
The Role of Ecological Linkage Mechanisms in Plasmodium
knowlesi Transmission and Spread

Gael Davidson,1 Tock H. Chua ,2 Angus Cook,3 Peter Speldewinde,4

and Philip Weinstein5

1CENRM and School of Population and Global Health, University of Western Australia, Perth, Australia
2Department of Pathobiology and Medical Diagnostics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
3School of Population and Global Health, University of Western Australia, Perth, Australia
4CENRM, University of Western Australia, Perth, Australia
5School of Biological Sciences, University of Adelaide, Adelaide, Australia

Abstract: Defining the linkages between landscape change, disease ecology and human health is essential to

explain and predict the emergence of Plasmodium knowlesi malaria, a zoonotic parasite residing in Southeast

Asian macaques, and transmitted by species of Anopheles mosquitos. Changing patterns of land use throughout

Southeast Asia, particularly deforestation, are suggested to be the primary drivers behind the recent spread of

this zoonotic parasite in humans. Local ecological changes at the landscape scale appear to be increasing the

risk of disease in humans by altering the dynamics of transmission between the parasite and its primary hosts.

This paper will focus on the emergence of P. knowlesi in humans in Malaysian Borneo and the ecological

linkage mechanisms suggested to be playing an important role.
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INTRODUCTION

In Southeast Asia, the zoonotic Plasmodium knowlesi has

emerged to become the fifth malarial parasite infecting

humans, presenting a serious public health threat in the

region (Moyes et al. 2014; Rajahram et al. 2016). At least

nine Southeast Asian countries have confirmed human

cases (Shearer et al. 2016). The highest incidence rates are

found in Malaysia where 69% of all current malaria cases

(n = 2627) are P. knowlesi, found mostly as a mono-in-

fection, and concentrated in the states of Sabah and Sar-

awak (World Health Organization 2017). Reported

knowlesi cases increased in Malaysia from 376 in 2008 to

1604 by 2016 (8 of these imported from Indonesia, Papua

New Guinea and Thailand) (World Health Organization

2017).

Routinely, microscopy misidentifies P. knowlesi as P.

malariae (in 97.2% of cases), or to a lesser degree as P.

falciparum or P. vivax (William et al. 2014, Singh and

Daneshvar 2013). Notwithstanding this, data from Sabah of

PCR-confirmed cases were 18 times higher (n = 1067) in

2013 than notifications in 2004 (n = 59) (William et al.

2013, 2014). This represented 62% of all malaria notifica-

tions in Sabah in 2013 (William et al. 2013, 2014). The

situation in Sarawak is similar, with a significant trend of
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increasing incidence detected from 1992 to 2014

(P < 0.001), rising notably in 2008 (Ooi et al. 2017).

Projections suggest that the incidence rate from 2010 will

triple by 2040 (Ooi et al. 2017). William et al. (2014) de-

scribe these trends as an accurate reflection of the parasites’

emergence in humans in Malaysian Borneo.

The P. knowlesi parasite was brought to Southeast Asia

with its hosts prior to human settlement in the region (Lee

et al. 2011; 2009). Current research points to deforestation

and anthropogenic land-use change causing increased con-

tact between humans, mosquito vectors and the macaque

hosts of P. knowlesi inMalaysian Borneo (Manin et al. 2016).

Primates, along with their roles as seed dispersers, are being

lost from the tropical forests and marginalized into habitats

that overlap increasingly with human habitation (Estrada

et al. 2017). Deforestation decimates mammalian biodiver-

sity resulting in a corresponding loss of the dilution effect

(Civitello et al. 2015; Wilcove et al. 2013; Yue et al. 2015).

This may concentrate the knowlesi parasite in the macaque

hosts making them more infectious to humans, in a process

comparable to that for hantavirus in rodents when small-

mammal diversity was reduced (Suzán et al. 2009; Mills

2006). Furthermore, the altered biotic and abiotic conditions

arising from land-use change, with the creation of forest

fringes, may be creating favourable environments for the

mosquito vectors of the parasite (Tan et al. 2008; Brant et al.

2016; Wong et al. 2015b; Yakob et al. 2018).

These anthropogenic changes to the landscape in Ma-

laysian Borneo are influencing the dynamics of parasite

transmission between mosquito vectors, macaques and hu-

mans (Brock et al. 2016). Recent modelling suggests that the

vectors display differing transmission responses under

varying scenarios of macaque–human host availability (Ya-

kob et al. 2018). Further analysis suggests that P. knowlesi is

adapting to changes in the distribution and vectorial capacity

of its vectors in Malaysian Borneo (Benavente et al. 2017).

The exact mechanism by which the current land-use changes

are affecting host and vector abundance, distribution and

behaviour, resulting in an increased risk of P. knowlesi ma-

laria in humans, is yet to be determined.

ANTHROPOGENIC ENVIRONMENTAL CHANGES

Deforestation

Tropical forests are home to at least two-thirds of the world’s

biodiversity even though they cover less than 10% of the land

surface of the Earth (Bradshaw et al. 2009; Raven 1988).

Within 1.4% of the tropical forest land area (including is-

lands such as Borneo) are found 44% and 35% of the world’s

plant and animal species, respectively—‘hot spots’ of bio-

diversity (Myers et al. 2000). These forests contain countless

endemic species which hold valuable genetic information

and are being lost to future generations (Tanner and Kirk

2008). Recent satellite analysis shows that net deforestation is

continuing across the tropical forest belt (Hansen et al. 2013).

