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Abstract: Birds, with their broad geographic ranges and close association with humans, have historically

played an important role as carriers of human disease and as reservoirs for drug-resistant bacteria. Here, we

examine scientific literature over a 15-year timespan to identify reported avian-bacterial associations and

factors that may impact zoonotic disease emergence by classifying traits of bird species and their bacteria. We

find that the majority of wild birds studied were migratory, in temperate habitats, and in the order Passeri-

formes. The highest diversity of bacteria was found on birds in natural habitats. The most frequently reported

bacteria were Escherichia coli, Salmonella enterica, and Campylobacter jejuni. Of the bacteria species reported,

54% have shown pathogenicity toward humans. Percentage-wise, more pathogens were found in tropical (vs.

temperate) habitats and natural (vs. suburban, urban, or agricultural) habitats. Yet, only 22% were tested for

antibiotic resistance, and of those tested, 75% of bacteria species were resistant to at least one antibiotic. There

were no significant patterns of antibiotic resistance in migratory versus non-migratory birds, temperate versus

tropical areas, or different habitats. We discuss biases in detection and representation, and suggest a need for

increased sampling in non-temperate zones and in a wider range of avian species.
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INTRODUCTION

Zoonotic pathogens pose a significant public health threat,

particularly with regard to bacterial diseases (Taylor et al.

2001; Jones et al. 2008). Birds have long played an

important role in human disease, specifically in spreading

microbial pathogens (Belshe 1998; Reed et al. 2003; John-

son et al. 2007; Moulin-Schouleur et al. 2007). This is likely

due to several key avian traits. First, like humans, birds are

found worldwide. Their ability to migrate long distances,

colonize new areas, and withstand a range of environments

allows for a global distribution (Fournier et al. 2000;

Rappole et al. 2000; Humair 2002; Winker et al. 2007;

Benskin et al. 2009; Altizer et al. 2011). Second, birds are

prominent species in human-dominated habitat types. The

close association of birds and humans in urban and agri-

cultural settings facilitates zoonotic disease transfer (Waters

et al. 1991; Marzluff 2001; Capua and Alexander 2002;

McKinney 2002; Atterby et al. 2016). Third, birds and

humans are host to some of the same bacteria species,

many of which are pathogenic. While evidence for direct
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bacterial transmission from birds to humans is limited,

several bird species have indirectly transmitted at least 12

genera of pathogenic bacteria through polluted water, ticks,

and feces that lead to diarrhea, salmonellosis, Lyme disease,

and other illnesses in humans (Tsiodras et al. 2008). Finally,

both domestic agricultural and wild birds can contaminate

shared spaces and cause human infections (Sacks et al.

1986; Graczyk et al. 2008; Bonnedahl et al. 2009; Ewers

et al. 2009; Vincent et al. 2010; Bonnedahl and Järhult

2014). Bird-carried diseases are, therefore, of interest be-

cause of the threat not only toward birds, but also human

health (Literák et al. 2010).

Changing environments, including those associated

with urbanization, agriculture, and climate change, may

affect the likelihood of birds acquiring pathogens. These

novel environments can lead to new niches and evolu-

tionary trajectories for birds (Darwin 1859; Lack 1940),

which may affect the ecology of pathogens and their vectors

(Dobson and Carper 1992; Holmes and Garnett 1994;

Daszak et al. 2000; Harvell et al. 2002; Guernier et al. 2004;

Harrus and Baneth 2005; Engering et al. 2013; Estrada-Peña

et al. 2014; Rothernburger et al. 2017). As birds shift ranges

to accommodate environmental changes, infected individ-

uals could introduce novel pathogens into immunologically

naı̈ve populations (Hubálek 2004). With possible increased

bacterial migration rates between individuals, antibiotic

resistance is also forecasted to evolve and spread rapidly

(Perron et al. 2007).

While zoonotic transmission of pathogens from birds

to humans has been more difficult to quantify than con-

specific transmission (Tsiodras et al. 2008), emerging

infectious diseases are predicted to occur primarily through

zoonotic transmission (Jones et al. 2008). This, coupled

with the large percentage of bacterial pathogens (38%,

Taylor et al. 2001), makes understanding associations of

different bacteria and bird species valuable to public health

efforts to combat infectious disease (Kruse et al. 2004;

Vouga and Greub 2016). In a recent literature survey, 122

studies documented associations between wildlife and

transmission of bacteria to our food chain (Greig et al.

