
A Landscape-based Model for Predicting Mycobacterium
ulcerans Infection (Buruli Ulcer Disease) Presence in Benin,
West Africa

Tyler Wagner,1 M. Eric Benbow,2 Meghan Burns,3 R. Christian Johnson,4 Richard W. Merritt,5

Jiaguo Qi,3 and Pamela L. C. Small6

1Quantitative Fisheries Center, Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA
2Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
3Center for Global Change and Earth Observations, Michigan State University, East Lansing, MI 48824, USA
4Programme National de lutte contre l’UB, Cotonou, Benin, West Africa
5Departments of Entomology and Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA
6Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA

Abstract: Mycobacterium ulcerans infection (Buruli ulcer [BU] disease) is an emerging tropical disease that causes

severe morbidity in many communities, especially those in close proximity to aquatic environments. Research and

control efforts are severely hampered by the paucity of data regarding the ecology of this disease; for example, the

vectors and modes of transmission remain unknown. It is hypothesized that BU presence is associated with altered

landscapes that perturb aquatic ecosystems; however, this has yet to be quantified over large spatial scales. We

quantified relationships between land use/land cover (LULC) characteristics surrounding individual villages and

BU presence in Benin, West Africa. We also examined the effects of other village-level characteristics which we

hypothesized to affect BU presence, such as village distance to the nearest river. We found that as the percent urban

land use in a 50-km buffer surrounding a village increased, the probability of BU presence decreased. Conversely,

as the percent agricultural land use in a 20-km buffer surrounding a village increased, the probability of BU

presence increased. Landscape-based models had predictive ability when predicting BU presence using validation

data sets from Benin and Ghana, West Africa. Our analyses suggest that relatively small amounts of urbanization

are associated with a decrease in the probability of BU presence, and we hypothesize that this is due to the increased

availability of pumped water in urban environments. Our models provide an initial approach to predicting the

probability of BU presence over large spatial scales in Benin and Ghana, using readily available land use data.

Keywords: Mycobacterium ulcerans, Buruli ulcer, infectious disease, West Africa, land use/cover, landscape-

based model

INTRODUCTION

Human-induced landscape alterations are widespread and

can have large effects on the structure and function of

ecosystems, including habitat loss, species extinction, al-

tered nutrient dynamics, invasive species colonization, and
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other ecosystem processes (Forman, 1995; Moloney and

Levin, 1996; Ceballos and Ehrlich, 2002; King et al., 2005;

Linderman et al., 2006). In addition, it is becoming

increasingly apparent that the spatial pattern of land use/

land cover (LULC) plays a role in the dynamics of

infectious diseases in both wildlife and human populations

(Farnsworth et al., 2005; Smith et al., 2005). This link

between LULC and disease dynamics is documented for

several well-studied vector-borne diseases where landscape

alterations, such as residential development or agricultural

land use, results in higher contact rates between humans

and disease vectors. Furthermore, changes in LULC can

create favorable conditions for vectors and hosts leading

to an increase in disease incidence rates (e.g., Jackson

et al., 2006). For newly emerging yet neglected diseases,

the identification of large-scale patterns in disease pres-

ence and their associations with LULC types can provide

valuable information used to prioritize and target geo-

graphic areas for surveillance and intervention programs.

For emerging diseases where little is known about vectors

or modes of transmission, the quantification of large-scale

patterns and associations with LULC types can also pro-

vide insight into potential vectors, because vector

dynamics are often closely linked to environmental gra-

dients (Hakre et al., 2004).

One such neglected disease is Buruli ulcer (BU), the

more common name of Mycobacterium ulcerans infection, a

debilitating skin affliction recently recognized by the World

Health Organization and the 57th World Health Assembly

as a rapidly emerging disease of tropical and sub-tropical

regions of the world (WHO, 2000a; Johnson et al., 1999,

2005a; Thangaraj et al., 1999; Merritt et al., 2005). Unlike

other mycobacterial infections such as tuberculosis and

leprosy, BU transmission is poorly understood but is re-

ported to be associated with disturbed aquatic habitats

(Barker, 1973; Barker and Carswell, 1973; Portaels, 1989;

Johnson et al., 1999; WHO, 2000a; for more on the epi-

demiology and clinical features of this disease, see Portaels

et al., 1999; Marsollier et al., 2003; Johnson et al., 2005a).

