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Abstract: Several hypotheses have been examined as potential causes of global amphibian declines, including

emerging infectious diseases and environmental contaminants. Although these factors are typically studied

separately, animals are generally exposed to both stressors simultaneously. We examined the effects of the

herbicide atrazine and the insecticide chlorpyrifos on the susceptibility of tiger salamander larvae, Ambystoma

tigrinum, to a viral pathogen, Ambystoma tigrinum virus (ATV). Environmentally relevant concentrations of

atrazine (0, 20, 200 lg/L) and chlorpyrifos (0, 2, 20, 200 lg/L) were used along with ATV in a fully factorial

experimental design whereby individually housed, 4-week-old larvae were exposed for 2 weeks. Atrazine alone

was not lethal to larvae, and chlorpyrifos alone was lethal only at the highest concentration. When combined

with ATV, chlorpyrifos increased susceptibility to viral infection and resulted in increased larval mortality. A

significant interactive effect between atrazine and ATV was detected. Atrazine treatments slightly decreased

survival in virus-exposed treatments, yet slightly increased survival in the virus-free treatments. These findings

corroborate earlier research on the impacts of atrazine, in particular, on disease susceptibility, but exhibit

greater effects (i.e., reduced survival) when younger larvae were examined. This study is the first of its kind to

demonstrate decreases in amphibian survival with the combination of pesticide and a viral disease. Further

examination of these multiple stressors can provide key insights into potential significance of environmental

cofactors, such as pesticides, in disease dynamics.
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INTRODUCTION

Amphibian declines are occurring worldwide due to a

variety of anthropogenic impacts (Blaustein and Kiesecker,

2002). Whereas clear mechanisms likely underlie many of

these declines (e.g., habitat loss and invasive species), other

causes are far less understood and can involve subtle and

complex interactions (Collins and Storfer, 2003). These

‘‘enigmatic’’ declines account for a large proportion of

worldwide population losses and require further empirical

and field-based investigation (Stuart et al., 2004). Two

primary suspects for these enigmatic declines are emerging

infectious diseases and contaminant exposure.

Disease is thought to play a key role in amphibian

declines worldwide (Daszak et al., 2003; Stuart et al., 2004).

Several diseases have been implicated in these declines:
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ranaviral diseases, chytridiomycosis, saprolegniosis, and

Ribeiroia infection (Carey, 1993; Berger et al., 1998; Daszak

et al., 1999; Kiesecker, 2002; Johnson et al., 2007). In par-

ticular, Ranaviruses and the chytrid fungus, Batrachochy-

trium dendrobatidis, are well-documented for causing

population die-offs throughout the world (Daszak et al.,

1999, 2003). What is far less clear about both of these

pathogens is the reason(s) for their apparent sudden

emergence (Chinchar, 2002; Daszak et al., 2003; Collins and

Halliday, 2005). One proposed mechanism for this emer-

gence is that exposure to contaminants can weaken host

immune responses and increase susceptibility to infection

and disease (Carey, 2000; Christin et al., 2003; Forson and

Storfer, 2006a; Rohr et al., 2008).

Several pesticides have been shown to exhibit strong

negative impacts on amphibians. Chlorpyrifos is the most

widely used insecticide in the United States and, although

targeted to act on insect nervous systems (Kiely et al.,

2004), it also is known to alter nervous function in

amphibians (Colombo et al., 2005). These effects result in

both behavioral modifications and a reduction in growth

(Widder and Bidwell, 2006). Chlorpyrifos also has a large

range of lethal concentration (LC50) values ranging from 1

to 3,000 lg/L for differing amphibian species (Barron and

Woodburn, 1995). It is estimated that concentrations up to

64 lg/L occur in natural settings (van den Brink et al.,

1996), with residues in natural ponds found at >20 lg/L

(Hurlbert et al., 1970).

Atrazine is one of the most widely used herbicides

across the United States and is frequently detected in a wide

variety of water bodies at concentrations up to 250 lg/L

(Solomon et al., 1996). Atrazine has been shown to disrupt

endocrine function in two species of frogs (Hayes et al.,

2002, 2003). Atrazine has other large negative effects in

several amphibian species in terms of growth inhibition,

developmental suppression, and decreased survival (e.g.,

Larson et al., 1998; Diana et al., 2000; Storrs and Kiesecker,

2004; Rohr et al., 2006). In addition, atrazine has been

found to elicit negative effects indirectly via depleting

amphibian food resources (Boone and James, 2003) and by

increasing amphibian susceptibility to trematode infection

(Kiesecker, 2002; Rohr et al., 2008).