2014). These data demonstrate the potential threat of

wildlife-transmitted bacteria and influences on human

health. The potentially urgent public health threat of bird-

borne infectious diseases suggests that now is the right time

to assess bird–bacteria associations.

Here we examine scientific literature over a 15-year

timespan to quantify characteristics of the reported bacteria

species involved in bird–bacteria relationships, and exam-

ine the potential zoonotic effects of these associations by

classifying birds by specific habitats and bacteria in terms of

pathogenicity and drug resistance. Specifically, we ask the

following questions:

1. How are certain characteristics of birds such as taxo-

nomic order, habitat, and migration status related to

pathogenic bacteria species, specifically ones that are

pathogenic toward humans?

2. What are the characteristics of bacteria that are found in

birds with regard to taxonomy, pathogenicity, and

antibiotic resistance?

MATERIALS AND METHODS

Data Compiled from the Literature

We conducted a search of papers published from 2000 to

2015 using SCOPUS, with the keywords ‘‘avian’’ or

‘‘birds,’’ and ‘‘disease’’ or ‘‘pathogenic,’’ and ‘‘bacteria’’

following PRISMA guidelines (Moher et al. 2009) (Fig. 1).

Papers were limited to English primary sources that in-

cluded birds with at least one bacterial association. Each

bird–bacteria association represented one data point in our

analysis. If a paper surveyed a single bird species with

multiple bacteria species, we included each bird–bacteria

association from that paper. For example, in one paper,

researchers swabbed a herring gull and discovered 24 bac-

teria species (Bogomolni et al. 2008) for which we desig-

nated 24 separate data points.

Type of Data Collected

For each bird–bacteria association, we made the following

classifications: (1) geographic zone of study, (2) species,

family, and order of bird, (3) whether the bird was wild or

domestic, (4) migratory status of bird species, (5) habitat

type, (6) species, family, and phylum of bacteria species

associated with the bird, (7) whether the bacteria can cause

human infection, (8) if bacteria were tested for antibiotic

resistance, (9) if bacteria were resistant to any antibiotics,

(10) antibiotics tested, and (11) antibiotics each bacteria

species was resistant to. Further details of how we assessed

these traits are provided below.

For geographic zone, we recorded whether a study took

place in a tropical or temperate area. We noted the location

where each species was found, and if a general area was

given, such as ‘‘California,’’ we recorded that as the area.
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When coordinates were not given, we inputted the area

into Google Earth Pro (Google Inc. 2015), scrolled to 100–

200 m above ground, and used the coordinates at the

automatically generated marker, usually in the centroid of

the specified area. Tropical areas were bounded by the

Tropic of Cancer (23.4371�N) and Tropic of Capricorn

(23.4371�S).
If the bird species was not mentioned in an article, we

recorded the family or order. Birds were considered ‘‘do-

mestic’’ if they were raised solely for human consumption.

Species were considered ‘‘migratory’’ if the ‘‘movement’’

section in the Handbook of the Birds of the World (HBW)

(Hoyo et al. 1992–2013) indicated that the bird was a

‘‘migrant,’’ such as long-distance or altitudinal. If the sec-

tion stated that a bird was ‘‘sedentary,’’ a ‘‘resident,’’ or

‘‘locally nomadic,’’ it was deemed ‘‘non-migratory.’’ We

recorded ‘‘N/A’’ for any bird with ‘‘little or no informa-

tion’’ about its movements, for any ‘‘domestic’’ bird, or if

the bird was described in publications only as a family or

order.

Birds found in ‘‘natural’’ habitats generally live in areas

of non-agricultural flora and fauna (Blair 1996). Birds in

‘‘suburban’’ locations live in areas with both built cover

and vegetation such as parks or gardens, and birds in

‘‘urban’’ habitats were located within a metropolis (Blair

1996). Additionally, habitats included ‘‘agricultural’’ for

birds found in cultivated fields, ‘‘industrial livestock’’ for

poultry houses or livestock farms, ‘‘multiple habitats’’ for

studies taking place in multiple habitats, and ‘‘N/A’’ if the

location was vague or unknown. We did not include pets.

