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Abstract: Malaria in Limpopo Province of South Africa is shifting and now observed in originally non-malaria

districts, and it is unclear whether climate change drives this shift. This study examines the distribution of

malaria at district level in the province, determines direction and strength of the linear relationship and

causality between malaria with the meteorological variables (rainfall and temperature) and ascertains their

short- and long-run variations. Spatio-temporal method, Correlation analysis and econometric methods are

applied. Time series monthly meteorological data (1998–2007) were obtained from South Africa Weather

Services, while clinical malaria data came from Malaria Control Centre in Tzaneen (Limpopo Province) and

South African Department of Health. We find that malaria changes and pressures vary in different districts with

a strong positive correlation between temperature with malaria, r = 0.5212, and a weak positive relationship

for rainfall, r = 0.2810. Strong unidirectional causality runs from rainfall and temperature to malaria cases (and

not vice versa): F (1, 117) = 3.89, q = 0.0232 and F (1, 117) = 20.08, P < 0.001 and between rainfall and

temperature, a bi-directional causality exists: F (1, 117) = 19.80; F (1,117) = 17.14, P < 0.001, respectively,

meaning that rainfall affects temperature and vice versa. Results show evidence of strong existence of a long-run

relationship between climate variables and malaria, with temperature maintaining very high level of signifi-

cance than rainfall. Temperature, therefore, is more important in influencing malaria transmission in Limpopo

Province.
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INTRODUCTION AND PURPOSE

Malaria is the most nagging parasitic infection affecting

humans, accounting for an estimated 300–500 million cases

of malaria worldwide with 90% of annual cases reported in

sub-Saharan Africa (Reiter 2008). A recent resurgence of

malaria in the East African highlands involves multiple

factors, ranging from climate and land use change, to drug

resistance, variable disease control efforts and other socio-

demographic factors (Patz et al. 2002; Pascual et al. 2006).

Malaria epidemics have long been reported to occur among

vulnerable populations where immunity is often non-exis-

tent or poorly developed. It is estimated that epidemic
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malaria causes between 12% and 25% of estimated annual

worldwide malaria deaths, including up to 50% of mortality

in persons less than 15 years of age (Thomson et al. 2005).

Malaria is an extremely climate-sensitive disease (Rog-

ers and Randolph 2000) common in the tropics, (Patz and

Olson 2006), but also reported in mild-to-cold climates

(Hulden and Hulden 2009). Large epidemics of malaria

elsewhere have been associated with climate anomalies, such

as in Colombia, the Indian subcontinent, and Uganda

(Bouma and van der Kaay 1996). Rainfall and temperature

are the main climate factors that influence malaria trans-

mission. Rainfall provides conducive site conditions for

mosquito breeding, while humidity and temperature to-

gether affect mosquito survival (Poveda et al. 2001). Warmer

temperatures shorten the mosquito life cycle, thereby

increasing its population (Patz et al. 2005; Patz and Olson

2006). High temperature shortens the development time of

vector-borne pathogens, accelerates vector life cycle and also

decreases the incubation period of the parasite; and com-

bined with favourable climatic conditions, the population of

carrier mosquitoes increases (Kovats and Martens 2000; Atul

and Nettleman 2005; Naqvi 2009; Huang et al. 2011).

Empirical studies have linked rainfall anomalies (Con-

nor et al. 1999; Lindblade et al. 1999; Githeko and Ndegwa

2001; Thomson et al. 2005; Nkomo et al. 2006) and warmer

temperatures (Pascual et al 2006; Paaijmans et al. 2010;

Ngomane and de Jager 2012; Siraj et al 2014) to correspond

with concomitant increases in malaria incidences. However,

other studies have included other variables such as humidity

and vegetation (Haque et al. 2010; Alemu et al. 2011; Lunde

et al. 2013a, b). Other factors, e.g. social and economic

factors—population and migration—also play a significant

role (Haines et al. 2000; van Lieshout et al. 2004). Moreover,

a combination of mutating malaria parasites, resource

constrains and weak health systems implies low adaptive

capacity (Kovats and Haines 2005). Moreover, a combina-

tion of mutating malaria parasites, resource constrains and

weak health systems, alongside drug resistance and land use

patterns, implies low adaptive capacity and increase in ma-

laria (Kovats and Haines 2005; Harrus and Baneth 2005;

Pascual et al. 2006; IOM 2008; Relman et al. 2008).