Tiger salamanders (Ambystoma tigrinum), like many

other amphibian species, have undergone widespread epi-

zootics throughout the western United States (Jancovich

et al., 1997, 2005). A major cause for these die-offs has been

the emergence of a single host ranaviral pathogen,

Ambystoma tigrinum virus (ATV) (Jancovich et al., 1997,

2005; Storfer et al., 2007). It is hypothesized that environ-

mental cofactors might have triggered some of these recent

outbreaks (Jancovich et al., 2005; Forson and Storfer,

2006a, b).

There is some evidence that pesticides could be

important cofactors for amphibian declines in general.

Pesticide contamination occurs throughout the United

States, from agricultural ponds to relatively undisturbed

sites in the Sierra Nevada mountains of California

(McConnell et al., 1998). The concentrations detected at

most of these sites are typically too low to cause mortality

directly, even among amphibian larvae. The sublethal ef-

fects of these low concentrations, and in particular, their

interaction with biotic stressors are not well-understood.

One study performed on 12-week-old A. tigrinum larvae

showed increased infection rates with ATV when also ex-

posed to atrazine at 16 lg/L (Forson and Storfer, 2006a).

Only until recently, have the potential interactive effects of

pesticides and pathogens in amphibians been explored

(Kiesecker, 2002; Christin et al., 2003).

In addition to interactions with pathogens, recent

studies have found interactive effects of sublethal concen-

trations of atrazine with other pesticides. Belden and Lydy

(2000) found that atrazine potentiates the toxicity of

chlorpyrifos in chironomid midges. When sublethal con-

centrations of each pesticide are combined, midge survival

is significantly reduced. This potentiating effect has shown

mixed results among amphibian taxa. The pesticide com-

bination results in lethality in the African clawed frog,

Xenopus laevis, but not in the wood frog, Rana sylvatica, or

the green frog, Rana clamitans (Wacksman et al., 2006).

Combined effects of atrazine and chlorpyrifos have not been

yet examined in salamander taxa, but may have important

implications for disease dynamics because the two pesticides

often are applied at the same sites (Wacksman et al., 2006).

In this study, we examine the effects of the multiple

stressors of a viral pathogen (ATV) and the pesticides

atrazine and chlorpyrifos on 4-week-old tiger salamander

larvae. We also examine interactions between the two

pesticides, at several ecologically relevant concentrations,

with one another and ATV in a fully factorial experimental

design. We hypothesize that the presence of pesticides in-

creases susceptibility to ATV and results in reduced survival

of larval salamanders.
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METHODS

Salamander Larvae

We used laboratory-bred larvae to ensure no previous

exposure to the pathogen or pesticides. Eggs were obtained

from five full sibship families at Arizona State University

(Tempe, AZ, USA). Families originated from animals col-

lected along the Mogollon Rim (Coconino County, AZ,

USA). Larvae were reared individually in round polyeth-

ylene containers (12.7-cm 9 7.6-cm) filled with 500 ml of

artesian spring water treated with Reptisafe (Zoo Med

Laboratories, San Luis Obispo, CA, USA), which was aer-

ated for at least 24 hours. Complete water changes were

performed weekly both during the rearing period and the

experiment. Upon hatching, larvae were fed daily 0.015 g of

egg dry mass of hatched brine shrimp. Larvae were main-

tained on a 12:12 hour light:dark cycle in an environmental

chamber kept at 20 ± 1�C. The experiment began once

larvae reached 4 weeks of age (mass = 0.10 ± 0.0018 g;

SVL = 0.88 ± 0.21 cm).

Experimental Design

A fully factorial 3 (0, 20, 200 lg/L atrazine) 9 4 (0, 2, 20,

200 lg/L chlorpyrifos) 9 2 (virus/no virus) design was

used, replicating each treatment 10 times with individual

animals as replicates, for a total of 240 animals. Individuals

from each of the five families were distributed equally to all

treatments. Larvae were individually housed in plastic cups

filled with 500 ml of well water. Pesticide aliquots were

administered first, with virus aliquots immediately follow-

ing. Using a previous protocol (Forson and Storfer, 2006a),

we administered to each individual cup an aliquot of

control cell media or media containing the viral strain CAP,

which originates from the same population that our

experimental salamanders were drawn from (Kaibab re-

gion, Arizona). The viral strain used was passed through

cell culture only twice, and therefore was suitable for use.