The primary economic drivers responsible are large-scale

commercial agriculture and land-use intensification (Geist

and Lambin 2002; DeFries et al. 2010; Rudel 2017; Leblois

et al. 2017; Barbier 2004; Malhi et al. 2014). Selective logging

is a further pressure with over 400million hectares of tropical

forest around the world currently under designation as log-

ging concessions (Martin et al. 2015).

Southeast Asia could be considered the tropical region

of greatest environmental concern (Sodhi et al. 2012;

Hughes 2017), having been referred to as ‘an impending

disaster’ with predictions suggesting three quarters of its

original forests along with 42% of its biodiversity could be

gone by 2100 (Sodhi et al. 2004). Rates of deforestation in

Southeast Asia are high and accelerating, with Malaysia

having the highest level of deforestation in relation to land

area (Hansen et al. 2013).

The island of Borneo has long been known as a major

centre of biodiversity and endemism, a location rich in

evolutionary history (Woodruff 2010). Between 1990 and

2009, almost 80% of the land surface of Malaysian Borneo

had been impacted by forest logging or clearing, leaving

only 8% in Sabah and 3% in Sarawak covered by intact

forests within protected areas (Bryan et al. 2013). A total of

70% of the subregions’ lowland forests (773,000 km2) and

65% of its peat swamp forests (96,000 km2) had been lost

by 2010 (Wilcove et al. 2013). Sarawak (as well as the

eastern lowlands of Sumatra) lost around half of its peat-

land swamp forest alone between 2000 and 2010 (Miettinen

et al. 2011). These forests are being converted to industrial

plantations of oil palm (Elaeis guineensis) and pulpwood

(Gaveau et al. 2016; Bryan et al. 2013). Oil palm has been

the principal driver of deforestation in Malaysian Borneo

over the past four decades clearing 4.2 Mha for the estab-

lishment of estates (Gaveau et al. 2016).

Forest Fragments and Fringes

Deforestation not only converts virgin forest to anthro-

pogenic homogenous land uses, but also fragments
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remaining forest cover into small reserves that sit as dis-

connected forest patches within this mosaic of homo-

geneity (Taubert et al. 2018; Cushman et al. 2017; Tanner

and Kirk 2008). There can be a marked difference in how

ecological groups and individual species respond to forest

fragmentation with the physical and biotic changes that

arise at the abrupt margins of the forest edge (Laurance

et al. 2018; Barros and Honório 2015; Despommier et al.

2006; Loh et al. 2016). Not only is biodiversity affected

through restrictions to habitat range, but alterations to

ecosystem functions such as forest hydrology, carbon

storage and biochemical cycles also occur (Laurance et al.

2018).

In Borneo, the largest forest fragment contains 18% of

remaining forest cover (Taubert et al. 2018) with many

smaller forest fragments interspersed with oil palm plan-

tations and logging concessions over the island (Scriven

et al. 2017; Brühl et al. 2003). Alarmingly however, even a

medium-sized forest fragment (42.9 km2) sampled in Sa-

bah reflected a sharp decline in species richness and

abundance for leaf litter ant communities. Using these

useful ecosystem disturbance indicators, Bruhl et al. (2003)

showed that the number of ant species declined by 47.5%

(n = 48) in the aforementioned forest fragment when

compared with contiguous undisturbed forest (n = 101).

This finding is disturbing because most forest fragments in

Sabah are smaller than this. One fragment of only 0.46 km2

was noted to be dominated by invasive ant species

including the highly destructive Anoplolepis gracilipes

(Brühl et al. 2003; Brühl and Eltz 2010). Similar findings

have been recorded from Amazonian research which

compared ant species richness between two forest frag-

ments, both only 1 km2, compared to continuous forest

areas. Both fragments had reduced species richness and

65.8% (n = 27) of species had greater nest densities in the

continuous forest (Carvalho and Vasconcelos 1999).

The size of forest fragments clearly has a direct influ-

ence on biodiversity and the species which can survive

in situ, with ‘bigger is better’ being the general rule (Kei-

nath et al. 2017). However, a key finding from the Bio-

logical Dynamics of Forest Fragments Project (BDFFP) in

the Amazon is that even fragments less than 0.1 km2 have

ecological value, and that the wider surrounding landscape

and even regional and global ecological conditions have a

vital role to play in influencing local biodiversity (Laurance

et al. 2018). This result was also deduced from a meta-

analysis of over 1000 species of vertebrates and inverte-

brates within habitat patches that varied in isolation and

area by 8 and 12 orders of magnitude, respectively. The

surrounding matrix of land use may have an even more

important influence on the occupancy of many species than

actual fragment size (Prugh et al. 2008). For example,

Scriven et al. (2017) found that less than 50% of butterfly

species from a Borneo rainforest were able to cross the

boundary of an oil palm plantation to reach further forest

habitat because their larval host plants were not found

within the oil palm.

Reduced Habitat Complexity of Oil Palm Estates

In relation to animal biodiversity, there is a marked dif-

ference between forest conversion to oil palm and selective

logging in that selectively logged forests have shown the

ability to retain a degree of their faunal community which

can recover with time, whereas oil palm plantations are

monocultures, found to be relatively devoid of vertebrate

species (Fitzherbert et al. 2008; Wilcove and Koh 2010;

Tuck et al. 2016; Bell 2015). Fitzherbert et al. (2008)

compared thirteen studies on animal biodiversity between

oil palm and undisturbed forest and showed that on

average only 15% of the taxa from primary forests were

found in oil palm plantations with vertebrate taxa consis-

tently less than half that of the pristine forest. In Sabah,

high mammal species diversity found in an undisturbed

forest habitat was reduced to fourteen species at the forest

edge and then to only one to two species at a distance of

2 km into a nearby oil palm plantation (Yue et al. 2015).