Figure 1. Screening process. PRISMA flowchart detailing the review and data selection process. Six hundred and eighty-three studies were

ultimately used for analysis.
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On a species level, if a bird was included in several studies

with different habitats, it was placed into the ‘‘multiple

habitats’’ category. Wild birds sampled around poultry

houses were considered in ‘‘industrial livestock’’ habitats.

‘‘Domestic’’ birds lived in ‘‘industrial livestock’’ habitats,

and were separated from wild bird analyses unless noted.

For bacteria species, we included species name, or if no

species was listed, the genus. To determine pathogenicity

toward humans, we used peer-reviewed journals to confirm

if a species of bacteria has caused infections in humans. We

recorded if bacteria species were tested for antibiotic

resistance, the antibiotics used, and the results of those

tests. Resistance was determined by the author of each

study.

To detect bias in the characteristics of birds included in

the bird-bacteria literature, we estimated the percentages of

all birds in temperate versus tropical areas, migratory ver-

sus non-migratory, and natural versus agricultural versus

suburban versus urban versus multiple habitat categories by

randomly sampling 1000 birds from HBW (Hoyo et al.

1992–2013). We used chi square statistics to draw conclu-

sions about patterns in the data. Data for wild birds living

among domestic birds (in ‘‘industrial livestock’’ habitat)

when shown were not analyzed statistically because of a low

sample size for that group (n = 4).

RESULTS

We analyzed 683 papers, which included 530 unique bird

species, 11 phyla of bacteria representing at least 368 spe-

cies, and 2289 unique bird–bacteria associations (Appendix

Table 1, Appendix Table 2 in ESM). The samples in these

studies were collected from all seven continents, with most

samples from the USA and Europe (Fig. 2).

Characteristics of Birds in this Study

The 530 bird species included in the surveyed literature

represent only 5% of 10,731 recognized bird species and an

even smaller percent of the 18,000–20,000 estimated bird

species (Barrowclough et al. 2016). Birds in this study

spanned 29 of the 39 recognized bird orders (Gill and

Donsker 2017) with a majority of species represented by

three orders (Passeriformes 47% of 530 bird species;

Charadriiformes 12%; Anseriformes, 8%) (Fig. 3). In some

cases, this was an underrepresentation based on their

abundance; for example, Passeriformes account for

approximately 60% of all bird species. In other cases, there

was overrepresentation: Charadriiformes account for 3%

and Anseriformes less than 2% of all known bird species.

Among the 683 studies, some species were overrepresented

(Appendix Table 1, Appendix Figure 1 in ESM).

Most studies (75%) included birds that were migratory

(Table 1). On a per-study level, 51% of studies focused on

domestic birds in industrial livestock, 15% in natural

habitats, 6% in suburban habitats, 3% in urban habitats,

2% in agricultural habitats, and 23% in multiple or un-

clearly defined habitats. On a per-species level, 4% of

species studied were considered in domestic industrial

livestock, 41% were only in natural habitats, 14% in sub-

urban habitats, and 3% in agricultural habitats. No birds

were found in only urban habitats (Table 1). Classification

of birds in our analysis by migratory pattern and habitat

showed that the migratory birds were significantly more

common than non-migratory birds in all but suburban

habitats (natural: V1
2 = 85.56, P < 0.0001; suburban:

V1
2 = 0.51, P = 0.47; agricultural: V1

2 = 4.57, P = 0.03;

multiple habitats: V1
2 = 52.47, P < 0.0001; Fig. 4).

We collected life history data from 1000 randomly

selected species from HBW. Our sample reflected the ma-

keup by order of the 10,731 known bird species (Gill and

Donsker 2017). Starting with the most speciose orders,

Passeriformes accounted for 65% of species (vs. 60% in Gill

and Donsker 2017), Piciformes for 4.9% (vs. 4.1%),

Caprimulgiformes for 4.9% (vs. 5.6%), Charadriiformes for

3.4% (vs. 3.6%), Columbiformes for 2.7% (vs. 3.2%), etc.

