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Probabilistic prediction of rock avalanche 
runout using a numerical model

Abstract  Rock avalanches can be a significant hazard to commu-
nities located in mountainous areas. Probabilistic predictions of 
the 3D impact area of these events are crucial for assessing rock 
avalanche risk. Semi-empirical, calibration-based numerical runout 
models are one tool that can be used to make these predictions. 
When doing so, uncertainties resulting from both noisy calibra-
tion data and uncertain governing movement mechanism(s) must 
be accounted for. In this paper, a back-analysis of a database of 31 
rock avalanche case histories is used to assess both of these sources 
of uncertainty. It is found that forecasting results are dominated by 
uncertainties associated with the bulk basal resistance of the path 
material. A method to account for both calibration and mechanistic 
uncertainty is provided, and this method is evaluated using pseudo-
forecasts of two case histories. These pseudo-forecasts show that 
inclusion of expert judgement when assessing the bulk basal resist-
ance along the path can reduce mechanistic uncertainty and result 
in more precise predictions of rock avalanche runout.

Keywords  Rock avalanches · Probabilistic prediction · Runout 
modelling · Probabilistic calibration

Introduction

Rock avalanches are extremely rapid flows of fragmented rock 
(Hungr et al. 2014). Predicting the potential impact area of a rock 
avalanche before it initiates is a crucial step in the risk analysis of 
these landslides. The recent West Salt Creek (White et al. 2015; Coe 
et al. 2016) and Mt. Meager (Guthrie et al. 2012) events highlight the 
need for accurate forecasts of rock avalanche motion, as in these two 
cases the surprisingly long runout of the events caused fatalities, and 
the formation of a potentially hazardous landslide dam, respectively. 
Additionally, Coe et al. (2018) suggest that climate warming may 
lead to increased frequency of rock avalanche occurrence, which in 
combination with increasing development pressures may increase 
demand for these sorts of predictions in the near future.

As shown on Fig. 1, rock avalanches initiate as large rock slope 
failures on steep mountain slopes (Hungr et al. 2014). The failed 
rock mass initially accelerates in the source zone (Fig. 1), where 
shearing is typically localized along a basal rupture plane, and the 
movement of the landslide mass can remain coherent (De Blasio 
and Crosta 2013). As the accelerating mass vacates the source zone, 
it progressively disintegrates and turns flow-like (De Blasio 2011; 
De Blasio and Crosta 2013; Aaron and Hungr 2016b). Following 
fragmentation, the mass can behave as a frictional fluid, and basal 
shearing occurs between the flowing fragments of rock and the 
material that is being overridden (path on Fig. 1), which can include 

material such as glacier ice, bedrock, and/or saturated sediments 
(e.g. Hungr and Evans 2004; Sosio et al. 2008; Dufresne et al. 2019). 
Finally, the fragmented mass comes to rest and forms a deposit.

Beginning with the work of Heim (1932), many researchers have 
noted an apparent increase in rock avalanche mobility with increas-
ing volume (e.g., Heim 1932; Scheidegger 1973; Li 1983; Whittall et al. 
2017). The reasons for this observation remain controversial, mak-
ing forecasting rock avalanche runout a uniquely challenging task 
(e.g., Davies et al. 1999; Legros 2002; Hungr and Evans 2004; Johnson 
et al. 2016; Manzanal et al. 2016; Aaron and McDougall 2019). Since 
no consensus has emerged regarding the macro-scale movement 
mechanisms that govern rock avalanche motion, constructing precise 
numerical models based on fundamental material properties is dif-
ficult. However, there is a need for methods to predict the motion of 
these flows within the landslide risk analysis framework (e.g., Hungr 
2016). It is the authors’ opinion that a combination of empirical tools 
and semi-empirical numerical models (e.g., Hungr 1995) are the most 
promising methods for making practical predictions at the moment.

Empirical relationships derived from observations of past 
landslides are well-suited for screening-level runout analysis. 
These methods are typically based on correlations between vari-
ables such as landslide volume, confinement conditions, fall height, 
runout length, and deposit area (e.g., Li 1983; Iverson et al. 1998; 
Griswold and Iverson 2008; Mitchell et al. 2020b). These correla-
tions result in tools that are easy to use yet powerful, as predictions 
can be made within a probabilistic framework (e.g., Hungr et al. 
2005; Griswold and Iverson 2008; Mitchell et al. 2020b). However, 
the resulting wide confidence bands, due in part to small sample 
sizes of historical datasets, as well as their limited ability to provide 
landslide intensity estimates (e.g., flow depth, velocity and impact 
pressures), generally limit their use to high-level hazard mapping 
and risk assessment applications.

