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Abstract  Rainfall-triggered landslides pose a significant threat 
to both infrastructure and human lives, making it crucial to com-
prehend the factors that contribute to their occurrence. Specifi-
cally, understanding the relationship between these factors and 
the amount of rain that is necessary for triggering such events 
is essential for effective prediction and mitigation strategies. 
To address this issue, our study proposes a statistical modelling 
approach using machine learning, specifically the Random Forest 
algorithm, to investigate the connection between landslide predis-
posing factors and the daily rainfall intensity threshold necessary 
for the initiation of shallow landslides in Portugal. By leveraging 
a comprehensive dataset comprising historical landslide events, 
associated critical rainfall, and ten distinct landslide predispos-
ing factors, we developed several models and used cross-validation 
technique to evaluate their performance. Our findings demonstrate 
that the Random Forest model effectively captures a relationship 
among landslide predisposing factors, critical daily rainfall inten-
sity, and landslide occurrences. The models exhibit a satisfactory 
accuracy in assessing the spatial variation of critical daily rainfall 
intensity based on the predisposing factors, with a mean absolute 
percentage error (MAPE) of around 17%. Furthermore, the models 
provide valuable insights into the relative importance of various 
predisposing factors in landslide triggering, highlighting the sig-
nificance of each factor. It was found that it takes higher rainfall 
intensity to trigger shallow landslides in the north region of Portu-
gal when considering critical rainfall events of 3 and 13 days. Slope 
aspect, slope angle, and clay content in the soil are among the main 
predisposing factors used for defining the spatial variation of the 
daily rainfall intensity threshold.

Keywords  Critical rainfall intensity · Predisposing factors · 
Shallow landslide · Random Forest

Introduction
Landslides are a common natural hazard that have caused heavy 
damage all over the world, including in Portugal (Campbell 1975; 
Guzzetti et al. 2007; Zêzere et al. 2015). There is a great variety of 
landslides due to the diversity of conditions that cause slope insta-
bility and the dynamic processes that trigger the events (Popescu 
2002). Shallow landslides in specific are characterised by small 
thickness (few dozen centimetres to a few metres) and are usu-
ally triggered by medium to very intense rainfall events (Montrasio 
and Valentino 2008; Zêzere et al. 2005). The factors that control the 
occurrence of shallow landslides can be divided into the quasi-
static variables and the dynamic variables (Wu and Sidle 1995). The 
quasi-static variables (e.g. soil properties, topography, and geology) 

define the spatial distribution of the landslides, while the dynamic 
variables (e.g. soil saturation, climatic conditions, hydrological 
processes, and human activities) control the time of occurrence 
of landslides.

Throughout the previous decades, landslide susceptibility mod-
elling has attracted the attention of various researchers around the 
world (e.g. Chen et al. 2018; Reichenbach et al. 2018; Zêzere et al. 
2017); however, landslides still are a global danger and it is still 
a challenge to predict where and when they will occur. Statisti-
cal techniques are a popular method for the creation of landslide 
susceptibility maps. Within this approach, the researchers must 
consider the type of landslides, analysis scale, study area charac-
teristics, and availability of datasets, and then proceed with the 
selection of method and landslide predisposing factors for their 
models (Zêzere et al. 2017). Recent studies have been including the 
analysis of dynamic variables influencing landslide occurrence in 
order to create spatial–temporal forecasting models for landslides 
(Tehrani et al. 2022; Nocentini et al. 2023; Fang et al. 2024).

In recent years, statistical modelling approaches employing 
machine learning techniques have gained popularity in landslide 
research, as they offer the potential to uncover complex relation-
ships between multiple variables (Merghadi et  al. 2020). The 
machine learning techniques have been generally enriching the 
quality and accuracy of generated landslide susceptibility maps and 
were confirmed to achieve improved performance when compared 
to classical methods for defining landslide rainfall thresholds (Chen 
et al. 2019; Distefano et al. 2022).

Regional variations of rainfall intensity-duration thresholds for 
landslide triggering have been identified in many different works, 
suggesting that some environmental factors may be responsible for 
the threshold definitions (Wieczorek and Guzzetti 1999). Although 
many studies have been published about landslide susceptibility 
and rainfall thresholds, it is not common to find works that relate 
predisposing factors with the critical rainfall event that triggered 
the landslides (Palladino et al. 2018; Peruccacci et al. 2017). Under-
standing how the triggers of landslides react with different pre-
disposing factors is critical for effective landslide prediction and 
mitigation strategies. The identification of predisposing factors and 
their relationship with the critical rainfall event can provide valu-
able insights into the mechanisms underlying landslide occurrence, 
thus increasing the accuracy of landslide forecasting.