Invertebrates also show overall reduced species rich-

ness compared with primary and secondary forests, with a

significant alteration to the species assemblages present

(Turner and Foster 2009; Gray et al. 2015, 2017; Chung

et al. 2000; Luke et al. 2017b; Mercer et al. 2014; Savilaakso

et al. 2014). In one study, arthropod biomass was reduced

by 87.5% in epiphytes, by 72.4% in the leaf litter and by

37.9% in the canopy when the primary forest was com-

pared to an oil palm estate (Turner and Foster 2009).

Further examples of taxa that were reported as depauperate

in oil palm plantations compared with undisturbed forest

include macro-fungi (Shuhada et al. 2017), bats (Fukuda

et al. 2009), birds (Aratrakorn et al. 2006), lizards (Glor

et al. 2001), small mammals (Cusack 2011) and frogs

(Faruk et al. 2013).

Herbivores become more abundant and predators less

diverse and abundant in oil palm estates, when compared

to logged habitats (Chung et al. 2000) with the more

generalist and opportunistic species predominating in the
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oil palm (Wang et al. 2016; Patz et al. 2004; Loh et al.

2016). For example, species of the invasive Rattus genus

which readily feed on oil palm seeds are commonly found

in abundance in oil palm landscapes (Cusack 2011; Tanner

and Kirk 2008), as is the bearded pig—Sus barbatus (Love

et al. 2017). In relation to ground-dwelling ant species in

Sabah, highest abundances were recorded for non-forest

species, with the most common species Anoplolepis gra-

cilipes, present at 70% of bait sites in oil palm (Brühl and

Eltz 2010).

In Borneo, streams in oil palm plantations were found

to have lower riparian quality compared with logged for-

ests, resulting in warmer water temperature, shallower

depths and more sand (Luke et al. 2017a). Changes to

stream ecosystems in this manner reduce the suit-

able habitat for benthic macroinvertebrates and alter

community composition and diversity (Burdon et al.

2013). Studies have recorded an absence of dragonfly larvae

(Odonata) (Luke et al. 2017b) as well as absences of Co-

leoptera (beetles) and Hemiptera (true bugs) from streams

within oil palm plantations (Mercer et al. 2014). Retaining

riparian buffer zones in oil palm streams in Sabah helped to

mitigate the impact on the macroinvertebrate community

(Chellaiah and Yule 2018).

A recent study from Colombia set out to determine

whether there was a critical threshold of oil palm land cover

which triggered a significant decline in mammalian species

richness. The authors found that between 45% and 75% of

oil palm cover in the landscape correlated with a strong

indication of community compositional change for most

mid–large-sized mammals (Pardo et al. 2018). Oil palm

cover of 75% or more resulted in a decline of nearly all the

terrestrial mammals in this area.

Ways to improve biodiversity and ecological func-

tioning in oil palm estates have become a crucial focus for

research in order to make them more sustainable and

environmentally acceptable (Ashraf et al. 2018; Azhar et al.

2015, 2017). Studies from Peninsular Malaysia show that

polyculture cropping in oil palm estates where other in-

come-producing plants are included increases habitat

heterogeneity and biodiversity for bird species richness and

abundance (Yahya et al. 2017). Also, alley cropping systems

which alternate the oil palm with a secondary food crop

have been found to increase arthropod biodiversity as well

as the number of predators and decomposers, enhancing

the overall biodiversity and ecological functioning of the

plantation (Ashraf et al. 2018). Other research in eastern

Sabah has studied agroforestry combinations in oil palm

utilizing Tectona grandis (teak) and Aquilaria sp. (agar-

wood) with positive results for carbon stock and biodi-

versity enhancement compared to the monoculture (Suardi

et al. 2016; James et al. 2016).

Azhar et al. (2015) compared small-scale and large-

scale management of oil palm plantations in Peninsular

Malaysia and found that small-scale farmers produced

much higher habitat heterogeneity measures than the large-

scale producers, improving benefits for biodiversity. From

an economic perspective, however, large-scale, intensively

managed oil palm estates have the most capacity for bio-

diversity improvement (bird species richness and abun-

dance) through tree enrichment at a relatively low cost

(Teuscher et al. 2015).

The importance of connecting forest fragments and

increasing habitat heterogeneity in and around oil palm es-

tates can scarcely be overstated (Koh 2008). Biodiversity is

more positively affected in oil palm estates by having old-

growth forest patches retained in proximity, than by

enhancing the local vegetation structure within the estate

(Koh 2008). To this end, the establishment of wildlife cor-

ridors between disturbed habitats such as oil palm is seen as

increasingly important (Brodie et al. 2015a), as is the need to

maintain the coverage of oil palm within surrounding land

uses to below the threshold limit (45–75%) determined for

supporting mammalian biodiversity (Pardo et al. 2018).

Forest Restoration

The widespread and pervasive damage from human activ-

ities to the planet’s ecosystems, with the resulting loss of

essential ecosystem services (ES) and biodiversity, has

brought about an urgent focus on restoration efforts

(Hobbs and Norton 1996; Hobbs and Cramer 2008;

Budiharta et al. 2016). Globally, estimates suggest that 2

billion hectares of forest could be brought under restora-

tion management (Crouzeilles et al. 2016), which is defined

as the ‘process of assisting the recovery of an ecosystem that

has been degraded, damaged, or destroyed’ (SER 2004).

