MRE can be used to assess the entire liver with a high 
success rate [23]. Furthermore, unlike ultrasonography 
(US)-based techniques, the success of MRE is operator-
independent [18] and is minimally affected by obesity 
[15]. MRE is also highly repeatable; the inter-observer 
and intra-observer reproducibility among the scanners is 
high [24–27]. The failure rate of MRE was estimated to be 
approximately 1% in an unscreened population [28] and 
5% in patients with various liver diseases [29], with sub-
stantial iron deposition in the liver being the most common 
cause of failure. The technical failure rate associated with 
iron deposition is higher with 3 T MR systems than with 
1.5 T MR systems because of the stronger susceptibility 
effect of iron. Patients who are claustrophobic and have 
MR-incompatible implants cannot tolerate MR exams. 
Additionally, motion artifacts such as cardiac impulses are 
also a cause of failure because MRE is a motion-sensitive 
technique. MRE should be conducted after ≥ 4 h of fast-
ing because LSM may increase due to postprandial portal 
blood flow [30].

An increasing number of studies have demonstrated 
that MRE is an accurate method for diagnosing and stag-
ing hepatic fibrosis in NAFLD (Table 1). Among the 
studies that used MRE, the AUROC for the diagnosis of 
stage > 1, > 2, > 3, and 4 was 0.772–0.869, 0.856–0.919, 
0.870–0.981, and 0.882–0.993, respectively [31–38]. 
In the most recent meta-analysis by Xiao et al., which 
included 5 studies and 628 patients with NAFLD, the 
AUROCs for the diagnosis of stages 2, 3, and 4 fibrosis 
using MRE were 0.88, 0.93, and 0.92, respectively [39]. 
In a systematic review, the authors concluded that MRE 
might have the highest diagnostic accuracy for the staging 
of liver fibrosis (Fig. 1) [38]. The optimal MRE thresholds 
were 2.61, 2.97, 3.62, and 4.69 kPa, respectively, for the 
detection of any (stage ≥ 1), significant (stage ≥ 2), and 

advanced (stage ≥ 3) fibrosis and cirrhosis (stage ≥ 4) in 
patients with NAFLD [38].

MRE has several advantages over US-based elastography 
in the evaluation of liver fibrosis. Xiao et al. [39] conducted 
a systematic review and meta-analysis, which included 64 
articles and 13,046 patients with NAFLD, to compare the 
diagnostic performances of noninvasive indices (aspartate 
aminotransferase-to-platelet ratio index (APRI], fibrosis-4 
index (FIB-4], BARD score, NAFLD fibrosis score (NFS], 
vibration-controlled transient elastography (VCTE) [M and 
XL probe], shear wave elastography (SWE), and MRE in 
the prediction of significant fibrosis, advanced fibrosis, and 
cirrhosis; they found that MRE offered the best diagnostic 
performance for the staging of liver fibrosis. Other stud-
ies have also demonstrated that MRE is superior to VCTE 
and noninvasive indices in the diagnosis of liver fibrosis in 
patients with NAFLD [22, 34–36]. Since MRE has the high-
est accuracy in the diagnosis of liver fibrosis, it is increas-
ingly regarded as a promising surrogate for the monitoring 
of disease progression and assessment of therapeutic end-
points [40]. The most recent prospective cohort study by 
Ajmera et al. [41] investigated the clinical utility of MRE 
in predicting the progression of fibrosis in patients with 
NAFLD with paired biopsies and paired MRE measure-
ments. The authors reported that a 15% increase in MRE 
was associated with histologic progression of fibrosis. More 
recently, Honda et al. suggested in their review article, which 
summarized the meta-analysis of MRE, that MRE had good 
diagnostic accuracy over US-based elastography techniques 
in the assessment of liver fibrosis [42].