Mordecai et al. (2013) conclude that as temperature

increases due to climate change, vector control will likely

become more important, difficult and expensive in tem-

perate areas, but some war areas may simply become too

hot to support malaria. Ebi et al. (2005) assert that Zim-

babwean highlands will become climatologically favourable

to malaria by 2050.

A trade-off exits between fast parasite development and

high mosquito mortality at temperature and rainfall ranges

above or below optimum, such that high temperature does

not always increase transmission. Although temperature

shortens mosquito life cycle with optimal transmission

occurring at 25�C (Lunde et al. 2013a, b, Mordecai et al.,

2013), at very high temperatures, above 28�C, or low

temperatures, below 16�C, the cycle cannot occur or be-

come incomplete, and transmission declines dramatically

(Mordecai et al., 2013, Zucker, 1996; Williams et al., 1999).

South Africa has a warm climate, and much of the

country experiences average annual temperatures of above

17�C (DST 2010). Summer season begins in August and ends

in April. In Limpopo Province, average annual temperature

is about 22�C, with the highest temperatures, about 25�C,

recorded between December and January, while the lowest is

felt in July, about 15�C (Tshiala et al; 2011). Malaria trans-

mission is distinctly seasonal and limited to warm and rainy

summer months. Case notifications generally increase from

November, peak in late March to May, and then decline by

the end of June. Craig et al. (2004) report that, in South

Africa, the average seasonal pattern in malaria incidence

follows periodicity in rainfall and temperature with a 3–4

months lag. Although we find this lag time rather long,

elsewhere, the response time is not uniform. One plausible

explanation to this is that lag time itself could be temperature

sensitive because of the temperature-sensitive development

rate of larval mosquitoes and extrinsic incubation period of

the parasite. In the East African Highlands for example, Zhou

et al. (2004) finds a 1–2 and 2–5 month lag for minimum and

maximum temperature, respectively, while Briet et al. (2008)

and Hashizume et al. (2009) report rainfall lag time of 0–3

and 2–3 months for Sri Lanka and Kenya, respectively.

Malaria is endemic in the low-altitude areas of South

Africa at the border with Mozambique and Zimbabwe.

Specifically, transmission is prevalent in three provinces:

KwaZulu-Natal, Limpopo, and Mpumalanga province

(Sharp et al. 1998; Gerritsen et al. 2008; Ngomane and de

Jager 2012; Kondo et al. 2002). Limpopo Province

(Approximately 22–25�S, 27–32�E) lies in the low-altitude

area pre-disposed to malaria due to warm conditions. The

occurrence of malaria cases in the province has been re-

ported to be highly dependent on seasons (Bouma and van

der Kaay 1996). Interventions through the malaria control

programme in South Africa rely heavily on the intermittent

use of indoor residual spraying in periods shortly after

heavy rains when malaria cases tend to rise. This pro-

gramme continues despite no empirical evidence that
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rainfall drives malaria in the province. Therefore, there is a

need to establish the relative importance of rainfall and

temperature in malaria transmission for effective malaria

control. It is important to understand the relative impor-

tance, strengths, and direction of causality of climate-ma-

laria drivers, as well as the role of rainfall and temperature

as it relates to malaria dynamics in the short and long run.

This is central in enhancing malaria’s control policy mea-

sures and informing the design of malaria’s early warning

systems. Due to the fact that climate change by itself will

increase vulnerability (Bohle et al. 1994; van Lieshout et al.

2004), target planning is necessitated by careful consider-

ation of all factors.