Further, although there has been some research targeted at

identifying environmental reservoirs and potential vectors,

these aspects of the disease still remain speculative, with

most reservoirs identified using PCR (Merritt et al., 2005).

Research on the distribution of M. ulcerans has received

intense interest since the disease was first described, but

studies on the ecology of the disease have lagged behind.

However, nearly all epidemiological studies have associated

disease outbreaks with proximity to human-disturbed

freshwater habitats, including marshes, impoundments,

wetlands, and slow moving riverine environments (Barker

and Carswell, 1973; Radford, 1975; Hayman, 1991; Hors-

burgh and Meyers, 1997; Thangaraj et al., 1999; Hayman and

Asiedu, 2000; WHO, 2000b; Aiga et al., 2004; Duker et al.,

2004; Johnson et al., 2005b; Merritt et al., 2005; Raghuna-

than et al., 2005). This ecological association with aquatic

habitats is generally reported and described as part of the

distribution and/or determinants of the disease, but it has

never been quantified (Merritt et al., 2005). Rather, the

association is most often anecdotal related to specific human

activities (e.g., wading), or developed from case-control

studies, which are often limited in spatial extent and thus

prevents the identification of large-scale spatial patterns in

disease occurrence (Johnson et al., 2005b; van der Werf et

al., 2005; Debacker et al., 2006). To our knowledge, there

have been no large-scale studies focused on quantifying

relationship between LULC and BU presence. Thus, the

objectives of this study were: (1) to identify, using landscape-

based models, LULC types useful in predicting the proba-

bility of BU presence; and (2) to test the landscape-based

models’ ability to predict the probability of disease presence

in villages in Benin, West Africa.

Hypotheses

Based on our current understanding of BU, we developed

hypotheses for the covariates we included in our statistical

analyses (Table 1). The association between agricultural

activities and BU remains unclear. For example, studies

have demonstrated that agricultural activity near rivers is a

risk factor for BU (Marston et al., 1995), and that wearing a

shirt while farming reduces the risk of BU (Raghunathan

et al., 2005). However, others have demonstrated that being

engaged in agricultural activities does not represent a risk

factor for BU (Aiga et al., 2004). We hypothesized that

outdoor agricultural activity increases the risk of exposure

to M. ulcerans in the environment, and therefore expected a

positive correlation between BU presence and the propor-

tion of agricultural land use surrounding a village.

The presence of BU is also hypothesized to be associated

with disturbed environments (Merritt et al., 2005), such as

deforested areas. Therefore, we predicted that the probability

of BU presence would decrease as the percent of land cover

types that represented less-disturbed habitats increased

around a village. Land cover types which we considered to

represent less-disturbed habitats included percent forest and

shrub land cover. Debacker et al. (2006) suggested that the
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availability of pumped water is an important factor in

reducing the risk for BU. We therefore hypothesized that the

percent urban land use surrounding a village would be

associated with an increased availability of pumped water

and thus would lower the probability of BU presence. We

included the percent agricultural plus urban land use sur-

rounding a village to represent a measure of the total human

alteration to the landscape, and the covariates of latitude and

longitude to account for any spatial gradients in BU presence.

Past research also suggests that M. ulcerans is associ-

ated with aquatic habitats. These studies have determined

that certain activities, such as swimming or other activities

in or near rivers, are risk factors for BU (Aiga et al., 2004;

Raghunathan et al., 2005; Debacker et al., 2006). Thus, we

hypothesized that individuals living in villages surrounded

by large amounts of water, and those living in villages in

close proximity to water would have high contact rates with

aquatic habitats. Specifically, we predicted that the proba-

bility of BU presence would decrease with increasing village

distance to the nearest river and with increasing elevation,

and increase as the percent water and wetland cover sur-

rounding a village increased. We included village elevation

because we expected that villages at higher elevations would

be further removed from low land areas where rivers and

standing water are more abundant. We also hypothesized

that exposure rates to M. ulcerans at the village level would

be a function of population size, with villages with larger

populations having a higher probability of BU compared to

villages with smaller populations.