In this study, we focus on the creation of statistical models to 
investigate the relationship between the predisposing factors and 
the amount of rainfall necessary to trigger shallow landslides in 
Portugal. We used a comprehensive dataset that includes histori-
cal landslide events, as well as the associated critical rainfall and 
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predisposing factors. The data were collected from different sources 
and the predisposing factors considered include elevation, slope 
angle, slope aspect, lithology, distance to rivers and faults, and some 
soil properties (water content at field capacity, clay content, coarse 
sand, and coarse grains in the soil). The Random Forest (RF) algo-
rithm, a machine learning technique capable of capturing nonlin-
ear relationships and handling large datasets (Taalab et al. 2018), 
was employed to create the models and assess the correlation of 
the shallow landslide predisposing factors and critical daily rain-
fall intensity. The final goal is to develop an analysis of the spatial 
variation of the daily rainfall intensity thresholds considering the 
shallow landslide predisposing factors for all of mainland Portugal.

Methodology

The study area
The area for this research is the continental region of Portugal 
(Fig. 1a). Portugal is a country located in southwestern Europe, on 
the Iberian Peninsula, and it is bordered by the Atlantic Ocean to 
the west and south, and by Spain to the north and east. Portugal 
has a diverse landscape that includes coastal plains, mountains, and 
plateaus. The country can be broadly divided into three regions: 
the mainland, the Azores, and Madeira. Our work will focus on the 
mainland area that is characterised by its varied topography, with 
the Tagus River being the longest river in the country, and the Serra 
da Estrela being the highest mountain range (1993 m asl). In terms 
of size, Portugal has a total land area of approximately 92,000 km2, 
making it one of the smaller countries in Europe. The mainland 
constitutes the largest portion of the country’s land area.

The climate of Portugal is influenced by its latitude and relative 
position to the Atlantic Ocean and is generally classified as Medi-
terranean. The summer is hot and dry, especially in the interior 
regions, with average temperatures ranging from 25 to 30 °C. The 
winter is mild and rainy, with average temperatures ranging from 8 
to 15 °C (Vaz 2021). However, there are regional variations in climate 
due to the country’s diverse geography. The coastal areas tend to be 
milder and more humid, while the interior regions are much hotter 
and drier. The northern and southern regions experience a notable 
temperature contrast throughout the year. Rainfall in Portugal is 
highest during the winter months, with the northwest region receiv-
ing the most precipitation (Fig. 1b). The southern regions, such as 
the Algarve, are generally drier and hotter. Portugal also experi-
ences occasional extreme weather events, such as heatwaves and 
extreme rainfall events generating floods and landslides.

Data

The landslide inventory used in this work was extracted from two 
databases that were built based on information extracted from 
newspapers: (1) the DISASTER database that only considers events 
that caused any disturbance in people’s lives (Zêzere et al. 2014); 
(2) a second database of landslides that did not cause damage to 
humans (Vaz 2021). Both databases were merged into one to make 
the statistical analysis. The unified database includes different 
types of landslides and contains the information of the day and 
the coordinates of occurrence. The spatial accuracy of the landslide 
coordinates is classified in 5 classes (Zêzere et al. 2014): C1 (exact 
coordinates, scale 1:1000), C2 (based on local toponymy, scale 
1:10,000), C3 (based on local geomorphology, scale 1:25,000), C4 

Fig. 1   Shallow landslides inventory distributed throughout mainland Portugal (a) and mean annual precipitation (1950–2003) (b)
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(centroid of the parish), and C5 (centroid of the municipality). Only 
the first three classes were used in this work.

The final database was filtered to retain only the landslide events 
that occurred after the year of 1950, in order to agree with the tem-
poral range of some of the other data sources used in this work. 
Any occurrence identified as non-slide type was eliminated. The 
landslides extracted from the database had to be further filtered 
into shallow landslides. For the identification of shallow landslides, 
we have automated in Python a methodology (Fig. 2) to extract 
and process the daily rainfall data from 1950 to 2022, downloaded 
from the Copernicus database with a resolution that ranges from 
0.1° × 0.1° and 0.25° × 0.25°(Cornes et al. 2018).