Despite reported reduction in malaria trends in South

Africa through a combination of various social, economic,

and policy efforts (Blumberg and Frean 2007), the impact

of recent climate change on malaria incidence remains

poorly understood. Little is written about climate impacts

on malaria in Limpopo Province. While Shewmake (2008)

does not mention malaria in a study of household vul-

nerability to climate change, Gerritsen et al. (2008), on the

other hand, provide only an overview of seasonal malaria

incidence and mortality, and detect trends over time and

places in the province.

This study uses Spatio-temporal, correlation, and

econometric approaches (unit root tests and causality tests) to

achieve the above aims. The spatial method examines the

distribution of malaria at the district level within the province,

while Pearson Correlation determines the direction and

strength of the linear relationship between malaria with the

meteorological variables. The econometric approach is ap-

plied to (1) validate and examine the intrinsic characteristics

(stationarity) of malaria cases, rainfall, and temperature; (2)

test the direction and relative strength of causation; and (3)

ascertain the short-run and long-run equilibrium relationship

of the variables. The strength of econometric methods lies in

their ability to distinctively separate the effects of correlation

from those that are related to causality, thereby eliminating the

common fallacy that correlation implies causation. Causality

is tested using the standard Granger Causality Test.

Conceptual Framework

The conceptual framework for this study advances a mul-

tiple-factor explanation for malaria, ranging from climate

and land use change, to drug resistance, variable disease

control efforts, and other socio-demographic factors.

Figure 1 below illustrates a simplified, non-detailed

Figure 1. Malaria-environment nexus
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interrelationship. This study looks at the climate-malaria

interrelationship.

METHODS

Data and Sources

Monthly average rainfall and temperature along with the

number of malaria cases from January 1998 to July 2007 are

used. Climate data were obtained from the South Africa

Weather Services, while malaria data were obtained from

South African Department of Health and Malaria control

Centre in Tzaneen, captured through passive and active

surveillance systems. Details of the methods on how this

data were collected can be obtained from Gerritsen et al.

(2008).

Description of Methods

Spatio-Temporal and Correlation

The spatial distributions of malaria at municipality and

district levels were mapped using the inverse distance

weighted (IDW) interpolation routine in ArcGIS. The IDW

routine assumes that each measured point has a local

influence that diminishes with distance e.g. in Baltas

(2007). It gives greater weights to points closest to the

prediction location, and the weights diminish as a function

of distance. Malaria records for the various municipalities

were spatially weighted and aggregated at the district level

(Fig. 2). Weighted points at the centroid of each district

were then interpolated using the IDW following (Jorgensen

et al. 2010; Messina et al. 2011; Hanafi-Bojd et al. 2012).

Given seasonalised climate variables, a linear relationship

between temperature, rainfall, and malaria cases can be

derived from the Pearson Correlation coefficients as re-

ported by Wilks (1995). The linear relationship between

temperature and malaria cases with the influence of pre-

cipitation can be determined as a partial correlation

(Panofsky and Brier (1968) and Mardia et al. (1979).

Econometric Approaches

Causality In order to determine causality, Granger (1969)

proposed a time series data-based approach. Intuitively, the

standard Granger causality test examines whether past

changes in one variable, y, help explain current changes in

another variable, x, over and above the information pro-

vided by the lagged values of x. If not, then one concludes

that ‘‘y does not Granger-cause x’’. To determine whether

causality runs in the opposite direction, from x to y, one

basically repeats the experiment, but with the variables

interchanged. The null hypothesis that y does not Granger-

cause x is rejected if the coefficients in the equation are

jointly significant based on the standard F test.

There are three different types of situations in which a

Granger causality test can be applied and four possible

feasible outcomes. The situations are (i) a simple Granger

causality test with two variables and their lags, (ii) a mul-

tivariate Granger causality test with more than two vari-

ables, and (iii) Granger causality in a Vector Autoregression

(VAR) framework (VAR is an econometric model used to

capture the linear interdependencies among multiple time

series). For the purposes of this study, we focus on the

second situation (multivariate Granger causality) since we

have three variables: malaria cases, rainfall, and tempera-

ture. The four feasible outcomes are (1) independence; here,

neither malaria cases, rainfall, nor temperature, Granger-

cause each other; (2) unidirectional Granger causality where

rainfall or temperature independently Granger-causes ma-

laria cases, but not the other way round; (3) unidirectional

Granger causality where malaria cases cause rainfall or

temperature independently, but not vice versa; and (4) bi-

directional (or feedback) causality where malaria cases,

rainfall, and temperature Granger-cause each other. Theo-

retically, it is expected that rainfall and temperature influ-

ence malaria cases. A bi-directional causality is expected

between rainfall and temperature. We do not expect

malaria cases to cause rainfall or temperature.