Proton density fat fraction (PDFF) measurement 
to assess steatosis in NAFLD

PDFF is the ratio of MRI-visible protons bound to fat to 
all protons in the liver (bound to fat and water); it is an 
MRI-based method for quantitatively assessing hepatic 
steatosis and is available from several manufacturers of 
MRI scanners. Chemical shift imaging is applied to sep-
arate the liver signal into water and fat components by 
acquiring the gradient echoes at appropriately spaced echo 
times. In some variants of this approach, only the magni-
tude data are retained while the phase data are discarded. 
These variants accurately quantify hepatic PDFF from 0 
to 50%, which fortuitously captures the biological range of 
human hepatic steatosis, which rarely exceeds 50% [43]. 
Scan protocol parameters, such as flip angle and echo 
times, the fat signal model, and T2*-corrections are sen-
sitive variables influencing the PDFF measurement [44]. 
Grimm et al. indicated that multi-point Dixon sequences, 
but not two-point sequences, should be used for PDFF 
measurements [44]. The precision and reproducibility of 
MRI-PDFF measurement have been explored. Negrete 
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et al. [45] demonstrated high inter-examiner agreement 
in participants with obesity for each hepatic segment 
(intraclass correlation (ICC) ≥ 0.992, standard devia-
tion (SD) ≤ 0.66%, range ≤ 1.24%), lobe (ICC ≥ 0.998, 
SD ≤ 0.34%, range ≤ 0.64%), and whole liver (ICC = 0.999, 
SD ≤ 0.24%, range ≤ 0.45%). Similar intra- and inter-exam-
iner precisions were demonstrated in overweight and obese 
participants by Tyagi et al. [46]. Bannas et al. [47] further 
demonstrated significantly smaller variance with excellent 
intra- and inter-observer agreement and repeatability with 
MRI-PDFF compared with histologic grading of steato-
sis (P < 0.001). Vu et al. [48] suggested that MRI-PDFF 
quantification methods should sample each liver segment 
in both lobes and include a total surface area ≥ 5  cm2 to 
provide accurate estimate of the mean liver PDFF.

MRI-PDFF correlates with the histologically deter-
mined grade of steatosis in patients with NAFLD. Studies 
that used MRI-PDFF measurement reported that AUROCs 
for the diagnosis of grade > 1, grade > 2, and stage 3 were 
0.960–0.990, 0.825–0.90, and 0.79–0.92, respectively. 
The corresponding MRI-PDFF cutoffs for mild steatosis 
(grade > 1) ranged from 3.5 to 8.9%, with a sensitivity of 
89%–97% and specificity of 88%–100% (Table 2) [34, 36, 
49–51]. Imajo et al. [34] directly compared and demon-
strated that MRI–PDFF measurement had higher accuracy 
than VCTE-based controlled attenuation parameter (CAP) 
in diagnosing steatosis in patients with NAFLD. However, 
they only assessed VCTE using the M probe. More recently, 
using a well-characterized, prospective cohort of American 
adults with biopsy-proven NAFLD, Park et al. [36] com-
pared the accuracy of VCTE-based CAP measurement using 
both M and XL probes and compared it with that of MRI-
PDFF measurement in diagnosing steatosis in patients with 
NAFLD; they demonstrated that MRI-PDFF measurement 
was superior to CAP measurement using M and XL probes. 
More recently, Runge et al. [52] demonstrated that MR 
spectroscopy-derived PDFF measurement was superior to 
CAP measurement in detecting and grading liver steatosis 
in human NAFLD.

Multiparametric MRI (mpMRI)

The utility of MRE has been demonstrated for identify-
ing patients with NASH from those with simple steatosis 
[52] and from those with advanced fibrosis in chronic liver 
disease [53]. However, it has not exhibited sufficient utility 
for longitudinal monitoring of fibrosis [54, 55]. Further-
more, there is conflicting evidence regarding the effects of 
body mass index (BMI) on the MRE failure rates and its 
diagnostic performance [29, 56, 57].