Figure 2 shows the diagram of the method that consists in 
extracting the critical rainfall event duration and critical daily 
intensity that triggered the landslide events to classify them into 
categories of “most likely to be a shallow landslide” and “unlikely to 
be a shallow landslide”. The main idea of the method is that rainfall-
triggered shallow landslides in Portugal have been normally 
triggered by precipitation lasting from 1 to 15 days (Zêzere et al. 
2005). In order to extract the critical rainfall event duration that 
triggered the landslides, we used a similar method from Brunetti 
et al. (2010), which considered that the minimum dry interval that 
separates two rainfall events is 48 h for the dry seasons and 96 h 
for the wet seasons. The dry period in Portugal is between the 
months of May and September and the wet period between October 
and April (Vaz 2021). Similarly to Vaz (2021), a daily precipitation 

threshold of 1 mm was considered, below which the precipitation 
is classified as insignificant. Finally, to consider precipitation as 
the triggering factor of the landslides, it was necessary to detect 
precipitation higher than 20 mm in the 5 days prior to the slope 
instability event (Valenzuela 2017).

It was also calculated the critical cumulated rainfall divided by 
the critical rainfall duration preceding each of the shallow landslide 
events, resulting in the critical daily rainfall intensity. The critical 
daily rainfall intensity was used as the triggering factor (dependent 
variable) in our models. Figure 3 shows the histogram of the filtered 
shallow landslide events and their associated critical daily rainfall 
intensity, and Fig. 4 shows the cumulated rainfall for each critical 
rainfall duration. Due to the imbalance nature of the rainfall inten-
sity dataset shown on the histogram (Fig. 3), where values between 
10 and 20 mm/day concentrate most of the data, only the range with 
more samples of rainfall intensity was used as the dependent vari-
able for all models to acquire better performance (see “Models”), 
resulting in a final dataset of 186 samples.

The landslide predisposing factors considered in this study 
(Fig. 5) include elevation, slope angle, slope aspect, lithology, dis-
tance to rivers, distance to faults, and some soil properties (water 
content at field capacity, clay content, coarse sand, and coarse grains 
in the soil). Table 1 summarises the landslide predisposing factors 
and the respective range of values.

Elevation can often define different climatic and vegetation 
zones, while slope angle directly controls the shear forces acting 

Fig. 2   Flowchart of the methodology to classify the landslides into categories of “most likely to be a shallow landslide” and “unlikely to be a 
shallow landslide” taking into account the rainfall prior to the event
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on hillslopes. The slope aspect can influence the amount and 
intensity of rainfall that affects the hillslope, as well as the 
amount and intensity of solar radiation. It was found that the 

slope aspect is an important predisposing factor when dealing 
with superficial landslides, namely in clayey soils (Capitani 
et al. 2013). Lithology represents the properties of bedrock and 

Fig. 3   Histogram of the range of values of critical daily rainfall intensities of the shallow landslides (in red are the data used in the models)

Fig. 4   Cumulated critical rainfall vs critical rainfall duration for each shallow landslide occurrence
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the soil properties influence cohesion, water infiltration, and 
percolation. Distance to rivers could indicate the proximity to 
groundwater and detect areas more prone to erosion (Gómez 
and Kavzoglu 2005).

Similar predisposing factors have been largely used in various 
studies related to susceptibility modelling and have shown to be 
efficient for landslide prediction (e.g. Chen et al. 2019; Nsengi-
yumva and Valentino 2020; Catani et al. 2013; Lima et al. 2022). 
We assume that those same predisposing factors should also have 
a relation in defining the critical rainfall intensity necessary to 
cause the landslides.

The morphological factors were extracted from a DEM with 
30 m/pixel resolution. Lithology and distance to faults were col-
lected from the Portuguese Geological Survey (LNEG). Distance to 
rivers was extracted from a hydrographic network provided by the 
Agência Portuguesa do Ambiente (APA). The soil characteristics 
were collected from the Infosolos database (Ramos et al. 2017).

Models

The main goal of this research is to identify the spatial variation 
of shallow landslide daily rainfall intensity threshold based on the 
landslide predisposing factors. For this reason, we elaborated the 
models using the RF algorithm, a popular machine-learning tech-
nique (Breiman 2001; Vorpahl et al. 2012; Catani et al. 2013). The RF 
was chosen because of its capabilities of analysing nonlinear rela-
tions between a complexity and variety of independent variables, 
and it outputs the score (importance) of the independent variables 
used in the predictions (Taalab et al. 2018). RF has also shown excel-
lent results in previous landslide studies, especially those assessing 
landslide susceptibility (Pourghasemi et al. 2020; Chen et al. 2017; 
Liu et al. 2021; Rosi et al. 2023).