Stationarity (Unit Root) Test

As a requirement for time series analysis, this paper first

studies the univariate characteristics (stationarity) of rain-

fall, temperature, and malaria cases in this study using the

standard Augmented Dickey–Fuller (ADF) (Dickey and

Fuller 1981) and Kwiatkowski, Phillips, Schmidt and Shin

(KPSS) tests (Kwiatkowski et al. 1992). Stationarity is a

process where the parameters of the process do not change

with time, i.e. the mean, variance, and autocorrelations are

constant in time, while the non-stationary variable is

otherwise. A non-stationary variable can be transformed

into a stationary process by either adjusting for trends or

including a time index as an independent variable in the

regression. Sometimes de-trending and inclusion of a time
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index may not be sufficient to make the series stationary

due to the possibility that statistics for changes in the series

between periods and seasons are constant, in which case,

the data are differenced. Differencing implies transforming

the variables into a series of period to period and/or season

to season differences. A stationary series is denoted as I (0)

but when the series is differenced once, it is said to be

integrated to order one, i.e. I (1) and a twice difference is I

(2).

In econometrics, testing for stationarity is an indis-

pensable requirement for two main reasons. First, without

stationarity tests, it is not possible to obtain any meaningful

sample statistics such as means, variances, and correlations

with other variables. Secondly, stationarity tests provide

important clues in the search for an appropriate method-

ology and forecasting model. Although it is known from

the literature that combining stationary variables with non-

stationary variables in a regression model yields spurious

(non-sensical) results and, therefore, an unreliable outcome

(Komen and Kapunda 2006; Gupta and Komen 2009),

models now exist that regresses both stationary and non-

stationary data. The recourse lies in the recently developed

Figure 2. Ten-year municipal and district spatial distribution of malaria in Limpopo Province
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Autoregressive Distributed Lag (ARDL)-Wald (Bounds)

test framework by Pesaran and Shin (1999).

Autoregressive Distributed Lag (ARDL)–Bounds

Test Model

The ARDL methodology is applicable in testing causation and

long-term relationship in cases where not all variables are

integrated to the same order. Cointegration (long-run rela-

tionship) is a situation where two or more series are non-

stationary, but a linear combination of them is stationary. The

advantage of using the ARDL–Bounds test in testing cointe-

gration is that while the conventional cointegration method

estimates the long-run relationships within the context of a

system of equations, the ARDL method employs only a single

reduced form equation (Pesaran and Shin 1999). Most

importantly, the ARDL framework avoids the larger number

of specifications to be made in the standard cointegration test,

such as decisions regarding the number of endogenous and

exogenous variables to be included, the treatment of deter-

ministic elements, as well as the optimal number of lags to be

specified (Duasa 2007). The procedure can be applied irre-

spective of whether the regressors are stationary or non-sta-

tionary, or mutually cointegrated (Pesaran et al. 2001).

Model Specification

The ARDL specification takes the following form:

D ln malat ¼ þ
X

i¼0

iD ln raint�i þ
X

i¼0

iD ln tempt�i

þ
X

i�1

iD ln malat�i þ1 ln raint�1 þ2 ln tempt�1

þ3 ln malat�1þt�1; ð1Þ

where ln mala is the natural logarithm of malaria cases; ln

rain is the natural logarithm; ln temp is the natural loga-

rithm; D denotes the first difference operator; g is the

optimal lag length; b1, b2, and b3 are the long-run coeffi-

cients; ai di and -i represents the short-run dynamics; and e

is the random disturbance term.