MATERIALS AND METHODS

Study Area

The Republic of Benin is located in West Africa, with a

population of nearly eight million and encompassing 112,

622 km2 of land. Benin is bordered by Burkina Faso and

the Republic of Niger to the north, by the Federal Republic

of Nigeria to the east, and by the Republic of Togo to the

west. The southern portion on Benin comprises coastline of

the Gulf of Guinea (Fig. 1). The main agricultural activities

(by land area) in Benin include maize (480,000 ha), rep-

resenting the largest area, followed by sorghum, cassava,

and yams (all > 100,000 ha), and rice (representing

7777 ha; Rapport de l’Enquête, 2003).

Buruli Ulcer Data

In Benin, BU 02 surveillance forms were used through

routine community-based surveillance to collect data about

BU patients during 2004 and 2005 (Sopoh et al., 2007).

These forms were proposed by the World Health Organi-

zation in early 2000 to allow for the standardization of the

reporting of the disease within and across countries (WHO,

2000b). This form allowed us to collected suitable infor-

mation about BU presence/absence for 335 villages in Be-

nin (Fig. 1). For our analysis, we considered BU present in

a village if one or more cases were reported from that vil-

lage on BU surveillance forms.

Table 1. List of Covariates Used in Multilevel Logistic Regression Models to Predict the Probability of Buruli Ulcer Presence in Villages

in Benin, West Africaa

Covariate Unit of measurement Range

Latitude Decimal degrees 6.383–9.476

Longitude Decimal degrees 1.551–2.730

Distance to nearest river m 22.5–12,157

Mean elevation m 0.73–400

Total population No. of inhabitants 217–801,683

Urban land use % 0.0–6.0; 0.0–6.0

Agricultural land use % 0.0–61.0; 0.0–42.0

Forest land cover % 0.0–69.0; 0.0–52.0

Water land cover % 0.0–23.0; 0.0–7.0

Agricultural and urban land use % 0.0–14.0; 0.0–6.0

Wetland land cover % 0.0–2.0; 0.0–11.0

Shrub land cover % 3.0–42.0; 3.0–28.0

aRanges for land use/land cover variables are given for the 20- and 50-km buffers, respectively.
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Land Use/Land Cover Data

Land use/land cover data were obtained from Landsat

ETM+ imagery. The Landsat ETM+ imagery data were

obtained from the University of Maryland Global Land

Cover Facility (http://glcf.umiacs.umd.edu/index.shtml),

December 13, 2000. Once the imagery was geometrically

rectified and projected (UTM Zone 30), an unsupervised

classification was performed (Lillesand and Kiefer, 2000).

The unsupervised classification was run in Erdas IMAGINE

with 100 initial classes on the principal axis with pseudo-

color for 10 iterations or a 0.95 convergence. The initial

classes were then narrowed to 22 unique LULC categories.

Each of the villages in Benin was buffered in ArcGIS

(ESRI, 2005). The buffers around the villages were centered

on latitude and longitude coordinates representing village

centroids. Because we were interested in LULC at multiple

spatial scales, seven buffers were created around each village

at distances of 100 m, 500 m, 1000 m, 5000 m, 10 km,

20 km, and 50 km. The percent of each LULC class was

calculated for each buffer distance by dividing the number

of pixels for each individual LULC class within a buffer by

the total number of pixels within that buffer. Prior to

analyses, the 22 LULC categories were reduced to seven

(Table 1) because we eliminated those LULC categories

that consisted of more than two LULC types. For example,

the LULC category ‘‘evergreen forest/agriculture/shrub’’

was not included in the analysis due to uncertainties

regarding the actual LULC. Furthermore, we combined

LULC types that were similar, such as combining LULC

categories ‘‘forest’’ and ‘‘evergreen forest’’ into a single

category called ‘‘forest.’’ We also calculated the distance of

each village to the nearest river (Table 1). The distance to

the nearest river was calculated using the Benin river cov-

erage at a 1:1,000,000 scale, and was calculated using the

entire coverage which included streams, rivers, and chan-

nelized rivers.