We partitioned the model development into two phases, the ini-
tial phase, and the final phase. During these phases, different sub-
sets of events were extracted from the total 186 filtered occurrences 

Fig. 5   Map of the 10 landslide predisposing factors used in this work: a elevation; b slope aspect; c slope angle; d lithology; e distance to riv-
ers; f distance to faults; g clay content, h coarse grains; i coarse sand; j field capacity
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(see “Data”) to elaborate the models. In the initial phase, we created 
four distinct testing models to verify the potential of the meth-
odology for extracting insights about the correlation between 
critical daily rainfall intensities and landslide predisposing factors 
(Table 2). During the final phase, we created three final models 
(Table 2) to assess the spatial variation of the shallow landslide 
daily rainfall intensity threshold in Portugal.

The database was split into training set (70%) and testing set (30%) 
for all the models elaborated in this work. Cross-validation can be 
especially useful when the amount of data is limited like in our case, 
since it uses all the training dataset, avoiding data loss. K-fold cross-
validation was performed across 10 folds on the training set of testing 
model 1, exploring various numbers of trees to determine the opti-
mal parameter value. The number of trees was defined as 500 since 
it is the value where the errors start stabilising (Fig. 6). The optimal 
number of trees found for testing model 1 was repeated in the other 
models. To assess the performance of the models, we applied root 
mean square error (RMSE), mean absolute error (MAE), and mean 
absolute percentage error (MAPE) for all regression models and the 
metrics accuracy and precision for the classifier model.

The initial phase was conducted after analysing the spatial dis-
tribution of the critical daily rainfall intensities considered to have 
triggered the shallow landslides in the database (shown in “Rainfall 
intensity distribution”, Fig. 7). We analysed that the distribution 
of the critical daily rainfall intensity highly matches the distribu-
tion of some of the landslide predisposing factors, especially clay 
content. Thus, it was important to develop four testing models to 
improve the confidentiality of this method’s ability to reveal the 
correlation between predisposing factors and critical daily rain-
fall intensity, ensuring it goes beyond merely examining Portugal’s 
geographical aspects.

The testing model 1 was created to correlate the landslide pre-
disposing factors with the corresponding critical daily rainfall 
intensity. The data used consists of all 186 occurrences present in 
the final dataset, which was divided into independent variables 
(landslide predisposing factors) and the dependent variable (criti-
cal daily rainfall intensity).

The other three testing models were created to compare how 
they score the landslide predisposing factors in relation to testing 
model 1. We divided the landslide dataset into two geographical 
groups that were delimited based on the map of clay content in the 
soil, where one group (North group) concentrates on 40 landslide 
events located in regions with low percentage of clay in the soil, 
while the other group (Lisbon group) contains 65 landslides that 
occurred in a region with high clay content (Fig. 1a).

Testing model 2 is a binary classifier, so the dependent variable 
contains two classes (North group and Lisbon group). The aim of 
testing model 2 is to understand how RF would differentiate the 
two classes in terms of the predisposing factors. North group and 
Lisbon group were analysed separately by testing models 3 and 4 
respectively. The goal of testing models 3 and 4 is to verify how the 
same algorithm used to correlate the landslide predisposing fac-
tors with the corresponding critical daily rainfall intensity in test-
ing model 1 would perform in a restricted area with less regional 
variations of predisposing factors and mean annual precipitation.

The final phase aims at the elaboration of interpretable maps 
of the spatial variations of rainfall thresholds for the study area. To 
correctly interpret the maps, it was essential to set a specific dura-
tion for the critical rainfall and observe how the rainfall intensity 
threshold varies, focusing on just one duration value. The problem 
of filtering only one value of critical rainfall duration is that we 
would end up with not enough data available for creating a trustful 
model. On the other hand, if we considered a fixed critical rainfall 
duration for all the landslides in the dataset, we would overvalue or 
undervalue the real critical rainfall intensities. For this reason, we 
created three groups to restrict the range of critical rainfall dura-
tions and the fixed critical rainfall duration is the median value 
of the durations of each group. The first group only considered 
shallow landslides with critical rainfall durations ranging between 
1 and 5 days (fixed duration of 3 days), which represents 65 events 
out of the total 186 occurrences. The second group contains shal-
low landslides with critical rainfall duration ranging between 6 
and 10 (fixed duration of 8 days), which represents 74 samples, and 
the third group considers shallow landslides with critical rainfall 

Table 1   Predisposing factors and respective range of values, source, and scale/resolution

Predisposing factor Range of values Source Scale/
resolution

Distance to rivers 0-600 m (groups of 100) APA 1:100.000

Distance to faults 0-600 m (groups of 100) LNEG 1:500.000

Lithology Categorical LNEG 1:1.000.000

Slope angle 0-66 degrees Copernicus DEM 30 m/px

Slope aspect 0-360 degrees Copernicus DEM 30 m/px

Elevation 0-2000 m Copernicus DEM 30 m/px

Clay content 0-50% Infosolos 1000 m/px

Field capacity 0.05-0.4 (cm3 cm-3) Infosolos 1000 m/px

Coarse grains 0-65% Infosolos 1000 m/px

Coarse sand 0-96% Infosolos 1000 m/px
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duration ranging between 11 and 15 days (fixed duration of 13 days), 
totalising 67 samples. With this approach, we aim at minimising the 
effects of overvaluing and undervaluing the real critical rainfall 
intensities. Three models were created for each of the three groups, 
using landslide predisposing factors as independent variables and 
the critical daily rainfall intensity as the dependent variable.