Larvae in the viral treatment were exposed to 1 9 104

plaque forming units of Ambystoma tigrinum virus via

water bath for 7 days (estimated LC50; Brunner et al.,

2005). Pesticides were reapplied after the water change on

day 7, whereas virus exposure occurred only during the

initial week. The experiment was concluded after 2 weeks,

when death had subsided in virus treatments for 3 con-

secutive days. Surviving larvae were killed at the end of the

experiment with a water bath overdose of MS-222.

Pesticide Preparation

For initial exposure and each subsequent water change, a

new 100-mg/L stock solution was created for each pesticide.

Technical grade atrazine and chlorpyrifos were dissolved in

100% methanol and then subsequently diluted 10x into

distilled water to create working solutions. These solutions

were vigorously shaken for 10 minutes to ensure homog-

enization. From this, 100 and 1,000 ll of solutions were

placed in their respective treatments of 500 ml of water to

obtain 20 and 200 lg/L concentrations of each pesticide.

For chlorpyrifos, a 2 lg/L concentration also was added by

using 10 ll of the stock solution. Control treatments were

administered: 1000 ll of a 10% methanol solvent control.

Stock solution concentrations of both pesticides were ver-

ified via gas chromatography (University of Idaho Analyt-

ical Science Laboratory, Moscow, ID, USA). Previous

research shows negligible degradation of both pesticides

during a 7-day period in laboratory setups (Manzanti et al.,

2003).

Variables Measured

Survival of individuals was monitored daily, with deceased

organisms immediately preserved in 95% ethanol. To

quantify virus loads and infection status of individuals, we

used quantitative real-time PCR. Methodology of DNA

extraction and qPCR followed Forson and Storfer (2006a).

Tail tissue from larvae were extracted via DNeasy kits

(Qiagen) and quantified via a Nanodrop spectrophotom-

eter. Samples were diluted to 20-ng/L concentrations and

examined in triplicate. Reactions contained 100-ng tem-

plate DNA, 300-nmol forward primer, 900-nmol reverse

primer, 240-nmol probe, and Taqman 2X Universal PCR

master mix (no AmpErase UNG; Applied Biosystems,

Foster City, CA, USA). Reactions were run for 40 cycles of

95�C denaturing (20 s), 54�C annealing (20 s), and 72�C

extension (30 s) on an ABI 7300 Real-time PCR System

using Real-time PCR System Sequence Detection Software

version 1.2.3 (Applied Biosystems). All virus-treated ani-

mals were examined along with a random sampling of 20%

of the no-virus controls to verify lack of contamination.

Statistical Analyses

We used logistic regressions to detect significant interac-

tions between treatments of virus, atrazine, and chlorpyrifos

using the response variables of both total dead and infected
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(PROC LOGISTIC, SAS 9.0). The total number of viral

copies data were log transformed (Log (x + 1)) to meet

normality assumptions. We analyzed these transformed

data using two-way ANOVA. Due to the bimodal nature

of the data, we also statistically examined differences in

viral load between non-zero values (i.e., only infected

individuals).

RESULTS

Mortality

The logistic regression analysis listed three key components

to the overall model: virus, chlorpyrifos, and a virus 9

atrazine interaction. Virus exposed treatments resulted in

significantly higher mortality across all treatments relative to

nonvirus treatments (v2 = 40.59, degrees of freedom

(df) = 1, p = 0.0001). Significant increase in mortality due

to pesticide exposure was detected with chlorpyrifos

(v2 = 16.88, df = 3, p = 0.0007), with increasing concen-

trations resulting in higher mortality regardless of virus

presence (Figure 1). The combination of virus and chlor-

pyrifos resulted in an additive increase in mortality relative to

the pesticide alone, although the interaction term was

not significant (v2 = 1.88, df = 3, p = 0.6). We found

no significant main effect of atrazine on mortality (v2 = 2.46,

df = 2, p = 0.29) and no significant interactive effects of

atrazine by chlorpyrifos on mortality (v2 = 7.59, df = 6,

p = 0.27). There was a significant interactive effect of atra-

zine by virus (v2 = 6.68, df = 2, p = 0.03) with the combi-

nation of atrazine slightly reducing mortality in no-virus

treatments and slightly increasing mortality in virus treat-

ments (Figure 2). The three-way interaction effect between

virus, chlorpyrifos, and atrazine was not significant

(v2 = 8.36, df = 6, p = 0.21), although combined pesticide

treatments resulted in the greatest mortality in virus-exposed

animals (Figure 3).