Statistical Analyses

We used multilevel Bayesian logistic regression models to

examine the effects of LULC and other village characteristics

on BU presence in villages in Benin (Table 1). Multilevel

models are appropriate for modeling covariate information

at different levels of variation and for data with a nested

data structure (Gelman et al., 2004; Wagner et al., 2006a,

2006b). Similar models have been developed to examine

relationships between Wuchereria bancrofti infection and

geographic, socioeconomic, and demographic risk factors

in Haiti (Boyd et al., 2004), and malaria risk factors for

Figure 1. Location of villages and

political districts in Benin, West

Africa. Circles represent villages

where Buruli ulcer (BU) is pres-

ent, and triangles represent vil-

lages where BU is absent.
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children in Ghana, West Africa (Klinkenberg et al., 2005).

In our analysis, villages are nested within regional districts

of Benin. Specifically, the model consisted of a district-

specific random effect to account for correlation between

villages in the same district, while all slopes of the land-

scape-based covariates were constrained to be the same for

all districts. Although we did not include district-level

covariates in this model (i.e., the model was unconditional

at the second level), we included the random district effect

because we hypothesized that the probability of disease

presence would be more similar within a district compared

to between districts. Although data were not available to

include in the model, we hypothesized that villages within

districts would be more similar due to districts differing, on

average, in characteristics such as rainfall and other envi-

ronmental attributes, and the degree of public health

education. In addition, the inclusion of the district-level

random effect improved model fit substantially (i.e.,

including the random effect resulted in a lower DIC value, a

decrease in the DIC of >50 units. See methods below for

explanation of DIC). The general form of the model is as

follows:

logitP Yij ¼ 1
� �

¼ b0 þ
XQ

q¼1

bqXqij þ qi ð1Þ

Where Yij equals 1 if BU is present at village j in district i

and 0 otherwise, j = 1,...ni, with ni being the number of

villages in district i, and i = 1,...9. The parameter b0 is the

intercept, and bq is the effect of covariate Xqij on the log

odds of BU presence, where Q is the total number of

covariates. The district-specific random effect is defined as

qi �N(0, s), where s is a hyperparameter representing the

variance between districts in district-average log odds of

BU presence. We used uninformative normally distributed

priors for b0 and bq (i.e., b � N(0,1.0E6)), and an unin-

formative gamma distributed prior for the hyperparameter

s (i.e., s � G(0.001,0.001)). All analyses were performed

using WinBUGS version 1.4 (Spiegelhalter et al., 2004).

Because estimating model parameters in WinBUGS is

computationally intensive, and because we were interested

in examining the effects of several LULC covariates at

multiple spatial scales (7 land use/cover covariates · 7 buffer

widths = 49 land use/cover covariates), we initially exam-

ined the effects of each LULC covariate separately by run-

ning univariate generalized linear mixed models in the

statistical software SAS (PROC GLIMMIX; SAS Institute,

2000). After we identified those covariates that affected the

probability of BU presence, we fit a series of models using

Equation 1 that contained those covariates we hypothesized

to be associated with the presence of BU (Table 1). We used

the deviance information criteria (DIC) as a model selection

criterion (Spiegelhalter et al., 2002). As a rule of thumb, a

difference of greater than three units in the DIC values

between two models suggests that the model with the lower

DIC is preferred. A difference of less than three suggests that

the models are indistinguishable. The model with the lowest

DIC value indicates a better model. WinBUGS was used to

generate 500,000 samples from the posterior distributions

for each of the analyses after discarding the first 50,000

samples. We retained every 5th sample for a total of 100,000

samples. The mean, standard deviation (SD), and 95%

Bayesian credible intervals were calculated. We examined

the Gelman-Rubin convergence statistic, chain histories,

and posterior density plots to assess convergence, and we

assessed model sensitivity to different initial starting values

for all parameters. Although using uninformative priors in

our Bayesian analyses provided numerically similar esti-

mates to those using a maximum likelihood approach, the

interpretation of the parameters and credible intervals are

different. For example, a 95% Bayesian credibility interval

represents a 95% probability that the parameter of interest is

contained within that interval. Whereas, frequentist 95%

confidence intervals do not mean that there is a 95% chance

that the parameter of interest will occur within the interval.