Results

Rainfall intensity distribution
As a first step to understands the relationship between the predis-
posing factors and the triggering factor (critical daily rainfall inten-
sity) that caused shallow landslides in mainland Portugal, we have 
plotted the landslide occurrences with the respective critical daily 
rainfall intensity related to each event. Figure 7 shows an interpola-
tion of the plot of the critical daily rainfall intensity that triggered 
each occurrence of shallow landslides for the three groups created 
during the final phase. The maps highlight a regional difference in 
terms of critical daily rainfall intensity distribution. The northern 
region has a concentration of higher critical daily rainfall intensity 
in comparison with the Lisbon region. These regional differences 

are in conformity with previous works such as Vaz (2021), which 
shows that northern areas have higher rainfall thresholds for trig-
gering landslides compared to the Lisbon area.

Influence of predisposing factors

Initial phase

Figure 8 shows the predisposing factor importance for the four 
testing models created using the RF algorithm. During landslide 
predisposing factor selection and to acquire the best performance, 
the predisposing factor distance to faults was eliminated from the 
four models due to its low importance, meaning that it was work-
ing as noise and had almost no positive correlation with the model 
prediction capability.

After predisposing factor selection, testing model 1 shows that 
the first two predisposing factors that most improved the accu-
racy of the model were the clay content in the soil and the slope 
aspect. The factors distance to rivers and lithology were the two 
least scored predisposing factors meaning low correlation with the 
dependent variable.

Testing model 2 was built to check how the predisposing factors 
can differentiate two different landslide-prone regions in Portugal 
and how it ranks the landslide predisposing factors’ importance dif-
ferently from testing model 1. Elevation, slope aspect, slope angle, and 
distance to rivers have almost no importance for the second model, 
while the clay content in the soil is the most important one by a large 
difference compared to the second-ranked predisposing factor (field 
capacity). Testing model 2 shows significant differences and simi-
larities in comparison with testing model 1 in terms of predisposing 
factor importance. First, the clay content in the soil is represented as 
a very important predisposing factor for both testing models 1 and 
2, even though in testing model 2 the clay content represents a more 
relevant part of the model importance (> 40%). On the other hand, 
the slope aspect, elevation, and slope angle had almost no importance 
in testing model 2, while they were the first, second, and third most 
important predisposing factors in testing model 1.

Fig. 6   RF model error in relation to the increase in the number of trees

Fig. 7   Interpolation of rainfall intensity values for the three groups of critical rainfall duration (a 3 days of critical rainfall duration; b 8 days of 
critical rainfall duration; c 13 days of critical rainfall duration)
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The third and fourth testing models used only points in the 
North region (testing model 3) and the Lisbon region (testing 
model 4) and were created with the aim of restricting the varia-
tion of the landslide predisposing factor values and identifying how 
such variation would affect the importance ranking. Testing model 
3 ranked distance to rivers and lithology as the least important 
predisposing factors. Coarse sand was the most important predis-
posing factor in testing model 3 while clay content, which got first 
position in testing model 1, dropped to the fifth position. Testing 
model 4 also scored distance to rivers and lithology as the low-
est important predisposing factors. Elevation, slope aspect, coarse 
sand, and coarse grains were the predisposing factors with higher 
score in testing model 4, showing similarities with the top-ranked 
predisposing factors of testing model 1.

Final phase
The final phase took place with the elaboration of the three final 
models considering three fixed critical rainfall durations. Figure 9 
shows the feature importance of the three final models and ena-
bles the visualisation of how the influence of each feature changes 
according to the range of critical rainfall duration.

The final model 1 that used as dependent variable the critical 
daily rainfall intensities within 3 days of duration shows a higher 
importance on coarse grains and slope angle factors. The final 
model 2 trained with critical daily rainfall intensity considering 
the duration of 8 days gives the higher importance scores for slope 
aspect and coarse grains. Finally, final model 3 trained with criti-
cal daily rainfall intensities within 13 days of duration increases 
the clay content importance up to the top and gives the second 

higher importance to field capacity, a feature that received little 
importance on the first two models. Lithology, distance to rivers, 
and coarse sand content in the soil received constantly low scores 
on all the three final models.