Infection

The logistic regression model showed no interactive effect

between the two pesticides on infection rate was detected

(v2 = 6.33, p = 0.85). When examined separately, increased

chlorpyrifos concentration resulted in higher infection rates

Figure 1. Proportion of salamander larvae that survived viral and

chlorpyrifos exposure. Pesticide levels span ecologically relevant

concentrations and viral exposure level typically results in 50%

survival. Logistic regression analyses are performed on total

proportions, and therefore no standard error bars are present. Each

bar represents all larvae in a particular treatment, and therefore

combines larvae across all atrazine treatments.

Figure 2. Proportion of salamander larvae that survived viral and

atrazine exposure. Pesticide levels span ecologically relevant concen-

trations and viral exposure level typically results in 50% survival.

Logistic regression analyses are performed on total proportions, and

therefore no standard error bars are present. Each bar represents all

larvae in a particular treatment, and therefore combines larvae across

all chlorpyrifos treatments.

Figure 3. Proportion of salamander larvae that survived viral and

pesticide exposure. Virus only data presented to show additive effects

of increasing pesticide concentrations. Logistic regression analyses are

performed on total proportions, and there no standard error bars are

present.
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(F3,6 = 10.25, p = 0.01; Figure 4), whereas atrazine had no

significant effect (F2,6 = 2.69, p = 0.14).

Quantitative PCR estimates of viral loads among

individuals show that death corresponds strongly to

infection in virus exposed treatments. Dead individuals in

the virus treatment exhibited significantly higher viral loads

(F1,57 = 7.12, p = 0.01) than surviving individuals, with

86% of dead exhibiting greater than 1 9 106 viral genome

copies. Analysis comparing viral loads did not signify dif-

ferences with exposure to atrazine (F2,104 = 0.24, p = 0.79)

or chlorpyrifos (F3,104 = 0.34, p = 0.8), or to an interactive

effect of both pesticides (F6,104 = 0.29, p = 0.94). Exami-

nation of infected only animals also did not signify differ-

ence in viral loads with exposure to atrazine (F2,47 = 0.05,

p = 0.95), chlorpyrifos (F3,47 = 0.88, p = 0.46), or their

interaction (F6,47 = 0.85, p = 0.54).

DISCUSSION

Both contaminants and disease are thought to be critical

components contributing to amphibian declines (Collins

and Storfer, 2003). Several studies have examined the im-

pacts of pesticides on amphibians (for review see Relyea

and Hoverman, 2006), but few have investigated their

importance in contributing to disease susceptibility and

emergence. Our examination of pesticide exposure on a

salamander/virus system exhibits key effects otherwise

overlooked in single-stressor experiments. Although we did

not find any significant interactions between the two pes-

ticides, there were interactions between each pesticide and

Ambystoma tigrinum virus treatments. Specifically, this

study showed three key results concerning the effects of

chlorpyrifos: (1) a direct lethal impact on 4-week-old

salamander larvae at 200 lg/L; (2) increased susceptibility

to viral infection; and (3) an increased additive mortality

effect when combined with virus. Atrazine exhibited mixed

results by increasing survival slightly in no-virus treat-

ments, and yet slightly decreasing survival in virus exposed

treatments. Following, we discuss each of these results in

detail.

Impacts of Chlorpyrifos

The widely used insecticide chlorpyrifos has significant

impacts on the survival of young tiger salamander larvae,

both in the absence and presence of ATV exposure. On its

own, chlorpyrifos results in a 20% reduced survival rate at

the highest concentration (Figure 1). When this concen-

tration is combined with virus, larval survival decreases

>60% compared with the control. We believe this dra-

matic decrease is primarily the result of increased suscep-

tibility of salamander larvae to viral infection, as suggested

by an increased infection rate among exposed larvae (Fig-

ure 4), as well as high viral loads among those that died.

Although no statistical interactive effect on mortality be-

tween chlorpyrifos and viral exposure was detected, >80%

of dead individuals exhibited viral loads typical of a dis-

eased individual (>1 9 106 viral copies/genome), sug-

gesting that the combination of virus and pesticide

exposure interact with one another. One would anticipate

decreased viral loads with increasing pesticide concentra-

tions if pesticides were acting separately to kill the sala-

manders more quickly. Instead, we see an increase in

infection rate with increasing concentrations (Figure 4).

Further study incorporating increased sample sizes would

likely provide increased power to statistically detect an

interactive effect. Nonetheless, combined ATV and chlor-

pyrifos exposure results in decreased survival and increased

infection rate, even at the lowest tested concentration

(2 lg/L) of chlorpyrifos (Figure 1).