Rather a 95% confidence interval ‘‘asserts that in n hypo-

thetical runs of an experiment, the parameter of interest

(e.g., the true population mean) is expected to occur in the

computed interval 95% of the experimental runs’’ (Ellison,

2004).

Our analysis allowed us to identify landscape-based

covariates associated with BU presence. However, we were

also interested in evaluating the ‘‘best’’ model’s ability to

predict the probability of BU presence in other villages. To

accomplish this goal, prior to fitting models, we randomly

divided the data set into training (n = 233) and validation

data sets (n = 112). The models were constructed using the

training data set and we assessed the predictive ability using

the validation data set. To further test the model, we used

data from 70 villages in Ghana, Africa for which we had

GIS and BU presence/absence data (similar methods de-

scribed for the acquisition of Benin LULC were employed

for the Ghana villages). There are few BU data available for

Ghana, so the ability to predict villages that have a high

probability of BU presence is highly desirable. We plotted

histograms of the mean posterior estimates of the proba-

bility of BU presence on the x-axis and number of villages
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on the y-axis as a way to visualize predictive performance.

If the model predicted well, we would expect a bimodal

distribution of the posterior means, with the BU positive

sites being predicted closer to one and the BU negative sites

clustering near zero.

RESULTS

The models we considered for predicting the presence of

BU along with DIC values are shown in Table 2. The

probability of BU presence increased with increasing lon-

gitude and percent agricultural land use in a 20-km buffer

surrounding a village, and decreased as latitude and the

percent urban land use in a 50-km buffer surrounding a

village increased. Furthermore, latitude and percent agri-

culture were negatively correlated (r2 = )0.67), with the

percent agricultural land use decreasing as latitude in-

creased. Thus, latitude and percent agriculture in a 20-km

buffer were never entered into the same model together.

Three models had DIC values within three units of the

model with the lowest DIC value, suggesting that those

models were essentially indistinguishable when taking into

account model fit and complexity. However, we will focus

on the two models with the lowest DIC values and explore

their abilities to predict the validation data set.

For the two best models, the posterior means, standard

deviations, and 95% credible intervals for the parameters

are shown in Table 3. Both models demonstrated predictive

ability when predicting the Benin validation data set. The

distributions of the posterior mean probability of BU

presence for BU positive and negative villages demon-

strated moderate separation (Fig. 2). For example, when

using model 10 (see Table 2), the average of the mean

posterior probabilities of BU presence for BU negative

villages was 0.41 (standard deviation [SD] = 0.29) while

the average of the mean posterior probabilities of BU

presence for BU positive villages was 0.67 (SD = 0.25). For

model 11, the average of the mean posterior probabilities of

BU presence for BU negative villages was 0.43 (SD = 0.28),

while the average of the mean posterior probabilities of BU

presence for BU positive villages was 0.65 (SD = 0.26). For

the Ghana validation data set, we used model 10 (latitude

and percent urban land use in a 50-km buffer) because we

did not have a comparable agricultural land use category

from the Landsat ETM+ data to use model 11. Model 10

performed quite well when predicting sites in Ghana. The

average of the mean posterior probabilities of BU presence

for BU negative villages was 0.45 (SD = 0.19), while the

average of the mean posterior probabilities of BU presence

for BU positive villages was 0.80 (SD = 0.12). Both vali-

dation data sets suggest that the models are better able to

predict BU positive villages correctly compared to BU

negative villages, as indicated by the distributions of the

mean posterior probabilities (Fig. 2).