Aiming to increase the model explainability, it was also ana-
lysed the partial dependence of the three most important features 
for each of the final models. The partial dependence plots (Fig. 10) 
show how the dependent variable varies according to the change of 
one feature while the others are fixed, facilitating the interpretation 
of the RF results.

It is shown by the partial dependence plots that, for final model 
1, the three most important features have a positive correlation to 
the dependent variable for the most part (slope angle starts to have 
a negative correlation after around 35 degrees). Coarse grains that 
have a strong positive correlation for the final model 1 shows a 
more complex behavior in relation to the dependent variable in 
final model 2. The clay content, identified as the most influential 
feature in final model 3, exhibits a negative correlation with the 
critical daily rainfall intensity values.

Model performance

The performance of the models was analysed with RMSE, MAE, 
and MAPE for the regression models, and the metrics accuracy and 
precision for the classifier model (Table 3).

The results disclosed that the testing models 1, 3, and 4 got a RMSE 
value around 3; MAPE values that range from 17 to 20% and MAE 
value around 2.5. Testing model 2 has a very high accuracy of 96%. 
The four testing models produced reasonable results and proved to 

Fig. 8   Predisposing factors (y axis) importance scores (x axis) for the four testing models (a testing model 1; b testing model 2; c testing 
model 3; d testing model 4)
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be suitable for use in this work. The final models received similar 
results, with final model 2 achieving the highest level of performance.

Generation of the final maps

The final models were built employing the above-mentioned data 
(training datasets) together with testing and validating steps. The 
three final models were then used to assess the shallow landslide 
daily rainfall intensity threshold considering three critical rainfall 
durations (3, 8, and 13 days) at a resolution of 30 m/px (Fig. 11). Since 
all the study area covers a similar range of values of the landslide 
predisposing factors used for training the model, we considered that 
the model can be extrapolated to the complete mainland Portugal.

The maps shown in Fig. 11 represent a detailed distribution of 
daily rainfall threshold for shallow landslides for three different 
cases, and although some trends are evident, the heterogeneity of 
the values distribution is also clear. In general, for the maps gener-
ated with the final models 1 and 3, above the latitude 40 N, there 
is a higher accumulation of pixels with high values (green/blue 
colours), whereas southward this latitude most values are inter-
mediate to low. However, there are areas of low rainfall intensity in 
the northern regions and of high rainfall intensity in the southern 
regions, contrary to the general trend. The map generated with 
the final model 2 shows a more homogeneous distribution with 
medium to higher values being predominant on almost all over 
the study area.

The heterogeneous distribution of daily rainfall intensity values 
across the map is the key to identifying the role of the predisposing 
factors in quantifying the rainfall intensity that triggers the shallow 
landslides. These results show the complexity of the terrain and 

how a variety of factors can influence the occurrence of landslides. 
It should be highlighted that the maps of Fig. 11 do not analyse 
landslide susceptibility. Each pixel’s rainfall intensity value acts as a 
critical threshold, whereby surpassing this threshold with observed 
rainfall is likely to trigger landslides.

Discussion

Influence of landslide predisposing factors
The exclusion of distance to fault in all four models suggests that, 
in our case study, shallow landslides may not be significantly influ-
enced by geological structures. Instead, soil composition and ter-
rain morphology appear to be the predominant factors. Alterna-
tively, it could mean that shallow landslides, potentially affected by 
faults, do not exhibit distinguishable differences in critical rainfall 
intensities. Both hypotheses should be further confirmed with 
future analysis of shallow landslide susceptibility.

After running testing model 1, we found that the clay content had 
a high importance in the model as expected when comparing the 
clay content distribution (Fig. 5) and the critical daily rainfall inten-
sity distribution (Fig. 7). Other 3 testing models were elaborated 
in other to assess if the method applied in this work is useful for 
giving insights of the correlation of landslide predisposing factors 
and critical daily rainfall intensity.

Testing model 2, which was built to differentiate the North group 
from the Lisbon group, ranked the predisposing factors related to 
morphology and topography with very low scores and used mainly 
the clay content to make the classifications. The fact that testing 
model 2 scored extremely low on the factors related to morphology, 
while the same factors are highly scored by testing models 1, 3, and 
4, indicates that these factors may be only useful for assessing the 

Fig. 9   Landslide predisposing factors (y axis) importance scores (x axis) for the final models (a final model 1; b final model 2; c final model 3)
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Fig. 10   Partial dependence for the three most influential landslide predisposing factors of the final models (a final model 1; b final model 2; c 
final model 3)
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critical daily rainfall intensity and not to differentiate geographical 
regions. Also, the fact that the clay content is relatively important 
for testing models 3 and 4, in which it analyses the two regions 
separately, indicates that the clay content is also being used to relate 
critical rainfall intensity with landslide predisposing factors, and 
not only to differentiate North and Lisbon groups.