Multiparametric MRI (mpMRI) measurements of 
hepatic steatosis (PDFF) and iron-corrected T1 (cT1) are 
emerging as promising quantitative imaging biomarkers Ta
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for NASH. MpMRI is now standardized across all major 
MRI platforms and is available in several countries. MRI-
PDFF has excellent correlation with histologically graded 
steatosis across the clinical range seen in NAFLD [58] 
and high diagnostic accuracy in stratifying all grades of 
liver steatosis [59–61], and cT1 has been demonstrated 
to correlate with ballooning [62]. More importantly, it 
has been demonstrated to predict the clinical outcomes in 
patients with chronic liver disease [63]. Additionally, the 
AUROCs in mpMRI were 0.69, 0.74, and 0.80, respec-
tively, while differentiating between NASH and NAFL and 
while considering cT1 as an index test in the differen-
tiation between NAS < 5 and ≥ 5 for the same index test, 

and in the diagnosis of NASH using liver inflammation 
and fibrosis (LIF) score [62, 63]. An optimal cutoff for 
LIF has recently been identified with a sensitivity of 91% 
and specificity of 52%. For cT1, as well, an optimal cut-
off (875 ms) has been suggested to distinguish between 
low- and high-risk (NASH or fibrosis > 1) patients with 
sensitivity and specificity of 97% and 50%, respectively. 
Both metrics have demonstrated excellent technical valid-
ity with high repeatability and reproducibility across MRI 
manufacturers and field strengths [64]. The technical vali-
dation and precision afforded by mpMRI techniques, as 
well as their sensitivity to subtle changes in hepatic fat 
and fibro-inflammation, have resulted in their increasing 
inclusion as endpoints in NASH clinical trials, as well as 
inclusion in the FDA and EMA Biomarker Qualification 
Programs.

The diagnosis of NASH is currently based on the his-
tological presence of steatosis, lobular inflammation, and 
ballooning. The presence of fibrosis, in addition to these 
pathological findings, suggests more advanced disease. It is 
important to note, however, that the only biomarkers demon-
strated to predict the outcomes in these patients are histolog-
ical fibrosis and MRI cT1 [65]. Of these, cT1 is sensitive to 
steatosis, ballooning, and inflammation, as well as fibrosis, 
and, therefore, cannot be a pure biomarker of fibrosis. An 
actual measurement image and details on the above report 

Fig. 1  Pathological fibrosis and MRE images with optimal threshold 
values from representative patients with stage 0, 1, 2, 3, and 4 fibro-
sis, respectively

Table 2  Proton density fat fraction in patients with NAFLD

Design Comparison with 
controlled attenua-
tion parameter

Steatosis grade Cutoff value (%) AUROC Se Sp PPV NPV Reference

Cross-sectional 
prospective single 
center

N = 51

No Grade ≥ 1 8.9 ND ND ND ND ND Permutt et al. Aliment 
Pharmacol Ther. 
2012; 36(1): 22–29.
(47)

Grade ≥ 2 16.3 ND ND ND ND ND
Grade 3 25.02 ND ND ND ND ND

Cross-sectional 
prospective single 
center N = 77

No Grade ≥ 1 6.4 0.989 0.97 1.00 1.00 0.71 Tang et al. Radiol-
ogy. 2014; 267(2): 
422–31.(48)

Grade ≥ 2 17.4 0.825 0.61 0.90 0.90 0.61
Grade 3 22.1 0.893 0.68 0.91 0.72 0.90

Cross-sectional 
prospective single 
center N = 142

Yes
Vs. VCTE (M probe)

Grade ≥ 1 5.2 0.96 0.900 0.933 0.892 0.519 Imajo et al
Gastroenterology. 

2016;150(3): 
626–637.(33)

Grade ≥ 2 11.3 0.90 0.789 0.841 0.845 0.784
Grade 3 17.1 0.79 0.737 0.810 0.632 0.953

Cross-sectional 
prospective single 
center N = 27. 
Child

No Grade ≥ 1 3.5 ND 0.890 0.880 ND ND Di Martino M et al. 
World J Gastroen-
terol. 2016; 22(39): 
8812–8819.(49)

Grade ≥ 2 ND ND ND ND ND ND
Grade 3 ND ND ND ND ND ND

Cross-sectional 
prospective single 
center N = 104

Yes
Vs. VCTE (M and 

XL probe)

Grade ≥ 1 3.71 0.99 0.958 1.000 1.000 0.700 Park et al. Gastro-
enterology. 2017; 
152(3): 598–607.
(35)