DISCUSSION

Land Use/Land Cover Associated with Buruli Ulcer

Because BU has been associated with aquatic ecosystems

and human activities near water bodies (Portaels, 1989;

Marsollier et al., 2003; Merritt et al., 2005), it was unex-

pected that the percent water land cover in a buffer around

villages and the distance of a village to the nearest river

were not important predictors of the probability of BU

presence. Previous studies that have found associations

between water and BU, however, were performed over

smaller spatial scales. For instance, Debacker et al. (2006),

in an unmatched case-control study in Benin, found that

individuals that used unprotected water sources (i.e., water

that was not pumped) had an increased risk of BU. Another

case-control study performed in Ghana by Aiga et al.

(2004) determined that individuals swimming in rivers on

a habitual basis were at a greater risk for BU. Both of these

case-control studies considered much smaller spatial areas

Table 2. Deviance Information Criteria (DIC) Estimates for the

Multilevel Logistic Regression Models Used to Predict the Pres-

ence of Buruli Ulcer (BU) in Villages in Benin, West Africaa

Model no. Covariates DIC

1 Distance to river 241.92

2 Longitude 238.67

3 Latitude 237.07

4 Urban50 233.88

5 Mean elevation 233.63

6 Latitude Longitude 233.48

7 Ag20 231.54

8 Latitude Longitude Urban50 229.17

9 Longitude Ag20 228.47

10 Latitude Urban50 227.89

11 Ag20 Urban50 226.97

aAg20, percent agricultural land use in a 20-km buffer; Urban50, percent

urban land use in a 50-km buffer. Models are listed in descending order

based on DIC values.
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compared to our study. For instance, Debacker et al.

(2006) used patients from a single clinic in Zou, Benin,

although about 30% of the patients were from other re-

gions (Debacker et al., 2006). Similarly, only one district

(Amansie West District) of Ghana was used in the Aiga

et al. (2004) study. In a slightly larger study in Ghana that

included three districts, it was found that wading in a river

or stream was a significant risk factor in a multivariate

model, but the source of drinking water was not (Raghu-

nathan et al., 2005). Lastly, Johnson et al. (2005b) found an

inverse relationship between BU prevalence and distance to

the Couffo River in Benin, with BU prevalence increasing as

the distance to the river decreased from 10 to 1 km. This

study was also limited to villages within one district

(Gnizounmé).

Taken together, these more locally-focused studies

suggest that human activity near aquatic habitats is a risk

factor at the individual level; however, our analysis suggests

that percent of water land cover surrounding villages and

the distance to the nearest river are not associated with an

increased probability of BU presence at the village level.

This apparent discrepancy between our study and those

previously cited may be in part due to the large spatial

extent and coarse resolution of our LULC data (30 m2).

Our models were not able to take into account water body

type (e.g., wetland vs. pond) or whether it was disturbed.

Small water bodies that may be important water sources

were likely missed in the calculation of percent water in a

surrounding buffer. In addition, our calculation of distance

to nearest river was limited to relatively large rivers due to

data resolution limitations. Distance to smaller water

bodies (e.g., smaller ponds or wetlands) may be an

important factor in determining BU presence (Aiga et al.,

2004). Our experience in both Ghana and Benin indicates

that there are small water sources (both streams and wet-

lands) that could go undetected using the LandSat images

employed in this study. Indeed, most communities have

some type of water source, which can range in size from

large rivers and lakes to small streams (or wetlands) only 2-

m wide. Furthermore some of these water bodies are

ephemeral and highly variable, drying up during periods of

low rainfall and flooding extensively during periods of high

rainfall.

Our analyses suggest that it is the percent of agricul-

tural and urban land use surrounding a village (or villages)

that influences the probability of BU presence. Further-

more, our analysis suggests that it is large-scale patterns in

urban land use (i.e., in a 50-km buffer surrounding a vil-

lage) that are important, rather than localized urban land

use patterns. We speculate that this lower probability of BU

presence with increasing urban land use is due to an in-

crease in the availability of pumped water (i.e., protected

water sources) with increasing urbanization. If this is the

case, then our results support those by Debacker et al.