The analysis and comparison of all four testing model results 
helped to clarify that the methodology used in this study has the 
potential to give insight into the relationship between predisposing 
factors and critical daily rainfall intensity.

In the final phase of the study, we analysed the overall and 
specific importance of predisposing factors for the three final 
models. The coarse grain content emerged as the most signifi-
cant factor when considering a fixed rainfall duration of 3 days, 
but its relevance diminished as the duration increased. Interest-
ingly, when we examined the partial dependence of coarse grain 
content on the final models 1 and 2, we found contrasting results. 
In the case of final model 1, the partial dependence of coarse 
grain content showed a positive correlation, whereas for final 
model 2, it exhibited a negative correlation. This discrepancy 
highlights the complexity of the landslide process. Additionally, 
field capacity received a high importance score only for final 
model 3, which utilised the longest critical rainfall duration. 

Maybe during short-duration rainfall events, the soil may not 
have sufficient time to absorb water, regardless of its field 
capacity, which could explain the low importance of this feature  
in the final models 1 and 2.

The high importance received by soil properties (e.g. clay con-
tent and coarse grains) given by the final models could be explained 
by the fact that these predisposing factors may determine the infil-
tration capacity of the soil and thus will influence the amount of 
rain necessary to trigger shallow landslides.

Daily rainfall intensity threshold for shallow landslides

Figure 11 shows the final maps with the distribution of the daily 
rainfall intensity threshold considering three critical rainfall dura-
tions. These results can give insights into how the predisposing 
factors influence the spatial variation of the daily rainfall intensity 
threshold for shallow landslides in Portugal.

The distribution of different daily rainfall intensity thresholds 
across the entire study area confirms unconditionally that, if we 
consider critical rainfall event durations of 3 and 13 days, the north-
ern region of Portugal needs higher rainfall intensity events to trig-
ger shallow landslides, compared with regions under latitude 40 
N, that are, in general, associated with lower rainfall intensities. 

Table 3   RMSE, MAE, and MAPE values for regression models and accuracy/precision values for the classifier model

Testing model 1 Testing 
model 2

Testing model 3 Testing 
model 4

Final model 1 Final model 2 Final 
model 3

Root mean squared error (RMSE) 2.9 - 3.3 2.6 2.9 3 2.6

Mean absolute error (MAE) 2.4 - 2.6 2.3 2.4 2.1 2.2

Mean absolute percentage error 
(MAPE)

17.2% - 20.3% 17% 18% 15% 15.7%

Accuracy - 0.96 - - - - -

Precision - 0.95 - - - - -

Fig. 11   Spatial distribution of the daily rainfall intensity thresholds considering three critical rainfall durations (a 3 days of critical rainfall dura-
tion; b 8 days of critical rainfall duration; c 13 days of critical rainfall duration)
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These results show the different daily rainfall intensity threshold 
distributions follow a regional trend, and with the model predis-
posing factor ranking we know which predisposing factor could 
be influencing it. When considering critical rainfall durations of 
8 days, the trend is not so evident at a national scale.

The areas with the highest rainfall intensity thresholds, when 
considering critical rainfall duration of 3 and 13 days, are generally 
concentrated in the region with the highest mean annual precipi-
tation (Fig. 1b), meaning that the shallow landslides in the south 
part of the country can be triggered by lower rainfall intensities in 
absolute terms, in comparison to those registered in the northern 
region. That does not mean that regions related to a lower rainfall 
intensity threshold are necessarily more susceptible to landslides, 
since they are located, for the most part, in regions that receive a 
lower amount of precipitation per year.

Figure 11 also shows a heterogeneity in the distribution of daily 
rainfall intensity thresholds. Although there is a concentration of 
higher values in the north and lower values in the southern regions 
(for the final models 1 and 3), the models also predicted specific 
areas that differ from the trend. These heterogeneity distributions 
have been rarely shown in works about landslide thresholds.