Forests such as the tropical peat swamps of Southeast

Asia store an enormous amount of carbon which is released

to the atmosphere upon degradation, and only an esti-

mated 6% of these ecosystems remained in a pristine

condition in 2015 (Graham et al. 2017). Therefore, the

goals of tropical forest restoration are manyfold and may

include carbon sequestration, biodiversity conservation,

preservation and improvements to water supplies, and

support for human habitats and livelihoods (Holl 2017).
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In Borneo, forest restoration is urgently needed in

forest fragments and in underproductive oil palm planta-

tions to increase available habitat and forest connectivity

for the wildlife (Hearn et al. 2018; Yeong et al. 2016).

Fragmented forest patches often undergo repeated logging

for Dipterocarpaceae trees and as such can become highly

degraded (Yeong et al. 2016). Forest restoration in Sabah

follows an enrichment planting technique where seedlings

of dipterocarps (and small numbers of other species) are

planted along lines (or gaps) cleared out of the vegetation

leftover from the previous forest management practice

(Hector et al. 2011). This technique is used to accelerate the

recovery of dipterocarps where natural regeneration would

be insufficient in secondary forests as this family are late

successional species (Romell et al. 2008). These seedlings

are then managed over the following few years to encourage

growth by clearing away invasive vines and competing

pioneer species such as Macaranga spp. (Hector et al.

2011).

Although deforestation clearly affects ecosystem ser-

vices and biodiversity negatively, restoration does not hold

the promise of a linear and predictable return to pristine

conditions (Hobbs et al. 2006). In many cases, ecological

restoration produces ‘novel’ ecosystems that are irreversibly

different from original conditions (Hobbs et al. 2006,

2009). Research undertaken within restored forests in Sa-

bah on avian and leaf litter detritivore biodiversity

demonstrated that species richness was diminished in both

cases, when compared to the unlogged forest (Cosset and

Edwards 2017; Edwards et al. 2012). In their recent study,

Cosset and Edwards (2017) noticed that the bird species

proliferating in the restored forests were closely related,

exhibiting similar functional traits, resulting in an overall

reduction in functional richness when compared with the

unlogged forest.

Similar findings have been recorded from the forests in

Sarawak, Borneo. Natural regeneration in forests of

northern Sarawak produced lower species diversity for

trees, fungi and army ants even after 20–60 years of growth

(Takano et al. 2014). Also in Sarawak, edge-dwelling but-

terfly species richness was still three times lower in the

restored fallows than in the primary forest after the same

time frame of 20–60 years. Importantly, after the first

20 years, the rate of recovery slowed and depended upon

connection to the primary forest (Itioka et al. 2015). Spe-

cialist species are less able to survive habitat loss and less

able to recolonize restored forest than more generalist

species (Loh et al. 2016).

Biodiversity and Loss of the Dilution Effect

It may be conjectured that the most biodiverse habitats,

harbouring maximal species richness (and therefore animal

disease), would pose the greatest disease threat to humans

from zoonotic spillover when contact occurs (Mills 2006;

Ostfeld and Keesing 2017). For this to be the case, pathogen

diversity would have to be a function of host diversity and

human intrusion into highly biodiverse environments

would result in exposure to a more diverse pathogen pool

(Murray and Daszak 2013). This is termed the ‘amplifica-

tion effect’ which simply states that increased species

diversity increases the disease risk for humans (Keesing

et al. 2006). The logic behind this argument—that high

host diversity translates into high pathogen diversity—is

relatively well established in the scientific literature (Ostfeld

and Keesing 2017; Morand et al. 2014).

However, for the ‘amplification effect’ to occur, a high

pathogen diversity must also translate into a relatively high

zoonotic pathogen diversity, where the potential for spil-

lover to humans is likely. This situation is not currently

supported by the literature, with overall host–pathogen

diversity not directly translating into a high overall diver-

sity of zoonotic species (Ostfeld and Keesing 2017). Biodi-

versity may be a source of pathogens, but the loss of

biodiversity appears to be more highly correlated with an

increase in zoonotic emerging infectious disease (Morand

et al. 2014). In work on the ecology of Lyme disease in the

USA, it was discovered that infection risk varied inversely

with vertebrate host diversity (Ostfeld and Keesing 2000a,

b).

Loss of biodiversity is hypothesized to result in an

increase in emerging zoonotic diseases as a result of losing

vertebrate species that either predate upon, compete with

or simply dilute the overall host diversity pool (Civitello

et al. 2015; McCallum 2015; Ostfeld 2009; Ostfeld and

Keesing 2000b; Keesing et al. 2006; Levi et al. 2016). Spe-

cies-rich communities allow pathogens to ‘waste time’ by

infecting hosts which have a low competency for disease

transmission (Johnson and Thieltges 2010). In lower-di-

versity habitats, there is a tendency for more transmission

events to occur between a single species (the preferred host

species) which results in more efficient transmission of the

pathogen and therefore a higher prevalence and greater risk

for humans and wildlife (Mills 2006; Johnson et al. 2013;

Cunningham et al. 2017).