Based on our estimated percentages using the HBW sam-

ple, the majority (73%) of the world’s bird species reside in

tropical areas. The studies included in our analysis, how-

ever, were significantly biased toward temperate species

(Fig. 2; Table 1). The bird-bacteria literature was also sig-

nificantly biased toward migratory birds: 75% of the bird

species studied migrate, while we estimate that 32% of the

world’s species migrate (Table 1). The bias toward migra-

tory birds could result from a bias toward temperate spe-

cies; (temperate: 74% of species studied migrate vs. 32% of

all birds: V1
2 = 281.1, P < 0.0001; tropical: 36% of species

studied migrate vs. 32% of all birds: V1
2 = 0.21, P = 0.68).

Finally, while most bird species are found in natural areas

(about 73%), only 42% of species studied in the bird-

bacteria literature lived there (Table 1). Overall, we found a

significantly different distribution of species among habi-

tats in the literature compared to distributions worldwide,

driven by an underrepresentation of natural species and an
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over-abundance of species found in multiple or unclassified

habitats (Table 1).

Characteristics of Bird-Associated Bacteria

The 368 bacteria species represented in our findings illus-

trate a small fraction of sequenced bacteria species (Schloss

and Handelsman 2004), and even less of the estimated 109–

1012 bacteria species in the world (Dykhuizen 1998; Locey

and Lennon 2016; Larson et al. 2017). The most frequent

bacteria species reported in the reviewed studies were Es-

cherichia coli, Salmonella enterica, and Campylobacter jejuni

(Appendix Figure 2 in ESM). Two or more of these bac-

teria species were often found in the same bird species

(Appendix Table 1; Appendix Figure 2 in ESM). Per study,

Pasteurella multocida and Borrelia burgdorferi were also

commonly found in domestic and wild birds, respectively.

Out of 53 described bacteria phyla (Keller and Zengler

2004), 11 were reported in our analyses (21%). The

majority of bacteria were from Proteobacteria (170 bacteria

species out of 368; (46%), Firmicutes (31%), or Acti-

nobacteria (11%)) (Fig. 5). One bacterium (Avispirillum

sp.) has not been classified into a phylum yet (Walden-

ström 2006). Eleven phyla were found in migratory birds

compared to seven phyla in non-migratory birds. Addi-

tionally, all 11 bacteria phyla were found in temperate

habitats, but only eight phyla were represented in tropical

habitats; temperate habitats had the additional phyla

Chloroflexi, Deferribacteres, and Deinococcus-Thermus

(Appendix Table 1, Appendix Table 2 in ESM). The

greatest diversity of phyla was found in natural habitats (11

phyla), then industrial livestock (8), agricultural (6), sub-

urban (6), and urban habitat (5).

Characteristics of Bird-Associated Bacteria that are

Human Pathogens

Of the 538 identified bacteria species that are known hu-

man pathogens (Taylor et al. 2001), we found 199 in our

study (37% of total bacterial pathogens). More pathogens

were identified in temperate (193 species) compared to

tropical habitats (48 species), but based on sampling effort

as measured by the number of studies conducted, pro-

portionately more pathogens were identified in tropical

studies (48 species from 57 tropical studies, 193 species

from 541 temperate studies (V1
2 = 15.97, P < 0.0001)).

Thirty-five of 48 bacteria species found in tropical habitats

areas were also found in temperate areas. Regarding habitat

type, most pathogens (137 species) were found in 101

studies conducted in natural habitats, of which nearly half

Figure 2. Map of avian sampling locations. Each unique sampling location studied is represented by one plotted point on the map. Purple and

orange dots are wild and domesticated species, respectively. Most of the sampling locations are in temperate locations (defined by areas that are

above or below 23.4371 degrees latitude) compared with tropical locations. Inset pie charts show proportions of sampling locations by unique

study (n = 683) and by unique species (n = 530).
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(49%) were not reported in other habitats. Suburban

habitats had 38 species of pathogenic bacteria (from 39

studies), while agricultural and urban habitats had 18 and

13 species, from 12 and 20 studies, respectively. Over 350

studies in industrial livestock habitats identified 81 patho-

gens. Overall, the likelihood of detecting pathogenic bac-

teria relative to sampling effort differed significantly among

habitats (V4
2 = 121.39, P < 0.0001), with the fewest pa-

thogens, relative to the number of studies conducted, for

domestic birds in industrial livestock habitats.