The higher rainfall intensity thresholds concentrated in the 
area with the highest mean annual precipitation also tell us about 
landscape evolution and adaptation. In every geographical area, 
the geomorphology, especially the system of slope instability, tends 
to naturally attain an equilibrium state that aligns with the typical 
amount of rainfall experienced in that particular region (Pedrozzi 
2004; Zêzere et al. 2015). Therefore, the slopes are adapted to the 
amount of precipitation it receives with time. It is important to 
highlight that, in order to fully understand the processes of shal-
low landslide triggering and to get insights about the susceptibility 
for the landslide occurrence in the area of study, it is necessary to 
analyse the map showing the rainfall intensity threshold together 
with the mean annual precipitation map.

Is it not possible to conclude with absolute certainty that the 
predisposing factors ranked by RF are the ones conditioning 
the spatial distribution of rainfall intensity thresholds (Stegar 
et al. 2021), but the different models analysed in this work provide 
some insights of possible correlations.

Since the distribution of mean annual precipitation in Por-
tugal is heterogeneous, testing models 3 and 4 helped to better 
understand the role of predisposing factors in defining the rainfall 
intensity threshold, since they use groups of events that are located 
in areas receiving similar amounts of precipitation per year and 
within a limited variation of the predisposing factors (compared 
with testing model 1). Knowing that correlation does not mean 
causation (Stegar et al. 2021), this work does not exclude that the 
rainfall intensity thresholds could be influenced by other differ-
ent factors, including anthropogenic, geological, climatological, 
and environmental aspects that have not been directly taken into 
account in the implemented models. Nevertheless, further studies 
may be useful to analyse the appropriate approaches for selecting 
additional predisposing factors and improve even more the models’ 
performance and explainability.

The results of this study may have implications for landslide pre-
diction and the generated model may be suitable for the effective 
reduction and mitigation of landslide risk in Portugal and for vari-
ous regions worldwide characterised by similar geomorphological 

settings. Many studies suggest that the definition of the warning 
threshold is very dependent on the selected rain gauge used to 
define the landslide rainfall threshold (Melillo et al. 2018; Abraham 
et al. 2020). Our method tries to overcome this issue by represent-
ing shallow landslide triggers as continuous values across the study 
area on a fine scale, rather than defining one rainfall threshold for 
a larger area, which could be beneficial for future warning systems. 
Further studies may be proposed to complement these findings 
using other novel machine learning and ensemble techniques in 
order to enhance our understanding of landslide triggers and 
improve landslide prediction.

It should be highlighted that the results are conditioned by 
the intrinsic uncertainty of the data collection, mainly regard-
ing the filter used to classify the landslide occurrences as shal-
low or not. The developed filter does not provide certainty 
in the classification of the events; however, we hope that the 
method used reduces the chance of using noisy data in the mod-
els. Given the constraints of this study, particularly the limited 
dataset available for model development, we recommend sev-
eral future validation measures to bolster our findings. These 
include acquiring an expanded dataset on shallow landslides, 
employing alternative machine learning or statistical method-
ologies, and applying our approach to different databases and 
geographical regions.

Conclusions
This study elaborated  RF models to evaluate the influence of 
each landslide predisposing factor in assessing the daily rainfall  
intensity threshold for shallow landslides in Portugal. The RF mod-
els were employed with four different datasets, during the first ini-
tial phase, to assess the ability of the method to give insights about 
the correlation between predisposing factors and critical daily 
rainfall intensities. During the final phase, other three models were 
created to analyse the spatial variation of the daily rainfall intensity 
thresholds across mainland Portugal.

Moreover, the accuracy and validation of the models confirm 
that the derived maps for this study are effectively reliable. The 
main achievements of this work are as follows:

1.	 The landslide predisposing factors that were more useful to assess 
the daily rainfall intensity threshold in Portugal are the coarse 
grains, slope aspect, clay content, slope angle, and field capacity.

2.	 Above the latitude 40 N in Portugal, there is a higher con-
centration of pixels that represents the high rainfall intensity 
threshold for shallow landslides if considering critical rainfall 
durations of 3 and 13 days.

3.	 When considering critical rainfall durations of 3 and 13 days, 
the Southern part of Portugal is dominated by the low rainfall 
intensity threshold values, which is in line with the registered 
low mean annual precipitation.

4.	 When considering critical rainfall durations of 8 days, the trend 
of the spatial distribution of rainfall intensity threshold is not 
evident at the national scale.

5.	 Although earlier studies have addressed rainfall thresholds for 
landslide triggering in Portugal (Vaz 2021; Zêzere et al. 2015), 
our findings provide a more detailed exploration of spatial 
variations of rainfall thresholds.
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The findings of this research contribute to the advancement of 
knowledge in landslide science and can provide valuable guidance 
for decision-makers and practitioners involved in landslide risk 
reduction efforts.
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