Levi et al. (2016) studied changes in vertebrate com-

munity composition and the effect upon tick nymphs in-
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fected with Lyme bacterium. Their results suggest that di-

verse host communities appear to provide two types of

dilution hosts: ones that occur with enough abundancy that

they absorb blood meals away from the most competent

hosts and alternatively ones that can reduce the abundance

of the most competent hosts through competition and

predation. In relation to malaria, these findings were borne

out by modelling evidence from the Brazilian tropical

rainforest, where biodiversity (in this case, a high abun-

dance of wild warm-blooded animals) correlated with a

protective affect against malaria (Laporta et al. 2013).

THE ROLE OF ECOLOGICAL LINKAGE

MECHANISMS

O’Sullivan et al. (2008) suggest that the anthropogenic

impacts on the world’s forests and ecosystems can directly

or indirectly result in observable human health outcomes,

such as emerging infectious diseases, through ecological

changes at the landscape scale. They refer to these changes

as ecological linkage mechanisms (ELMs). Forests that have

been logged, or converted to oil palm plantations, or re-

stored from a degraded state, all show varying degrees of

biodiversity loss resulting from reduced or altered habitat

complexity and fragmentation. The result is a change in the

community composition, behaviour and condition of ani-

mal hosts, vectors and ultimately pathogens, through dis-

rupting predation and competition between species

(Wilcox and Colwell 2005; Keesing et al. 2010; Estrada-

Peña et al. 2014; Loh et al. 2016; Patz et al. 2008). In the

case of zoonoses, the landscape may become pathogenic to

humans through this disruption to the natural cycle of

parasite transmission rates within reservoir hosts (Lambin

et al. 2010; Murray and Daszak 2013).

The concept of ecological linkages between anthro-

pogenic land-use change, biodiversity loss and human

health is a well-researched field, and many studies provide

support for the existence of such relationships. Findings

linking deforestation and ecosystem disruption to emerging

infectious diseases have been recorded in almost all parts of

the world (Vittor et al. 2006, 2009; Morris et al. 2016;

Kilpatrick 2011; McFarlane et al. 2013; Brock et al. 2016;

Morand et al. 2014; Young et al. 2017; Tucker et al. 2017;

Gottdenker et al. 2014; Jones et al. 2013; Kilpatrick and

Randolph 2012). However, the ability to determine a gen-

eral relationship between land-use change, biodiversity loss

and disease risk remains elusive due to the complexity of

factors involved (Loh et al. 2016) and the fact that not all

findings demonstrate an increased risk of disease trans-

mission (Tucker et al. 2017; Yasuoka and Levins 2007).

There is a paucity of data comparing different land-

scape assemblages and the health risk they pose to humans

(Brock et al. 2016). Salkeld et al. (2013) analysed metadata

and found only a weak and highly heterogeneous rela-

tionship between host biodiversity and zoonotic infectious

disease risk. Oversampled pathogens such as Plasmodium

may also skew the trend that anthropogenic changes drive

disease transmission (Gottdenker et al. 2014). Furthermore,

restoration of ecosystems back to more ecological func-

tionality has not necessarily brought about improved hu-

man health conditions (Speldewinde et al. 2015).

To this end, O’Sullivan et al. (2008) stress the impor-

tance of examining in detail the linkage mechanisms in the

role of emerging infectious diseases as the locally specific

changes in the ecology that can be observed, understood

and therefore potentially managed so as to reduce the

negative outcomes in human health. In the case of zoonotic

diseases such as P. knowlesi, numerous and complex factors

have a role to play at various scales of influence (Estrada-

Peña et al. 2014) and ultimately require a transdisciplinary

approach (Loh et al. 2016). Studies such as these are ur-

gently needed to inform land-use planning policies in

tropical countries (Loh et al. 2016).

Ecological Linkage Mechanisms (I): Mosquito Vec-

tors, Deforestation and Biodiversity Loss

Malaria in humans and non-human primates is a disease

directly dependent on environmental conditions which

influence the life cycle of the Anopheles mosquito vectors

(Austin et al. 2017). These vectors are generally forest-

dwelling species, so deforestation and changes to land use

can alter the malaria transmission dynamics in critical ways

(Austin et al. 2017; Tucker et al. 2017). Recent literature

suggests an association between deforestation and increased

malaria transmission (Vittor et al. 2006, 2009; Yasuoka and

Levins 2007; Austin et al. 2017; Burkett-Cadena and Vittor

2018), or conversely between higher levels of biodiversity

and low malaria transmission (Laporta et al. 2013).

For the Southeast Asian region, there is a paucity of

information on the impact of deforestation and malaria

(Guerra et al. 2006) often with contrasting findings

occurring in relation to anthropogenic changes to land use.

In Sri Lanka and South Korea, respectively, malaria vectors

are associated with forest conversion to irrigated rice fields
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(Amerasinghe and Ariyasena 1990; Sithiprasasna et al.

2005). A recent study from Thailand examined mosquito

vectors over a range of land uses and reported that all

vector species were least abundant in the undisturbed forest

sites compared to the altered habitats (Thongsripong et al.

2013). However, in Northern Thailand, forest fragmenta-

tion for agriculture increased landscape heterogeneity and

resulted in a decreased density of two malaria species (An.

maculatus s.s. and An. minimus s.l.) over at least one season

in the agricultural area compared to undisturbed forest

(Overgaard et al. 2003). Further recent research from this

region has found wide spatial variation in the ecological

factors influencing the prevalence of malaria in South

Sumatra, Indonesia, with the researchers calling for a more

in-depth understanding of the local ecological factors

influencing disease transmission and prevalence of mos-

quito vectors (Hasyim et al. 2018).