Relative to the total number of bacteria species found,

migratory birds were not more likely to carry pathogenic

bacteria than non-migratory birds (V1
2 = 1.42, P = 0.23;

Fig. 6a). As a whole, however, pathogenic bacteria were

significantly more frequent than non-pathogenic bacteria

(V6
2 = 57.29, P < 0.0001), specifically in birds from nat-

ural, suburban, urban, and agricultural field habitats (nat-

ural: V1
2 = 240.0, P < 0.0001; suburban: V1

2 = 70.23,

P < 0.0001; urban: V1
2 = 21.12, P < 0.0001; agricultural:

V1
2 = 21.12, P < 0.0001; Fig. 6b). Domesticated industrial

livestock carried nearly equal numbers of pathogenic and

non-pathogenic bacteria (V1
2 = 1.29, P = 0.26; Fig. 6b).

While the sample size for wild birds in industrial livestock

habitats was too small to analyze, each of the four bacteria

species detected in those birds was pathogenic (Fig. 6b),

likely due to our own bias of placing ‘‘pathogen’’ within

our search terms.

Characteristics of Bacteria with Antibiotic Resis-

tance

One hundred and nine bacteria species out of 368 (29.6%)

were tested for antibiotic resistance, of which 75% (82

species) showed resistance to at least one antibiotic. Of the

resistant bacteria in our analysis, 30 (37%) were found only

in domesticated livestock. We documented 61 resistant

Figure 3. Distribution of bird orders in the bird-bacteria literature over a 15-year timespan. We grouped the 530 unique bird species studied by

their orders. In parentheses, the number of bird species in each order is shown. The most common orders were Passeriformes (47%),

Charadriiformes (12%), and Anseriformes (8%). This chart includes 15 domestic species: 8 Galliformes, 5 Anseriformes, 1 Struthioniformes, 1

Rheiformes.
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bacteria species in migratory birds compared to 24 in non-

migratory birds, representing a roughly equal likelihood of

identifying unique resistant bacteria based on sampling

effort (61 from 48 studies testing resistance of bacteria from

migratory birds; non-migratory: 24 from 23 studies;

V1
2 = 0.15, P = 0.70). Likewise, temperate and tropical

Table 1. Characteristics of Bird Species.

Percent of species from

literature-based analysis

(of 515 species) (%)

Percent of species from

HBW sample

(of 1000 species) (%)

Comparison of literature

survey to HBW sample

Migration

Migratory 75 32 V2 = 223.59, df = 1, P < 0.0001

Non-migratory 22 58.6

Little or no information 3 9.4

Location

Tropical 16 72.8 V2 = 594.0, df = 2, P < 0.0001

Temperate 74 14.2

Tropical and temperate 4 12.8

Little or no information 6 0.2

Habitat

Natural 42 72.9 V2 = 338.92, df = 5, P < 0.0001

Agricultural 3 3.5

Suburban 14 17.4

Urban 0 1.4

Industrial livestock (wild) 0.8 0

Multiple habitats 22.2 4.4

Little or no information 18 0.4

We characterized the migratory behavior, location, and habitat type of each of 515 unique wild species in the bird-bacteria literature from 2000 to 2015. To

detect biases in the literature, we compared the characterizations of species in our literature-based analysis for the characterizations of 1000 species we randomly

sampled from the Handbook of the Birds of the World (HBW).

Figure 4. Bird migratory and habitat traits. Migration status of wild birds in different habitats, excluding 16 birds whose migration status was

unknown (n = 499). A bird found only in one habitat in this literature-based analysis was listed under its respective habitat. Birds sampled in

several different habitats were grouped into the ‘‘Multiple habitats’’ category.
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birds harbored an equal diversity of resistant bacteria, with

E. coli as the most resistant bacteria in both regions (Ap-

pendix Table 3 in ESM). Sixteen resistant bacteria species

were found in 26 studies testing for resistance in bacteria

from tropical birds, and 81 species were identified from 143

temperate studies (V1
2 = 0.004, P = 0.95). The diversity of

resistant bacteria species detected did vary significantly

among habitats based on relative sampling effort

(V4
2 = 26.81, P < 0.0001). Forty resistant bacteria were

detected from 19 studies in natural habitats (2.1 species/

study), 2 species from 2 agricultural studies (1 species/

study), 11 from 17 suburban studies (0.64 species/study), 1

species from 4 studies in urban habitats (0.25 species/

study), and 44 from 105 industrial livestock studies (0.42

species/study). E. coli was resistant to the most antibiotics

in every habitat except agricultural habitat, where E. coli

antibiotic resistance was not assessed (Appendix Table 3 in

ESM).