Impacts of Atrazine

Several studies have exhibited impacts of atrazine on

amphibians, including alterations of development, behav-

ior, and survival (Hayes et al., 2002; Storrs and Kiesecker,

2004; Rohr et al., 2006). Previous work has shown that

atrazine increases disease susceptibility in tiger salamanders

(Forson and Storfer, 2006a). Relative to this work, our

study was performed on younger larvae (4 vs. 12 weeks),

thus we expected to find an even greater susceptibility to

atrazine due to both reduced overall size and incompletely

developed immune systems (Charlemagne, 1979). Inter-

Figure 4. Proportion of larvae infected by virus at each concentra-

tion of chlorpyrifos. Atrazine concentrations are pooled for each level

of chlorpyrifos, and bars represent ±1 standard error.
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estingly, we found an interactive effect occurring where

survival slightly decreased when atrazine was combined

with virus, but actually increased when no virus was present

(Figure 2). Admittedly, these slight changes (*10%) on

their own may not amount to meaningful impacts to nat-

ural population dynamics. Increased mortality in the

presence of combined virus and atrazine corroborates early

findings on the potential negative impacts on larval sus-

ceptibility (Forson and Storfer, 2006a). The increased sur-

vival in atrazine treatments has been found in other

amphibian studies (Forson and Storfer, 2006b; Storrs and

Kiesecker, 2004), although the mechanism for this in-

creased survival is not known.

Atrazine Interaction with Chlorpyrifos

Unlike previous studies (Belden and Lydy, 2000; Wacks-

man et al., 2006), we did not detect any enhancement of

toxicity of chlorpyrifos by atrazine in control or virus-ex-

posed treatments. This corroborates findings on two

amphibian species (Rana clamitans), which also did not

exhibit enhanced toxicity effects of the two pesticides when

combined (Wacksman et al., 2006). The atrazine concen-

trations used in this study were at least five times lower

than the concentration used in the study by Wacksman

et al., (1,000 lg/L), and therefore enhanced toxicity on A.

tigrinum might still occur at higher levels of exposure.

However, our high level (200 lg/L) represents the ecolog-

ically relevant high level found in nature (Hayes et al.,

2003).

Despite the lack of a synergistic effect, treatments

containing virus and increasing concentrations of the two

pesticides exhibited lower survival (Figure 3). A compelling

result is the 50% decrease in survival between the virus

exposed animals with no pesticides and those with the

highest combined concentration treatments (200 lg/L of

chlorpyrifos, 20 and 200 lg/L of atrazine). Areas where

pulses of multiple pesticides are simultaneously introduced

should have significant impacts on viral disease dynamics.

In particular, ATV generally follows density-dependent

dynamics (Brunner et al., 2004), and an increased pro-

portion of the susceptible population could lead to in-

creased severity of epizootics (Forson and Storfer, 2006a).

Future examination of pesticide impacts on disease

dynamics should continue to involve multiple pesticides

because pesticide use is ubiquitous and pervasive, even in

relatively undisturbed habitats.

CONCLUSIONS

Changes in parasite densities, as well as host susceptibility and

survival, can have dramatic impacts on host-pathogen pop-

ulation dynamics. Slight shifts in these variables can alter the

balance often maintained in host-pathogen interactions,

driving one to local extinction (McCallum and Dobson, 1995;

De Castro and Bolker, 2005). Introduction of pesticides into

these systems might provide a key advantage to pathogens by

weakening hosts (e.g., immune suppression). Indeed,

emerging diseases are increasingly appreciated as a cause of

host extinctions (Daszak et al., 2000; De Castro and Bolker,

2005), and the role of environmental cofactors could be

important in determining how new epizootics occur.

Typically, disease susceptibility and contaminant im-

pact on amphibians are studied separately. Understanding

how these two interact is of crucial interest to deciphering a

potential cause of amphibian decline. This study shows that

low concentrations of commonly used pesticides can in-

crease tiger salamander susceptibility to an emerging virus.

Whereas previous studies have shown nonlethal impacts of

combining nutrients and/or pesticides with disease (John-

son et al., 2007; Forson and Storfer, 2006a, b), this is the

first to demonstrate lethal impact on amphibians. More

field and laboratory-based studies should follow up these

results to determine impacts not only in a more natural

setting, but also to determine the indirect impacts on the

surrounding aquatic communities. It could be that con-

taminant exposure plays an important, but largely over-

looked, role in amphibian disease dynamics.
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