The F test is performed on null hypothesis (H0) of no

long-run relationship among variables (estimation of Eq.

(1)) which are tested against an alternative hypothesis (H1),

as presented below:

H0 ¼1¼2¼3¼ 0

H1 ¼1 6¼2 6¼3 6¼ 0
:

The absence of a long-run equilibrium relationship

between the variables coincides with zero coefficients for ln

raint-1, ln tempt-1, and ln malat-1. A rejection of H0 im-

plies that we have a long-run relationship.

The ARDL estimation proceeds in two steps. First is

the estimation of Eq. (1) by ordinary least squares in order

to establish the existence of a long-run linear relationship.

Once cointegration is confirmed, the second step is to

estimate the long-run coefficients (Eq. 2).

ln malat ¼1 þ
X

i¼0

1i ln rain
t�i

þ
X

i¼0

1i ln tempt�i

þ
X

i�1

1i ln malat�iþt�1

ð2Þ

The investigation of the long-run relationship using

the ARDL approach involves the estimation of Eq. (2),

through an unrestricted error correction model (UECM).

Since specification assumes that the disturbances are

serially uncorrelated, the choice of appropriate lag order is

important (Sultan 2010). The appropriate lag length in the

ARDL model is selected by either Akaike Information

Criterion or the Schwarz Bayesian criterion (SBC). The lag

length that minimises SBC is selected. The unrestricted

model is then estimated and progressively reduced, elim-

inating the statistically insignificant coefficients, and

reformulating the lag structure where appropriate, to

achieve orthogonality. The unrestricted ECM minimises

the possibility of estimating spurious relations, while

retaining the long-run information, suitable for economic

interpretation (Greenidge et al. 2009). A battery of diag-

nostic tests can then be used to check the performance of

the UECM (Akinboade et al. 2008; Hendry et al. 1984 in

Sultan 2010).

The short-run dynamics is derived from the ARDL

specification, Eq. (3), by constructing and error correction

model (ECM), Eq. (4):

D ln malat ¼2 þ
X

i¼0

2iDln raint�i þ
X

i¼0

2iDln tempt�i

þ
X

i�1

2iDln malat�iþrECMt�1þt�1; ð3Þ

where ECM is the error correction term, defined as

ECMt ¼ ln malat �1 �
X

i¼0

1i ln raint�i �
X

i¼0

1i ln tempt�i

þ
X

i�1

1iln malat�i: ð4Þ
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All coefficients of the short-run equation are coeffi-

cients relating to the short-run dynamics of the model’s

convergence to equilibrium, and r represents the speed of

adjustment.

The F test is used to test the existence of long-run

relationship.

The asymptotic distribution of the obtained F statistic

is nonstandard regardless of the degree of integration of the

variables. This, however, depends on whether (1) the

variables included in the ARDL model are I (0) or I (1), (2)

the number of regressors, (3) the model contains an

intercept and/or a trend, and (4) the sample size. Two sets

of critical F values, representing the lower bound and the

upper bound, have been provided by Pesaran and Shin

(1999) for large samples. Narayan (2004) presents the

critical F values for sample size ranging from 30 to 80. If the

computed F statistic for a chosen level of significance lies

outside the critical bounds, a conclusive decision can be

made regarding the cointegration of the regressors. If the

statistic is higher than the upper bound, the null hypothesis

of no cointegration can be rejected, and the next step is to

estimate the ARDL ECM where the short-run and long-run

elasticities may be determined (Narayan 2004; Pesaran and

Shin 1999 in Sultan 2010).

Computed and critical bounds of the F Statistic are

provided by Pesaran et al. (2001). The F statistics should lie

outside the bounds for a long-run relationship to exist, but

for short-run relationship, the coefficient of the ECM

should be negative and statistically significant.