Patterns of Antibiotic Resistance

Of the 176 (26%) studies that tested for antibiotic resis-

tance, the mean number of antibiotics tested was 11.5. In

total, 125 antibiotics were tested among the studies, with

the most common being tetracycline (71% of 176 studies),

gentamicin (69%), and ampicillin (61%). The vast majority

of the antibiotics tested, 111 of 125 (89%), were found to

have at least one bacterium resistant to them (Table 2).

The characteristics of the birds studied were not

associated with significant differences in antibiotic resis-

tance (migratory vs. non-migratory, temperate vs. tropic,

and different habitats, X2, all P > 0.80). For example,

bacteria from migratory birds were resistant to 79% (69/87)

Figure 5. Distribution of bacteria phyla in the bird-bacteria literature over a 15-year timespan. We grouped 368 unique bacteria species studied

by phyla. In parentheses, the number of bacteria species in each phylum is shown. The most common phyla were Proteobacteria (46%),

Firmicutes (31%), and Actinobacteria (11%). There was one bacterium (Avispirillum sp.) that has not been classified yet (Waldenström 2006)

and is in the phylum labeled, ‘‘N/A’’.
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of the antibiotics tested compared to 85% (57/67) of

antibiotics tested in non-migratory birds (X1
2 = 0.03,

P = 0.87). The percent of antibiotics yielding resistance

were 87% and 89% in temperate versus tropical birds,

respectively, and among birds in different habitats, ranged

from 71 to 95%, again with no significant patterns

emerging.

In regard to bird taxonomy, chickens (Gallus gallus)

carried bacteria found to be resistant to 96 antibiotics, the

highest among domestic birds (Appendix Table 4 in ESM).

Among migratory wild birds, the common buzzard (Buteo

buteo) had the highest number of resistant antibiotics (20),

while rock doves (Columba livia) and tawny owls (Strix

aluco) had the highest number of antibiotic-resistant bac-

teria for non-migratory birds (24; Appendix Table 4 in

ESM). Likewise, the bird orders Galliformes and Anseri-

formes had the most antibiotic-resistant bacteria for both

domestic and wild birds (Appendix Table 5 in ESM).

DISCUSSION

Zoonotic transmission of diseases is a clear public health

issue (Jones et al. 2008; Cutler et al. 2010). Because diverse

and abundant bird populations coexist with humans, and

humans and birds are host to some of the same bacteria (da

Costa et al. 2013), an investigation of bird–bacteria asso-

ciations seems warranted. The goals of this literature-based

analysis were to examine patterns of bird–bacteria associ-

ations and identify gaps in knowledge, specifically in

determining understudied species, geographic locations,

and habitat types. A 15-year timespan allowed us to obtain

a snapshot of the current trends in the literature. A limi-

tation could be that rare bacteria are overrepresented

compared to common bacteria; however, the same com-

mon bacteria were sampled year after year (Appendix Ta-

ble 1 in ESM).

Figure 6. Pathogenicity of bacteria in relation to bird characteristics. a Bacteria pathogenicity and migratory status of wild birds. Domestic

birds were excluded from migratory counts. b Pathogenicity in each of the habitats. Bacteria on domestic species were included in the

‘‘Industrial livestock: domestic’’ category. Note: For both a and b, if multiple bacteria species were found on a bird, each bacteria species was

counted.
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Table 2. List of Antibiotics and Resistance.