Grade ≥ 2 13.03 0.90 0.800 0.833 0.750 0.870
Grade 3 16.37 0.92 0.818 0.836 0.450 0.966

Prospective single 
center N = 55

Yes
Vs. VCTE (M probe)

Grade ≥ 1 4.14 0.99 0.940 1.000 1.000 0.625 Rung JH et al. 
Radiology. 2018 
Feb;286(2):547–556. 
(50)

Grade ≥ 2 15.72 0.98 0.923 0.966 0.960 0.933
Grade 3 20.88 0.96 1.000 0.826 0.529 1.000
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on mpMRI in the assessment of the pathogenesis of NAFLD 
are presented in Fig. 2 and Table 3.

MRI technologies for the assessment 
of steatohepatitis in NAFLD

MRE was evaluated for diagnosing NASH in six studies; the 
AUROCs ranged from 0.70 to 0.79 with sensitivity and spec-
ificity of 72% and 87%, respectively, for NAS ≥ 5 in studies 
that did not include fibrosis in the NASH definition, and 
similar results were observed in a subset of patients without 
fibrosis [22, 34, 36, 53, 54]. Among MR non-elastographic 
techniques (Table 3), the 31PMRS-derived ratio between 
nucleotide triphosphates (α-peak) and triphosphates (αNTP/
TP), which reflects cellular energy failure [66], and the con-
centration of specific metabolites (e.g., alanine, lactate, and 
triglycerides), which are assessed using 1H-MRS [67], were 
used to diagnose the severity of NAFLD. It demonstrated 
AUROCs of 0.71 for αNTP/TP and 1.00 for alanine, with 
the latter being evaluated in a small sample of 26 patients 
with NAS ≥ 5.

Other MRI approaches include quantitative susceptibil-
ity imaging, intravoxel incoherent motion (IVIM) diffusion-
weighted MRI, and morphological evaluations, such as liver 
volume and preperitoneal fat area, all evaluated in a single 
study, with AUROCs of 0.61, 0.68, and 0.74 for different 
IVIM parameters and 0.91 for susceptibility; the last one 
was tested in a small sample of 32 patients [68–71]. Fur-
thermore, a score based on MRI optical analysis estimators 
produced an AUROC of 0.83 with sensitivity and specificity 
of 87% and 60%, respectively [72]. In the case of contrast 
media-based approaches, gadoxetic acid enhancement in the 
hepatobiliary phase exhibited sensitivity and specificity of 
97% and 63% in a retrospective study in 81 patients, whereas 
superparamagnetic iron oxide (SPIO) and ultrasmall SPIO 
(USPIO)-enhanced MRI-derived ΔR2* yielded sensitiv-
ity and specificity of up to 91% and 73%, respectively, for 
USPIO in a study in 25 patients with NAS ≥ 5 [73–75]. 
Nowadays, USPIO is not commercially available all over 
the world, and SPIO is available only in Japan. The direct 
consequences of the test on the health, qualitative analysis 
of resource consumption, operator-dependence, and state-
of-the-art level of the techniques are summarized in Table 3.

Multifrequency magnetic resonance elastography

Diagnostic threshold levels for staging fibrosis vary as a 
result of varying technical setups and vibration frequencies 
in MRE. Previous studies in volunteers and a limited num-
ber of patients have demonstrated that the complex shear 
modulus of liver, G*, depends on the dynamic test range by 
demonstrating a clear frequency dispersion [76, 77]. The 
real part, G’, of the complex modulus is determined by the 

restoration of the mechanical energy owing to the elastic 
properties of the material, whereas the imaginary part, G’’, 
of the complex modulus is associated with viscous prop-
erties due to the inherent mechanical friction of the tissue 
[78]. Both parameters are independent and important meas-
ures of the mechanical constitution of materials and tissues. 
Viscoelasticity models the dispersion of G’ and G”, which 
results in generalized material parameters sensitive to the 
mechanical connectivity and integrity of tissue on a micro-
structural level. To date, elasticity-based staging of hepatic 
fibrosis has been performed using vibration data that are 
accumulated at a single frequency and, therefore, our cur-
rent knowledge about the frequency-dependent viscoelastic 
properties of the different stages of liver fibrosis is limited. 
Multifrequency MRE (MMRE) has recently been demon-
strated to be sensitive in the early detection of subtle altera-
tions in the viscoelasticity of the brain due to physiological 