RESULTS

Spatio-Temporal and Correlation Results

The number of malaria cases at the district level shows that

malaria is high in the Mopani and Vhembe districts

throughout the study period of analysis, 1998–2007. The

Vhembe district consistently shows more malaria cases. In

the Mopani district on the other hand, malaria cases appear

to be erratic, as shown on the maps. The overall trend

shows that, whereas there were fewer cases in 1998, this was

followed by a slight increase from 1999 to 2006. Very few

cases were reported in Capricorn, Waterberg, and Greater

Sekhukhune.

Figure 3 shows a scatter plot for rainfall and temper-

ature with malaria cases. More observations are scattered

away from the fitted line in the first panel (rainfall) than in

the second panel (temperature). This indicates a high po-

sitive correlation with temperature than rainfall with an R2

of 57.8%.

Figure 4 illustrates the trend relationship between

average rainfall and average temperature in relation to

malaria cases.

Figure 3. Correlation of rainfall and temperature with malaria—a graphical outlook
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This reveals a very strong positive correlation between

rainfall and temperature with malaria cases, although

higher rainfall does not increase malaria cases significantly

(e.g. 1999, 2001, and 2005). An increase in temperature is,

however, consistent with an increase in malaria cases. The

actual influence is further validated by statistics using the

cross-correlation method. This study finds a strong positive

correlation of climate variables to malaria cases, with

temperature exhibiting a stronger influence as compared to

rainfall. The coefficients for temperature and rainfall are

found to be 0.5212 and 0.2810, respectively.

Results for Causal Relationships

Table 1 presents Granger causality test results.

Rainfall Versus Malaria Cases

We find a unidirectional causality from rainfall to malaria

cases. For 117 observations, at a 5% significance level, the

computed F statistic is equal to 3.89071 with P = 0.0232

implies that the null hypothesis that rainfall does not

granger-cause malaria is rejected. Rainfall, therefore, influ-

ences malaria but reverse is not true. We do not reject the

Figure 4. Plot for average rainfall, average temperature, and malaria cases

Table 1. Causal Relationships.

Pairwise granger causality tests

Date: 06/23/13 time: 23:50

Sample: 1998M01 2007M12

Lags: 2

Null hypothesis Obs F statistic Prob.

(a) RAINFALL does not Granger-cause Malaria 117 3.89071 0.0232

MALARIA does not Granger-cause RAINFALL 1.44730 0.2396

(b) TEMPERATURE does not Granger-cause MALARIA 117 20.0805 4.E-08

MALARIA does not Granger-cause TEMPERATURE 0.07211 0.9305

(c) TEMPERATURE does not Granger-cause RAINFALL 117 19.7996 4.E-08

RAINFALL does not Granger-cause TEMPERATURE 17.1410 3.E-07
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null hypothesis that malaria granger-causes rainfall since the

F statistic equal to 1.44730 with P = 0.2396.

Temperature Versus Malaria Cases

We also find a unidirectional causality from temperature to

malaria cases. The computed F statistic is 20.0805 with

P < 0.001 implying that reject the null hypothesis that

temperature does not granger-cause malaria cases while

from malaria cases to temperature, the F statistic is 0.07211

with P = 0.9305, implying malaria cases does not granger-

cause temperature.

Temperature Versus Rainfall

This study finds a bi-directional causality between temper-

ature and rainfall at 1% level of significance. The F statistics

for the causation from temperature to rainfall and from

rainfall to temperature are 19.80 and 17.14, respectively,

with P < 0.001, in both cases meaning that rainfall influ-

ences temperature and vice versa.

Stationarity (Unit Root) Results

Table 2 shows a summary of the stationarity test.

The results indicate that malaria and rainfall follow

an autoregressive process with a unit root as the null

hypothesis is rejected for these variables, while for

temperature, the null hypothesis for existence of a unit

root could not be rejected, implying that rainfall and

malaria cases are stationary, while temperature is non-

stationary.

ARDL Results

Short-Run and Long-Run Results

These are results of estimating Eq. (1). This stationarity test

result pointed to ARDL–Bounds Test as the appropriate

methodology for analysis of the analysis of the short-run

(in this case, variation within months) and long-run (var-

iation in years) dynamics of rainfall and temperature as

they relate to malaria. UECM results are summarised in

Table 3, following similar procedure by Hendry et al.