Mosquitos require standing or slow-flowing water to

oviposit their eggs, and habitat choice can range from sunlit

pools, turbid water, to vegetation covered swamps full of

organic matter (Patz et al. 2000). The suitability of the

habitat influences the number of adult mosquito hatching

from the pupae (Ramasamy and Surendran 2016). Biotic

factors of predation and competition as well as abiotic

factors of sunlight, rainfall, temperature, pH, turbidity,

vegetation and nutrient availability all influence this out-

come (Canelas et al. 2016). Any anthropogenic changes that

improve habitat ecology for mosquitos may potentially

create hot spots of transmission dynamics (Ramasamy and

Surendran 2016).

Changes to canopy cover through the loss of large trees

result in heavy rainfall reaching the ground. Nutrients are

washed away through the erosion of the forest floor, the leaf

litter, soil and plant roots. Streams and rivers silt up causing

declining water quality and impermanent pools (Hecht and

Cockburn 2010). Mosquito larvae are often found in higher

abundances in ephemeral pools than nearby natural and

permanent water bodies (Emidi et al. 2017). Predation and

competition in natural larval habitats suppress mosquito

population density (Mereta et al. 2013). However, predation

on mosquito larvae may be low when ephemeral pools are

used as breeding sites as predators will not have become

established (Kweka et al. 2011). As some predators are

chemically detectable by mosquitos (Saward-Arav et al.

2016), a lack of these predators may encourage ovipositing

and increase mosquito abundance in these pools.

Deforestation and changes to landscapes alter the

microclimate of aquatic breeding sites and suitability of

outdoor resting places for adult mosquitos through changes

to the vegetation, ambient temperature and level of

humidity (Afrane et al. 2006, 2012; Patz and Olson 2006).

Temperature is a particularly critical factor in malaria

transmission, having a direct influence on both mosquito

and parasite population (Pascual et al. 2006; Afrane et al.

2008). With the loss of canopy cover, more sunlight reaches

the ground and the aquatic habitats, potentially creating

ideal breeding conditions for Anopheline larvae (Barros and

Honório 2015) through ecological changes outlined in the

following paragraphs.

A highly significant correlation (P < 0.005) between

malaria cases and forest patch size < 5 km2 was a major

finding from recent research in the Brazilian Amazon

(Chaves et al. 2018). The malaria vector in this region,

Anopheles darlingi, favours the forest edge created around

remnant patches for its larval stage development (Barros et al.

2011). Further research from the Amazon found An. darlingi

larvae in increased abundance in water sources at the fringes

of primary forest and an apparent preference for this habitat

compared to both the forested and totally deforested zones

(Barros and Honório 2015). Emerging macrophytes and al-

gae in water sources receiving more light attract ovipositing

females as algae are an important food source for mosquito

larvae (Vittor et al. 2009; Brouard et al. 2011). Furthermore,

aquatic habitats receiving more sunlight through loss of ca-

nopy cover have shown increased viability and survival of

mosquito larvae as certain pathogenic fungi are inhibited

under these conditions (Rueda Páramo et al. 2015).

Several studies from the western highlands of Kenya

show warmer ambient and/or water temperatures linked to

increased mosquito fecundity and survival (Kweka et al.

2016; Afrane et al. 2005, 2006; Munga et al. 2006), in-

creased habitat range (Kulkarni et al. 2016; Afrane et al.

2012) and increased vectorial capacity (78% in this in-

stance) through more rapid sporogonic development of

Plasmodium falciparum, within the An. gambiae vector

(Afrane et al. 2008). These changes can be quite marked.

For example, comparisons between full forest canopy cover

and sunlight-exposed deforested areas showed an increase

in the survival of An. gambiae larvae from 1–2% to 55–57%

(Tuno et al. 2005). On the China–Myanmar border,

deforestation was found to increase the Anopheles pupation

rate from 3.8% in the forested environment to 52.5%

(Wang et al. 2016). Food source availability may be another

factor involved in this process because of increased algae in

sunlit aquatic habitats (Wang et al. 2016; Munga et al.

2006).
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Other studies demonstrate that deforestation and/or

conversion to oil palm can be highly detrimental to certain

species of Anopheles mosquitos. Deforestation can result in

certain populations of forest-dwelling mosquitos diminish-

ing to be replaced by different species having a preference for

the altered ecological conditions (Hii et al. 2018). The

abundance of Anopheles donaldi in Sarawak, a forest-de-

pendent human malaria vector which requires clean, shaded

pools for breeding showed a decline in abundance of 64%

over a 4-year period, most dramatically during the first

2 years upon conversion to oil palm (Chang et al. 1997). A

study from the north-western region of India, where forest

cover diminished by more than 50% over a decade (2000–

2009), found Anopheles culicifacies s.l. increasing in abun-

dance (as well as malaria parasites, based on ELISA analyses)

in the deforested areas, replacing An. minimus s.l. as the

dominant malaria vector in the region (Saxena et al. 2014).

How the loss of biodiversity from deforestation,

reforestation or oil palm plantation establishment in Ma-

laysian Borneo is affecting the mosquito vectors of P.

knowlesi is still largely unknown (Vythilingam et al. 2016).