(2006) and suggest that the availability of pumped water is

an important factor in reducing the risk for BU at the

individual level (Debacker et al., 2006) and the probability

of BU presence at the village level. However, the availability

of pumped water is likely not the only factor. This is be-

cause in some places, due to local beliefs, populations do

not use the pumped water and prefer to use non-protected

water sources. Although our results show that urban land

use is important, it also demonstrates that very little urban

land use, as a percentage of total LULC surrounding a

village, is adequate to reflect a decrease in the probability of

BU presence. In Benin, urban land use does not comprise a

large proportion of total land use. In fact in the 50-km

buffer used in this analysis, percent urban land use ranged

Table 3. Posterior Means, Standard Deviations (SD), and 95% Credible Intervals (CI) for Parameters Estimated Using Multilevel

Logistic Models Used to Predict Buruli Ulcer Presence in Benin, West Africaa

Parameter Model

Latitude b̂1

� �
Urban50 b̂2

� �
Ag20 b̂1

� �
Urban50 b̂2

� �

Mean SD 95% CI Mean SD 95% CI

b̂0 16.80 5.11 7.34, 27.24 )0.89 1.34 )3.50, 1.82

b̂1 )2.02 0.67 )3.37, )0.78 4.65 1.53 1.76, 7.76

b̂2 )27.11 9.07 )45.51, )9.96 )20.09 8.49 )37.29, )3.98

ŝ 5.80 6.30 0.98, 21.43 5.60 5.43 1.14, 19.01

aAg20, percent agricultural land use in a 20-km buffer; Urban50, percent urban land use in a 50-km buffer. b̂0 is the intercept, b̂1 and b̂2 are coefficients for

covariates one and two, respectively, and ŝ is the between-district variance estimate.
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from 0–6% of the total LULC. An additional hypothesis as

to why BU presence is negatively associated with urban

land use is that, in urban areas, contact with ‘‘risk ecosys-

tems’’ is low compared to rural areas, and that agricultural

activities in rural areas increases the intensity of contact.

Another explanation may be that a small urban center

provides additional employment opportunities that replace

the need for subsistence or other types of farming.

Percent agricultural land use and latitude were con-

founded in our study. Because BU has been associated with

disturbed aquatic environments, such as those impacted by

agricultural activities (Marston et al., 1995; Merritt et al.,

2005), we wanted to further discern the effects of agricul-

ture and latitude. To this end, we performed an analysis

that excluded the northern three districts. By focusing the

analysis on southern Benin, we were able to decrease the

correlation between agriculture and latitude (r2 = )0.52).

This analysis showed that the percent agriculture land use

in a 20-km buffer around villages still had a positive effect

on BU presence, and the magnitude of the effect was

similar to that in the original analysis that considered all

districts. This suggests that agricultural land use may be

associated with BU presence in villages in Benin, but it is

still not possible to completely separate the effects of

agricultural land use and latitude. The significance of lati-

tude in our model also suggests a north–south gradient in

the probability of BU presence. This gradient may reflect

the effects of climate on the availability of suitable aquatic

habitats for M. ulcerans, with semiarid conditions in the

north resulting in a lower probability of BU presence.

Alternatively, the gradient may also constrain the arable

land available for certain crops. Our satellite images were

not able to differentiate between different types of agri-

culture, but this could be important, as certain crops re-

quire more or less irrigation, fertilizer, or other alterations

to the landscape. Additional studies are warranted to test

for specific agricultural practices related to BU presence

(Raghunathan et al., 2005).

There may also be an interaction between agricultural

land use and proximity of agricultural activities to water.

For instance, in a case-control study, Marston et al. (1995)

found that decreased walking distance between agricultural

fields and a main river in Côte d’Ivoire was a risk factor for

BU. However, additional research on the ecology of M.

ulcerans is necessary to determine the mechanisms involved

in the transmission of BU. Once reservoirs and vectors are

identified and the processes that link human activities and

disease dynamics are quantified, the creation of mechanistic

models that incorporate LULC should provide a powerful

tool to understanding the ecology of BU.