Mechanism/class Antibiotic

Targets cell membrane

Cationic peptides Bacitracin*

Colistin*

Lipopeptide Daptomycin

Targets cell wall

Carbapenems Ertapenem

Imipenem*

Meropenem*

Cephalosporins (first generation) Cefadroxil*

Cefazolin*

Cefradine*

Cephalothin*

Cephalosporins (second generation) Cefaclor*

Cefotetan*

Cefotiam*

Cefoxitin*

Cefuroxime*

Cephalexin*

Cephalosporins (third generation) Cefdinir

Cefixime*

Cefoperazone*

Cefotaxime*

Cefpodoxime*

Ceftazidime*

Ceftibuten

Ceftiofur*

Ceftizoxime*

Ceftriaxone*

Cephalosporins (fourth generation) Cefepime*

Cefpirome

Cefquinome*

Glycopeptides Bleomycin

Teicoplanin*

Vancomycin*

Moenomycins Flavomycin*

Monobactams Aztreonam*

Penicillins Amoxicillin*

Ampicillin*

Carbenicillin*

Cloxacillin*

Mecillinam*

Methicillin

Mezlocillin*

Oxacillin*

Penicillin G*

Table 2. continued

Mechanism/class Antibiotic

Piperacillin*

Ticarcillin*

Phosphonic acid derivatives Fosfomycin*

Polypeptides Enramycin*

Cephalosporin combination Ceftazidime-clavulanic acid

Penicillin combination Amoxicillin-clavulanic acid*

Ampicillin-sulbactam*

Piperacillin-tazobactam*

Ticarcillin-clavulanate*

Targets DNA

Aminocoumarin Novobiocin*

Nitrofurans Furazolidone*

Nitrofurantoin*

Nitroimidazoles Metronidazole*

Quinolones/Fluoro-

quinolones

Ciprofloxacin*

Danofloxacin*

Difloxacin*

Enrofloxacin*

Flumequine*

Gatifloxacin*

Levofloxacin*

Marbofloxacin*

Moxifloxacin*

Nalidixic acid*

Norfloxacin*

Ofloxacin*

Orbifloxacin*

Oxolinic acid*

Quinoxalin-di-N-oxides Carbadox*

Targets folic acid synthesis

Diaminopyrimidine Trimethoprim*

Sulfonamides Sulfachloropyridazine*

Sulfadiazine-trimethoprim*

Sulfadimethoxine*

Sulfamethazine*

Sulfamethoxazole*

Sulfamethoxazole-trimetho-

prim*

Sulfathiazole*

Sulfisoxazole*

Sulphadimethoxine*

Targets ribosomes

Aminoglycosides Amikacin*

Apramycin*

Dihydrostreptomycin*

Gentamicin*
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We found a clear sampling bias toward domesticated

birds, particularly chickens and turkeys, and other species

closely associated with humans (e.g., rock doves). Further

attention should be given to sampling bird species from

orders underrepresented in bird-bacteria literature.

Additionally, temperate bird species are overrepre-

sented compared to tropical bird species. Studies of tropical

birds are particularly relevant in Asia and Africa, where

numerous bacteria have evolved multi-drug resistance

against antibiotics intended to treat tuberculosis, cholera,

gonorrhea, salmonellosis, methicillin-resistant Staphylo-

coccus aureus, and E. coli infections (Ndihokubwayo et al.

2013).

The overrepresentation of birds in multiple habitats

possibly reflects an increase in urbanization (Luniak 2004).

Additionally, the bias toward migratory birds can be partly

explained by an oversampling of temperate species, which

are largely migratory. It seems plausible that the literature

should also skew toward subjects affecting humans: more

pathogenic species, more domestic birds.

There is a lack of literature reporting bacterial diversity

in temperate versus tropical birds. When only comparing

bacterial diversity from soil and leaf litter samples in

temperate and tropical regions, previous researchers found

more bacterial diversity in temperate areas compared with

the tropics (Kim et al. 2014; Tian et al. 2017), which reflects

our findings as a whole. Previous studies have found that

natural and agricultural habitats tend to have more bacteria

phyla than urban habitats (Ibekwe et al. 2013; Jordaan

2015), and this finding is consistent with our results. The

oversampling of migratory temperate birds may account

for some of the apparent increase in bacterial diversity in

migratory birds.