(1984) and Akinboade et al. (2008).

Table 2. Unit Root Test Results.

Test Log of malaria Log of rainfall Log of temperature

Levels First difference Levels First difference Levels First difference

ADFl -7.926*** -2.252 -11.029***

ADFs -4.283***

KPSSl 0.620 0.033*** 0.021***

KPSSs

Conclusion Stationary

at levels: I(0)

Stationary at

levels: I(0)

Non-stationary Stationary at first

difference: I(1)

Computed ADF Augmented Dickey–Fuller (Dickey and Fuller 1981), KPSS Kwiatkowski, Phillips, Schmidst and Shin tests (Kwiatkowski et al. 1992).

*, **, and *** Means significance at 10%, 5%, and 1%, respectively.

Table 3. Unrestricted Error Correction Model.

Variables Coefficient Standard error

Constant -3.158603 2.156372

D(LMALA(-2)) -0.473095 0.123357***

D(LRAIN(-1)) 0.745233 0.248330***

D(LTEMP(-1)) 4.343676 1.129335***

LMALA(-1) 0.249101 0.104620**

LRAIN(-1) -0.499685 0.300813*

Diagnostic tests: Rampsey RESET = 2.271595 (0.1350): null hypothesis

that model has no omitted variable is not rejected implying no omitted

variables in the model. White’s test = 1.2668 (0.3869). Null hypothesis of

homoscedasticity is not rejected implying that variance of the variables in the

model is homogeneous. Breusch–Godfrey LM test = 0.868 (0.423). Null

hypothesis of no serial correlation is not rejected implying that the model

does not suffer from serial correlation.

Computed LMALA logarithm of malaria, LRAIN logarithm of rainfall,

LTEMP logarithm of temperature, (-1 and -2 indicate lags).

*, **, *** Means significance at 10%, 5%, and 1%, respectively.
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The model passes all basic time series tests. There is no

autocorrelation or serial correlation, and no omitted vari-

ables; variance is homogeneous and residuals are normally

distributed as confirmed by Durbin Watson statistic,

Ramsey RESET test, Breusch–Godfrey LM, White’s test,

and Jarque–Bera test. The R2 for the UECM is 50%, which

indicates a relatively good and satisfactory fit in this case.

The appropriate lag length automatically selected by SBC is

3. Empirical studies report non-uniform lag time for

malarial response to climatic variation. There seems to be

an average malaria response within 3 months from the

onset of the rainy season. Briet et al. (2008) report rainfall

lag time of 0–3 months, while Hashizume et al. (2009)

report 2–3 months. Regarding temperature, Zhou et al.

(2004) find minimum and maximum temperature lag time

to be between 1–2 and 2–5 months, respectively.

Bounds test (cointegration) results are presented in

Table 4.

The F statistic is outside the critical bounds (8.29 lies

outside 4.35top and 3.23bottom). We therefore reject the null

hypothesis of no cointegration at a 5% significance level

and conclude that a long-run relationship (cointegration)

exists between malaria and the climatic variables.

The long-run relationship is reported in Table 5, while

the short-run results are reported in Table 6.

In both short- and long-run instances, temperature

maintains a very high level of significance: 4.784184

(0.0000) and 4.557185 (0.0000); while rainfall is low in

both: 0.263281 (0.1509) and 0.373873 (0.2648).

DISCUSSION

We report GIS results of five districts (Capricorn, Greater

Sekhukhune, Mopani, Waterberg, and Vhembe) in Limp-

opo Province. The Vhembe district consistently shows

more malaria cases, while very few cases were reported in

Capricorn, Waterberg, and Greater Sekhukhune through-

out the period of analysis. In the Mopani district, malaria

cases appear to be erratic. Spatial differences could be ex-

plained by socio-economic reasons, migration, malaria

control programmes, and even climate change. Under-

standing the differences in spatial distribution and areas

burdened is crucial for targeted control measures.