It should be noted, however, that an accuracy assess-

ment of the LULC data used in this study was not con-

ducted because ground-truth data were not available. An

accuracy assessment was not possible because of a combi-

nation of the cost and time involved in quantifying LULC

classification error for nearly the entire country of Benin.

Figure 2. Mean posterior probabilities of Buruli ulcer (BU) presence

in villages in Benin, West Africa (A, B), and in Ghana, West Africa

(C) for villages with reported BU presence (light bars) and without

reported BU presence (dark bars) in validation data sets. Predictions

in (A) (Benin validation data set) were made with a model using

percent agricultural land use in a 20-km buffer and percent urban

land use in a 50-km buffer around villages as covariates. Predictions

in (B) (Benin validation data set) and (C) (Ghana validation data set)

were made using latitude and percent urban land use in a 50-km

buffer around villages as covariates. The means �xð Þ and standard

deviations (SD) for the distributions of predicted values for BU-

positive villages and BU-negative villages are shown.
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However, we did take steps to minimize the potential for

classification errors to influence our results. For example,

we used only easily distinguished LULC classes in our study

(e.g., forest vs. urban vs. water), which have fewer pro-

pensities for errors during the classification process given

that the spatial coverage in our study was large (Cunn-

ingham, 2006). In addition, we did not consider LULC

categories that were comprised of more than two LULC

types in an effort to reduce the amount of classification

error potentially introduced into our analyses. Further-

more, the results of this study provide a preliminary eval-

uation of the spatial distribution of BU as it relates to

LULC. From this study using spectral signatures and gen-

eral classes, we can expand to field-based studies and a

more specific land cover classification with an accuracy

assessment. Thus, although LULC classification error is an

important concern, in light of this uncertainty, we feel that

the results and interpretations presented in this current

study are valid.

Predicting Buruli Ulcer Presence

Our landscape-based models demonstrated predictive

ability when tested using validation data sets from Benin

and Ghana. Our two best models performed similarly when

predicting the validation data set from Benin. This is not

surprising given the high correlation between agricultural

land use and latitude used as covariates in the two models.

The ability to predict BU presence using widely available

landscape-based data provides an important step towards

prioritizing research and control efforts, especially when

primary prevention strategies are not possible due to the

lack of knowledge regarding modes of transmission. The

high socioeconomic costs associate with this disease (Asi-

edu and Etuaful, 1998), along with the increasing number

of cases makes the quantification of disease presence a

critical first step to disease control and education efforts.

For example, targeting education efforts in villages that

have a high probability of BU presence may help reduce the

stigma associated with this disease (Stienstra et al., 2002).

Furthermore, we were better able to predict villages where

BU was present compared to those villages where BU was

absent. Those villages where BU was absent and were pre-

dicted as having a high probability of BU presence may

represent villages where an increase in surveillance is war-

ranted. One hypothesis as to why it was difficult to predict

BU absence is that the bacteria may be widespread in the

environment, but particular human activities, both adja-

cent to and within the water, are required for transmission.

Thus, there may be an important human behavioral com-

ponent involved in the presence of BU in certain villages.

Our analyses indicated that the large-scale patterns in

LULC play a role in determining the presence of BU in

Benin, West Africa. Our study is unique as being the first

large-scale analysis to demonstrate that the probability of

BU presence increases with increasing agricultural land use

and decreases with increasing urbanization surrounding

villages. To our knowledge, there have been no other

studies of this spatial extent that have addressed land use

and cover in relation to patterns in BU occurrence. For

diseases such as BU, where uncertainty exists with regards

to reservoirs, vectors, and modes of transmission, the

affirmation of associations from vastly different data sets

and approaches (e.g., case-control studies and landscape-

based models) is necessary to guide future research. Fur-

thermore, interdisciplinary research programs that include

collaborative efforts between ecologists and epidemiologists

are fundamental to understanding the ecology of BU in

West Africa and in other countries. This collaborative ap-

proach is necessary to link large-scale factors such as LULC

patterns with local vector and disease dynamics. Fortu-

nately, these interdisciplinary efforts are currently under-

way and promise to provide the much needed data and

insight that is necessary to reduce the impacts of this dis-

ease.
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