Had more bacteria species in birds been sampled,

tropical zones would have proportionally more human

pathogens than temperate zones. Likewise, natural habitats

would have proportionally more pathogens than other

habitats. Both of these findings are consistent with previous

research (Guernier et al. 2004; Bradley and Altizer 2007). In

wild birds, pathogenic bacteria were more common than

non-pathogens. This could be because of selective isolation

of known pathogens toward birds or a bias toward sam-

pling dead birds (Benskin et al. 2009), which have a higher

likelihood of bacterial infection. In our literature-based

analysis, eight orders of birds had only human-pathogenic

bacteria associated with them. It is likely that researchers

have focused more on bacteria that are human pathogens

in order to determine the threat from potential zoonotic

Table 2. continued

Mechanism/class Antibiotic

Kanamycin*

Neomycin*

Netilmicin*

Paromomycin

Spectinomycin*

Streptomycin*

Tobramycin*

Chloramphenicol Chloramphenicol*

Fusidane Fusidic acid*

Glycylcyclines Tigecycline*

Lincosamides Clindamycin*

Lincomycin*

Lincosamides, Aminoglycoside Lincospectin*

Macrolides Azithromycin*

Clarithromycin*

Erythromycin*

Josamycin*

Kitasamycin*

Spiramycin

Telithromycin*

Tilmicosin*

Tulathromycin

Tylosin*

Orthosomycins Avilamycin*

Oxazolidinones Linezolid*

Phenicols Florfenicol*

Pleuromutilins Tiamulin*

Streptogramin Quinupristin-dalfopristin*

Streptogramin A*

Streptogramin B*

Virginiamycin*

Tetracycline Chlortetracycline*

Doxycycline*

Minocycline*

Oxytetracycline*

Tetracycline*

Targets RNA

Mupirocin Mupirocin

Rifamycin Rifampicin*

Targets more than one area

Combination drugs Bacitracin-chloramphenicol

Penicillin–streptomycin

We classified antibiotics found in bird-bacteria literature from 2000 to 2015.

Antibiotics are grouped by mechanism, on left. Combination antibiotics

were considered as one unique antibiotic. An antibiotic with an asterisk (*)

means that at least one bacterium has shown resistance to the respective

antibiotic within our analysis.
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reservoirs. One caveat is that we input ‘‘pathogen’’ or

‘‘disease’’ into our search terms, which inherently makes

the results contain more pathogens. We statistically analyze

human pathogens only, but our results also include bird

pathogens.

In total, there was a high rate of resistance (75%) in

tested bacteria. Worldwide, data regarding antimicrobial

resistance are limited except for certain bacteria species of

widespread concern, such as E. coli and S. aureus that have

resistance rates of 50% or more in certain countries (WHO

2014). The high rate of resistance in our analysis can reflect

the efforts of researchers focusing on certain pathogenic

bacteria, or it can reflect the severity of resistance at hand.

Interestingly, there were no significant differences in

antibiotic resistance rates based on bird migratory status,

geographic zone, or habitat type. Migratory birds are more

likely to have antibiotic-resistant bacteria because they are

exposed to antibiotics at higher rates due to traveling great

distances and inhabiting a variety of environments, par-

ticularly in areas around humans (Allen et al. 2010).

Additionally, industrial livestock and urban areas should

have higher relative levels of resistant bacteria; because

livestock are frequently treated with antibiotics, resistance

develops more easily and can spread to the surrounding

environment and to consumers in urban environments

(Teuber 2001).

Domestic chickens were found to have the most

antibiotic resistance, possibly as a reflection of the large

number of studies that focused on chickens. It is also likely

that chickens contain the most resistance because they are

subject to numerous antibiotic therapies, and thus oppor-

tunities for resistance, in intensive farming situations (van

den Bogaard et al. 2002; Muaz et al. 2018).

We suggest a better integration in the two areas of

research of avian studies and microbiology. While it is

unrealistic to expect those who conduct field studies in

birds to add a microbial component, better communication

and integration of field ornithology with microbial studies

would allow for a less-biased understanding of bird–bac-

teria associations. More studies can utilize genomic meth-

ods and combine their findings with current bird

microbiome studies to synthesize host–bacteria interac-

tions. Some laboratories have already begun work in this

direction (Taragel’ová et al. 2008; Literák et al. 2010;

Oravcova et al. 2013). Finally, the significance of birds as

vectors for pathogens, including viral pathogens that cause

West Nile flu and H1N5 flu, makes understanding zoonotic

transmission of diseases crucial to clinicians and to the field

of public health, thus emphasizing the importance of

multi-disciplinary studies in understanding bird–bacteria

associations and their consequences.
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holm S, Kayser Y, Melhus Å, Kahlmeter G, Waldenström J,
Johansson A, Olsen B (2009) Dissemination of Escherichia coli
with CTX-M type ESBL between humans and yellow-legged
gulls in the south of France. PLoS one 4:e5958. https://doi.org/
10.1371/journal.pone.0005958
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