Fig. 2  Examples of multiparametric MRI (mpMRI) in patients 
with NAFLD. Representative images from patients in each sever-
ity category (NAS = 3 + Fibrosis = 1, NAS = 5 + Fibrosis = 2, 
NAS = 7 + Fibrosis = 3), produced by analysis of the raw data using 
mpMRI
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aging and multiple sclerosis [79, 80]. Therefore, MMRE 
is a promising technique for staging liver fibrosis and dis-
tinguishing normal liver from that in the early stages of 
fibrosis. Several investigations have demonstrated that liver 
stiffness can have a static component that is primarily deter-
mined by extracellular matrix composites and structure (e.g., 
hepatic fibrosis) and a dynamic component that is affected 
by intrahepatic hemodynamic changes (e.g., inflammation, 
ballooning, congestion, and portal hypertension) [77–80]. 
The ability to distinguish how these components contribute 
to tissue stiffness and how the contributions change over 
the course of different diseases will have important diag-
nostic and prognostic implications and will direct transla-
tional research in NAFLD. However, the value of mechani-
cal properties, other than shear stiffness, in distinguishing 
the different pathophysiologic states of the liver is yet to be 
established in NAFLD.

MRE in the assessment of portal hypertension 
in chronic liver disease including NAFLD

Liver fibrosis is the most important risk factor of portal 
hypertension in chronic liver diseases, including NAFLD. 
At the Baveno IV Consensus Workshop in Europe, clinically 
significant portal hypertension (CSPH) was defined using 
LSM obtained using VCTE [81]. MRE can noninvasively 
estimate LSM as well as VCTE, and LSM has been reported 
to correlate significantly with wedge hepatic venous pressure 
(WHVP), hepatic venous pressure gradient (HVPG), and 
portal hypertension in patients with chronic liver diseases, 
including NAFLD [82]. In a Korean study of 126 patients 
with chronic liver diseases, including NAFLD, an AUROC 
of 0.859 was observed to have good diagnostic performance 
in the diagnosis of esophageal varices (EVs) when the cut-
off value of LSM of MRE was set at 4.63 kPa [83]. In our 
previous report, in 276 patients with chronic liver diseases, 
including NAFLD, a cutoff value of 4.2 kPa for LSM of 
MRE in the diagnosis of EV resulted in an AUROC of 0.850 
and a cutoff value of 4.8 kPa for LSM of MRE for the diag-
nosis of EV for treatment indication (high-risk EV), and the 
AUROC had good diagnostic performance of 0.840 for EV. 
Additionally, comparing the criteria using VCTE (Baveno 
IV criteria) proposed at the Baveno IV Consensus workshop 
with the modified Baveno IV criteria using MRE, we found 
that the diagnosis of the presence of EV and the diagnosis 
of high-risk varices was better in MRE based criteria than 
VCTE-based criteria. We reported that the modified Baveno 
IV criteria have a high diagnostic ability [84]. These results 
suggest that LSM of MRE is useful in predicting portal 
hypertension in chronic liver diseases, including NAFLD.