The vectors of P. knowlesi belong to the leucosphyrus

group of Anopheles mosquitoes and are forest dwellers

(Vythilingam et al. 2016; Collins 2012). The leucosphyrus

group consists of two different complexes: the dirus com-

plex of An. dirus and An. cracens, and the leucosphyrus

complex of An. latens, An. balabacensis and An. introlatus

(Moyes et al. 2016). The leucosphyrus complex is suggested

to be the main P. knowlesi vectors in Malaysia, Indonesia,

Singapore, Brunei and parts of the Philippines with the

dirus complex vectors widespread in the northern countries

of Myanmar, Thailand, Cambodia and Vietnam (Moyes

et al. 2016). These complexes operate as geographically

discrete groups (Shearer et al. 2016).

Research shows that An. balabacensis is one of the most

important vectors for human malaria in Southeast Asia and

appears to represent a widespread species complex of three

or more species (Sallum et al. 2005a, b, 2007). An. bal-

abacensis is also the primary mosquito species responsible

for transmitting the P. knowlesi parasite in Sabah (Chua

et al. 2017) where it displays a definite preference for logged

forest over the primary forest (Brant et al. 2016). Fur-

thermore, mitochondrial DNA analysis in subpopulations

of An. balabacensis in Sabah was examined for genetic

variation from 14 different study sites with previous

recordings of P. knowlesi cases. Results showed that An.

balabacensis is experiencing population expansion and

growth (Manin et al. 2018).

An. latens, a vector of P. knowlesi in Kapit, Sarawak,

bites both humans and monkeys on the ground, as well as

monkeys in the canopy (Tan et al. 2008) The highest

infection rates have been found to occur in the forest

through forest-based activities as opposed to the peri-do-

mestic area (Tan et al. 2008). An. latens is collected from

both farming plots and forest locations. Its vectorial

capacity was found to be highest in farming areas and

lowest in the forest, highlighting how deforestation and a

change in land use have been influential (Tan et al. 2008).

All these mosquito species were rarely found outside of

forested areas in the 1960s (Vythilingam et al. 2016).

Nowadays, they appear to have adapted well to forest edges

and farms (Vythilingam et al. 2016; Wong et al. 2015a). It is

suggested that these vectors may be following the macaque

hosts to the edges of the forest and into closer contact with

human settlements as a result of the deforestation and

landscape changes occurring in Malaysian Borneo (Vythi-

lingam et al. 2016).

In summary, the ecological linkage mechanisms that

result from deforestation and may be influencing P.

knowlesi infection risk in Sabah are both biotic and abiotic.

These include increased mosquito fecundity and survival,

faster larval development and pupation rates, increased

habitat range, increased vectorial capacity and overall in-

creased abundance of larvae and adult vectors when con-

ditions are suitable. Through deforestation, reforestation or

conversion to oil palm plantations, species assemblages are

disrupted for many different taxa including frogs, birds,

fish, spiders and stream invertebrates (Luke et al. 2017b;

Mercer et al. 2014; Faruk et al. 2013; Turner and Foster

2009; Cosset and Edwards 2017). Taxa such as these are

known to predate upon adult mosquitos or larvae, or

sometimes compete for food with mosquito larvae, as in

the case of certain tadpoles (Shaalan and Canyon 2009;

Mokany and Shine 2003).

Observations to date show that P. knowlesi vectors

display preferences for logged forests and farms over un-

logged forests. This may reflect habitat modifications

resulting from biotic and abiotic ecological linkage mech-

anisms conducive to mosquito growth and survival.

Ecological Linkage Mechanisms (II): Simian Hosts,

Deforestation and Biodiversity Loss

Primates are under threat in all tropical forest ecosystems,

with estimates that around 75% of species are in decline

(Estrada et al. 2017). It is well established that deforested
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areas contain less mammalian biodiversity than undis-

turbed habitats (Wilcove et al. 2013; Yue et al. 2015).

Bernard et al. (2016) investigated habitat disturbance in

northern Borneo where the authors found declining pri-

mate species richness associated with increasing levels of

disturbance, with palm oil plantations harbouring the

lowest level of species richness.

This displacement of primates by deforestation causes

greater potential for contact with humans as they seek out

alternative food sources, often near to human settlements

(Brotcorne et al. 2014; Jarvis 2016; Peterson and Riley 2013;

Gumert 2011). For example, the long-tailed macaque is

known to be an opportunistic species and therefore already

well adapted to the forest fringes that arise from defor-

estation (Gumert 2011). Increased macaque abundance in a

smaller habitat may increase their risk of infection through

crowding and stress from competition for food, compro-

mising their immune systems (Loh et al. 2016).

Deforestation places certain forest species under a

much greater threat of hunting, poaching and illegal traf-

ficking of wildlife (Brodie et al. 2015b; Hambali et al. 2012,

2014). Deforestation, in drastically reducing biodiversity,

results in a loss of the dilution effect where malaria mos-

quito vectors lose access to a range of mammals for blood

meals, some of which may be dead-end hosts in which the

parasite would be unable to replicate (Ostfeld and Keesing

2000b). This increases transmission rates of the parasite

between available hosts. All these factors may lead to in-

creased transmission of the parasite into humans.

IMPACTS ON HUMAN HEALTH

Deforestation reduces the available habitat for the knowlesi

vectors and macaque hosts, driving them to remaining

forested areas and forest fringes. In Malaysian Borneo, village

level data collected in the districts of Kudat and Kota Marudu

in Sabah from 2008 to 2012 documented that P. knowlesi cases

correlated positively with villages having high local remnant

forest cover (bringing contact with macaques andmosquitos)

together with large-scale deforestation in the surrounding

areas (Fornace et al. 2016). Forest cover was found to have

declined by close to 5% between 2008 and 2012 in both the

study districts, with 51% of villages losing > 10% of forest

cover within a 5 km radius (Fornace et al. 2016).