In this study, rainfall and temperature are positively

correlated with malaria, while temperature shows a stron-

ger influence as compared to rainfall. We find the corre-

lation coefficient of temperature and rainfall to be 0.5212

and 0.2810, respectively. Positive correlation between ma-

laria and climate variables has been reported elsewhere.

Rainfall: Huang et al. (2011); for Tibet: Briet et al. (2008),

for Sri Lanka. Rainfall and temperature: Craig et al. (2004);

Githeko and Ndegwa (2001) studies on Kenyan Highlands

in Eastern Africa. Rainfall, temperature, humidity and

vegetation cover: Haque et al. (2010) for Bangladesh. In

Ghana, a positive correlation was found to exist between

malaria and climate elements (Nkomo et al. 2006). The

strength of the effect seems to flow from humidity to

temperature and rainfall. This result is consistent with

Huang et al. (2011), who found the correlation coefficients

Table 4. Cointegration Properties.

Dependent variable F stat Critical bounds (5%)

Bottom Top

d (lmala) 8.29 3.23 4.35

k = 3. Computed, critical bounds are obtained from Narayan (2004). d

(lmal) is the first difference of logarithm malaria.

Table 5. Long-Run Relationship Between Malaria Cases with

Rainfall and Temperature.

Variable Coefficient Standard error

C -6.155823 0.0006***

LRAIN -0.373873 0.2648

LTEMP 4.557185 0.0000***

LRAIN the logarithm of rainfall, LTEMP logarithm of temperature.

*** Means significance at 1%, respectively.

Table 6. Short-Run Relationship Between Malaria Cases with

Rainfall and Temperature.

Variable Coefficient Standard error

C -0.080311 0.2668

D (LMALA(-2)) -0.231066 0.0047***

D (LMALA(-3)) -0.205359 0.0120**

D (LRAIN) -0.263281 0.1509

D (LTEMP(-1)) 4.784184 0.0000***

Ecmt-1 0.005002 0.9783

-1 and -2 indicate lags.

LMALA logarithm of malaria, LRAIN logarithm of rainfall, LTEMP loga-

rithm of temperature.

** and *** Mean significance at 5% and 1%, respectively.
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for Tibet to be 0.518 and 0.348 for temperature and rainfall,

respectively, concluding that temperature had a greater

influence on malaria.

Regardless of the greater influence of temperature,

warming and rainfall would create the conditions for

malaria vectors to thrive (Epstein et al. 1997), boost the

population of disease-carrying mosquitos, and result in

increased malaria epidemics (Lindsay and Martens 1998;

Nkomo et al. 2006). Increases in temperature generally

accelerate vector life cycles and also decrease the incu-

bation period of the parasite (Kovats and Martens 2000;

Huang et al. 2011). However, at a very high tempera-

ture, the mosquito life cycle cannot be completed and

transmission cannot occur (Zucker 1996; Williams et al.

1999). It is interesting to observe a strong influence of

temperature on malaria transmission in Limpopo;

Ngomane and de Jager (2012), however, have reported

rainfall as the main driver in the neighbouring Mpuma-

langa Province.

The limitations of this study relate to the fact that

temperatures in the study area are limited to a range on the

curve where it is linear. Also, the study did not show

whether year to year variations in malaria were driven by

year to year variability in temperature/precipitation. This

will be the focus of the forthcoming paper.

CONCLUSION

This paper has utilised spatial, correlation methods as well as

bound testing approach to cointegration developed within

an ARDL framework to test spatial malaria distribution at

district level, test the strength of correlation, and determine

the existence of a long-run equilibrium relationship between

climatic variables with malaria. There is strong evidence that

climate influences malaria significantly both in the short and

long run. We find that malaria pressure varies in different

districts. We recommend (1) a study to ascertain the

thresholds of temperature and rainfall under which malaria

cases are probable; (2) the development and enhancement of

early warning systems for malaria at the district level; (3)

strengthening collaboration, partnership, and response

integration with other principle sectors, such as meteoro-

logical departments; and finally (4) long-term public health

planning to combat malaria as a part of the key functions of

the public health systems.
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