It is known that portal hypertension is associated with 
splenomegaly; however, recently it has been reported that 
spleen stiffness measurement (SSM) is elevated in these Ta
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patients. Although the details of the pathogenesis remain 
unclear, it has been suggested that spleen congestion and 
spleen fibrosis may be involved in the pathogenesis of EV; 
a study of VCTE reported that SSM was more useful in 
the diagnosis of EV than LSM [85]. However, measure-
ment of SSM using VCTE has several drawbacks. One is 
that VCTE is difficult to measure in the absence of spleno-
megaly. Another disadvantage is that the measurement limit 
of VCTE is 75 kPa; therefore, if SSM exceeds 75 kPa, it is 
difficult to measure it using VCTE [86]. Although VCTE 
for measuring SSM is currently being developed, it is dif-
ficult to use in Japan. However, MRE can measure LSM and 
evaluate SSM if the vibration reaches the spleen simultane-
ously (Fig. 3). It has been reported that SSM correlates more 
strongly with HVPG than with LSM, and that it can aid in 
diagnosing CSPH with high accuracy [87]. Shin et al. [88] 
suggested that SSM should be above the cutoff of 7.6 kPa 
and reported higher diagnostic ability of EVs than measure-
ment of spleen length and volume. The authors also evalu-
ated the usefulness of SSM in diagnosing EV in 511 patients 
with chronic liver diseases, including NAFLD (Fig. 3); they 
reported an AUROC of 0.92 at a cutoff of 9.4 kPa and 0.91 
at a cutoff of 10.3 kPa in the diagnosis of high-risk EV 
(unpublished data, American Association for the Study of 
Liver Disease (AASLD) 2018.). Table 4 summarizes pre-
vious reports on portal hypertension and MRE in patients 
with chronic liver diseases, including NAFLD. SSM may 
be more useful in the diagnosis of portal hypertension than 
LSM. The use of criteria based on LSM (modified Baveno 
IV criteria in combination with platelets) or SSM for MRE, 
such as the diagnosis of CSPH exclusion using VCTE and 
platelets as advocated at the Baveno VI Consensus Work-
shop, can prevent unnecessary endoscopies in chronic liver 

diseases, including NAFLD. This would provide significant 
benefits, such as reduced medical costs and avoidance of 
complications.  

Benefits and limitations of MRI in the assessment 
of NAFLD

A comparison between US elastography and MRI including 
MRE is presented in Table 5. One of the benefits of MRI 
is that it allows a much larger sampling compared with US 
techniques and liver biopsy, which may reduce the sampling 
variability secondary to the heterogeneity of fibrosis. Addi-
tionally, it has been proven that MRE generally provides 
more reliable measurements and fewer failures in patients 
with obesity or ascites. In a recent retrospective review of 
a large series of 1377 cases of MRE from the Mayo Clinic, 
the reported failure rate was less than 6%, with no effects 
of BMI on the failure rate [89]. MRI may also be a better 
candidate than US elastography in assessing the response to 
new therapies for NASH. 

The limitations of MRE include the possibility of fail-
ure in patients with iron overload (using gradient echo 
sequence), cost and availability, and possible contraindi-
cations in patients with devices such as metallic splinters, 
vascular clips, and cochlear implants (Table 5). Additionally, 
LSM obtained using MRE may be influenced by extrahe-
patic cholestasis and acute liver injury [90, 91]. However, 
all major vendors now propose MRE capabilities, and new 
sequences such as echoplanar imaging have been demon-
strated to decrease the failure rate in the presence of hepatic 
iron deposition. Although the US or MRI technique has 
advantages and limitations, VCTE and MRE are believed to 
be the methods of choice. According to the clinical practice 

Fig. 3  Measurements of liver 
stiffness and spleen stiffness for 
the assessment of portal hyper-
tension (left: wave image, right: 
elastogram)
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guidelines published by the European Association for the 
Study of the Liver (EASL), VCTE is an acceptable nonin-
vasive procedure for the identification of patients at low risk 
of advanced fibrosis or cirrhosis [92]. Additionally, accord-
ing to the practice guidelines published by AASLD, VCTE 
and MRE are clinically useful tools in the identification of 

advanced fibrosis in patients with NAFLD [11]. However, 
other US elastographies are not recommended in the current 
guidelines for NAFLD. One of the reasons is that there are 
no follow-up data using other US elastographies in patients 
with NAFLD. Additionally, VCTE also has the advantage 
that it can be used to evaluate liver fibrosis and liver steatosis 

Table 4  The assessment of portal hypertension using MRI in patients with chronic liver disease including NAFLD

AUROC area under the receiver operating characteristic, EV esophageal varices, LSM liver stiffness measurement, MRE magnetic resonance 
elastography, Plts platelets, SSM spleen stiffness measurement

Design Country Cutoff values and diagnostic 
ability for any EV (AUROC)

Cutoff values and diagnos-
tic ability for high-risk EV 
(AUROC)

References

Retrospective, single center, 
n = 139, MRE

Korea LSM:4.58 kPa (0.821)
SSM:7.23 kPa (0.833)

LSM:4.81 kPa (0.755)
SSM:7.60 kPa (0.750)

Shin SU et al.
Radiology 2014; 272: 143–153. 