In Borneo, those individuals most at risk of contracting

P. knowlesi infection have been found to be traditional

farmers (most often male) working at the forest edge,

particularly those who have been recently employed by the

palm oil plantations or in jobs relating to agriculture and

forestry (Vythilingam et al. 2014; Grigg et al. 2017). In the

Kapit region of Sarawak, 87% of cases (n = 152) reported

having been recently to the jungle or the forest fringes and

were typically Iban (ethnic minority) farmers or forestry

workers (Daneshvar et al. 2009).

In Sabah, plantation workers and farmers comprised

40% of those infected with the disease (n = 130) and 92% of

those infected reported entering the forest or the fringes

within the previous month (Barber et al. 2013). Macaque

sightings have been reported by 50% of infected cases in

Sabah (Barber et al. 2013) and 72%of cases in Kapit, Sarawak

(Daneshvar et al. 2009). Data from 2016 for Sabah and Sar-

awak show P. knowlesi infection most common in adults

(highest in adults > 55 years) and affecting more men

(80%) than women (World Health Organization 2017). In-

fected children represent only 6–14% of cases (Daneshvar

et al. 2018).

INTEGRATION

Zoonotic P. knowlesi malaria has emerged as an infection in

humans in Southeast Asia, particularly in Malaysian Bor-

neo (Ahmed and Cox-Singh 2015; World Health Organi-

zation 2017). Anthropogenic environmental change and

the resulting loss of biodiversity appear to be increasing the

risk of P. knowlesi malaria in humans through ecological

linkage mechanisms as outlined in Fig. 1.

For P. knowlesi, the ecological linkage mechanisms

proposed here include loss of the dilution effect through

decreased biodiversity (Keesing et al. 2006; Civitello et al.

2015), displacement of macaque hosts from primary forest

bringing increased contact with humans (Bernard et al.

2016; Brotcorne et al. 2014) and altered abundance, dis-

tribution and behaviour of the mosquito vectors for the

disease as a result of the biotic and abiotic changes arising

from deforestation (Tan et al. 2008; Brant et al. 2016; Wong

et al. 2015b; Yakob et al. 2018).

FUTURE DIRECTIONS

• With the continuing expansion of oil palm estates in

Malaysia and Indonesia (Gaveau et al. 2016; Kassam

2017; Wilcove and Koh 2010), a revisiting of the
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sustainable oil palm certification scheme is essential to

support small-scale farmers who achieve higher biodi-

versity from a more heterogeneous cropping landscape

(Azhar et al. 2017).

• Methods to increase biodiversity and ecosystem function

(such as alley cropping) within oil palm estates need to

become key management strategies (Ashraf et al. 2018).

Research on critical thresholds for mammalian species

richness within different scenarios of oil palm coverage is

required in Malaysia and Indonesia to assist with

mammal conservation in and around the plantations

(Pardo et al. 2018).

• Logging and agriculture still represent the biggest threats

to biodiversity and threatened species around the planet

(Sean et al. 2016). In Borneo, fragmented forest patches

often undergo repeated logging for Dipterocarpaceae

trees and as such can become highly degraded (Yeong

et al. 2016). Selective logging of dipterocarp forests has

been found to severely impact forest composition,

structure and functioning with estimates of a 40%

reduction in aboveground biomass even 22 years post-

harvesting (Hector et al. 2011). Forest restoration is

needed in these forest fragments and in underproductive

oil palm plantations to increase available habitat and

forest connectivity for Borneo’s wildlife (Hearn et al.

2018; Yeong et al. 2016). Wildlife corridors, where forests

are allowed to regenerate, or are assisted with enrichment

planting, are required to support movement of threat-

ened wildlife (Brodie et al. 2015a).

• There is a need to reverse the looming trend of non-

human primate extinction in the tropical forests. The

pig-tailed macaque (Macaca nemestrina) is already

considered as Vulnerable under IUCN status (Brodie

et al. 2015b). Unsustainable land use, poaching and

hunting drive species to extinction and also exacerbate

the risk of zoonotic diseases through increasing overlap

of human and threatened primate habitats (Estrada et al.

2017). Primates such as the macaques are essential for

maintaining tropical biodiversity and ecosystem health

(Estrada et al. 2017).

• Large-scale prospective studies using molecular methods

in humans and monkeys are required to determine the

geographic boundaries of P. knowlesi and its ability to

infect other primate species (Fong 2017).

• Most importantly, as this review paper highlights, a more

complete understanding of the ecological processes and

mechanisms that produce variations in P. knowlesi

infection risk is needed (Brock et al. 2016; Loh et al.

2016). How land use influences parasite transmission by

affecting vectorial capacity, behaviour and distribution is

key to understanding the epidemiology of the disease

(Benavente et al. 2017; Yakob et al. 2018).

• In order to achieve these outcomes, transdisciplinary

research initiatives are required to determine transmis-

sion hot spots and to develop rapid diagnostic testing,

treatment options and prevention methods to break the

transmission cycle (Estrada-Peña et al. 2014; Loh et al.

2016). The preservation of tropical biodiversity for both

humans and animals (domestic and wild) is the best

insurance policy against the rise of emerging infectious

diseases such as P. knowlesi (Patz et al. 2000, 2004;

Sandifer et al. 2015; Jones et al. 2013).

Fig. 1. Ecological linkages between anthropogenic land-use changes and human health.
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