(86)
Retrospective, single center, 
n = 126, MRE

Korea LSM:4.63 kPa (0.859)
SSM:ND

LSM:5.80 kPa (0.810)
SSM:ND

Sun HY et al.
J Magn Reson Imaging 2014; 39: 

559–566. (81)
Prospective, single center, 
n = 36, MMRE

France ND Gl for spleeen:84 Hz:4.2 kPa 
(0.930)

Ronot M et al.
Eur Radiol 2014;
24: 1394–1402. (80)

Retrospective, multi-center, 
n = 627, MRE + Plts

Japan LSM:4.20 kPa (0.850)
SSM:ND

LSM:ND
SSM:ND

Matsui N, et al.
Gastroenterol Hepatol 2018; 33: 

2022–2028.(82)
Retrospective, single center, 
n = 84

Korea LSM:ND
SSM:ND

GRE-MRE LSM:4.493 kPa
(0.752)
SE-EPI-MRE LSM:5.880 kPa
(0.839)

Kim YS et al. Eur Radiol 2017; 
27: 4120–4128

Table 5  Comparison between US elastography and MR elastography

*  Benefit

US elastography MR elastography

Sampling volume of liver Little Much*
HCC screening Possible

(except TE)
Possible with other sequence

Convenience of use Good * Poor
Inter-operator reproducibility Good

ICC; TE 0.98, ARFI 0.81, SWE 0.88
Good
ICC; 0.99

Intra-operator reproducibility Good
ICC; TE 0.98, ARFI 0.81, SWE 0.88

Good
ICC;

Evaluation of liver fat accumulation Available using only TE-based CAP
But the diagnostic accuracy is insufficient

Available using PDFF
Good *

Ascites Available if ascites is a little
(except TE)

Available if ascites is a little
Good *

Obesity Possible for ARFI, SWE, TE by XL probe Good *
Measurements of iron deposition Not available Available *
Effect of Iron overload on liver stiffness and liver fat 

accumulation
No effect * Effect

Contraindications No * Biocompatible metal
Pregnancy

Cost Low * High
Available institutions Many * Few
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using a controlled attenuation parameter (CAP), which can 
measure the degree of ultrasound attenuation [93]. Recently, 
the FibroScan-AST (FAST) score combined with measure-
ment of liver stiffness and CAP measured using VCTE and 
aspartate aminotransferase (AST) was proposed [94]. This 
score can identify patients with NASH (NAFLD activity 
score ≥ 4 and fibrosis stage ≥ 2) and has been validated 
in large global cohorts, even in Japan [95]. Furthermore, 
MRI-PDFF measurement is an MRI-based method for quan-
titatively assessing hepatic steatosis and is available as an 
option in MRI scanners from several manufacturers [49, 96].

Conclusions

MRI, including MRE, provides higher diagnostic perfor-
mance in noninvasive detection of not only liver fibrosis, 
but also steatosis, inflammation, and ballooning in patients 
with NAFLD compared with other noninvasive methods. 
However, MRI techniques are relatively recent and have not 
been widely validated in NAFLD. Additionally, there are 
few reports on the usefulness of other technologies, includ-
ing mpMRI and MMRE, in diagnosing NAFLD. Therefore, 
there is no consensus regarding the use of these elastography 
techniques in clinical practice in place of liver biopsy. Nev-
ertheless, MRI appears to be best suited for the evaluation of 
pathological findings of the liver in patients with NAFLD. 
Several clinical algorithms for the diagnosis and monitoring 
of patients with NAFLD using MRE have been proposed 
[53, 97, 98]. Further research will validate these observa-
tions in patients with NAFLD.
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