Advanced numerical models are typically used to provide 
more detailed estimates of impact area and intensity param-
eters. Many models that can simulate landslide runout across 
three-dimensional terrain have been proposed, and recent sum-
maries are provided by McDougall (2017) and Ho et al. (2018). 
These types of models are capable of simulating complex inter-
nal stress distributions (Savage and Hutter 1989), entrainment 
(e.g., McDougall and Hungr 2005; Cuomo et al. 2014; Iverson and 
Ouyang 2015), and the initial coherence exhibited by rock ava-
lanches (Aaron and Hungr 2016b). So far, these models have been 
used extensively for back-analysis; however, a methodology for 
selecting parameters for probabilistic forward analysis of rock 
avalanches is still lacking, despite recent progress which explore 
probabilistic methods for parameter selection and scenario 
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evaluation, as well as the transferability and sensitivity of cali-
brated parameters (Quan Luna 2012; Pirulli 2016; Mergili et al. 
2018a, b; Sun et al. 2020, 2021). Progress has also been made in 
advanced methods for quantifying model sensitivities generally 
(e.g., Asheghi et al. 2020; Razavi et al. 2021); however, simplified 
tools for forward predictions are still required in practice.

One approach to forecast runout with advanced numeri-
cal models is to select parameter values based on the results of 
back-analyses of similar rock avalanches. This semi-empirical 
approach, termed the “equivalent fluid” principle by Hungr 
(1995), forms the basis for the model calibration and forecasting 
methodologies described in the present work. These forecasts 
must account for uncertainties arising from both inherent sta-
tistical noise, as well as a lack of knowledge of the phenomenon, 
analogous to aleatoric and epistemic uncertainty, respectively 
(Bedi and Harrison 2013). Within the equivalent fluid framework, 
these two types of uncertainties manifest as:

1.	 Uncertainty inherent in back-analysis (e.g., Fischer et al. 2015). 
This includes estimation uncertainty when fitting the model, as 
well as the numerical model being an imperfect representation 
of reality (Beven 2005; Doherty and Welter 2010; Aaron et al. 
2019). In this paper, we refer to this as “calibration uncertainty,” 
and it is the primary source of aleatoric uncertainty in the ana-
lyzed forecasting problem.

2.	 Uncertainty in evaluating how similar a future rock avalanche 
event will be to previously back-analyzed cases. This type 
of uncertainty primarily results from uncertainties in the 
mechanism(s) that will govern the motion of a potential rock 

avalanche. In this paper, we refer to this as “mechanistic uncer-
tainty,” and it represents the majority of epistemic uncertainty 
when predicting rock avalanche motion.

This paper details a methodology for making predictions 
of rock avalanche motion, which can be applied in practice. 
Recent work has focused on developing methodologies for 
back-analysis of single case histories (e.g., Fischer et al. 2015); 
however, the implementation and testing of a formal method 
for combining back-analysis results from multiple case histo-
ries to make probabilistic predictions are still lacking. Here, we 
implement and test such a methodology. The new methodol-
ogy fits naturally into the landslide risk analysis framework 
and accounts for both calibration and mechanistic uncertainty, 
described above.

Firstly, in the “Data” section, we describe a database of 31 rock 
avalanche case histories that is used in this work to investigate the 
sources of calibration and mechanistic uncertainty. Secondly, in the 
“Quantification of calibration uncertainty” section, we describe a 
probabilistic calibration methodology and apply it to back-analyze 
the database. Thirdly, in the “Assessment of mechanistic uncer-
tainty” section, we provide a methodology to assess the similarity 
of a potential future event to the thirty-one case histories assembled 
in the database. Finally, in the “Evaluation of forecasting methodol-
ogy” section, we test this new framework using pseudo-forecasts of 
two rock avalanche case histories and compare these forecasts to 
those made by an empirical-statistical tool. We conclude by discuss-
ing the strengths and weaknesses of the presented approach, and 
highlighting opportunities for future work.

Fig. 1   Example rock avalanche 
showing source zone (blue), 
and path (red). Hope Slide 
photo courtesy British Colum-
bia Ministry of Transportation 
and Infrastructure
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Data

A database of 31 rock avalanche case histories has been assembled as 
part of this work. A detailed summary of the database is provided in 
the Supplementary Information. Figure 2 shows the volume vs. fall 
height over runout length (H/L) relationship of the cases in the rock 
avalanche database used to develop the proposed probabilistic runout 
forecasting framework. The H/L ratio is explained in the Fig. 2 inset. 
With the exception of the Bingham Canyon rock avalanche, all cases 
in the database are natural rock avalanches. A detailed description 
of the Bingham Canyon rock avalanche is provided in (Moore et al. 
2017). The cases span a wide range of mobility, from the “expected” 
value for dry fragmented debris of 0.6 (Hsu 1975) to the Sherman 
Glacier rock avalanche (H/L of 0.1). Figure 2 also shows the likely 
material overrun by the analyzed rock avalanches once they vacated 
the source zone. Most cases in the database likely overran saturated 
substrate; however, cases that overran bedrock, glacial ice, and likely 
unsaturated sediments were also back-analyzed.

To the authors’ knowledge, this database is the largest collec-
tion of rock avalanches assembled and analyzed with a consistent 
calibration methodology using a three-dimensional runout model 
(as described below). However, we acknowledge that a sample size 
of 31 cases is a limited sample of rock avalanche behavior. This 
will introduce uncertainty into the resulting predictions, which 
will be explored when evaluating the proposed forecasting meth-
odology. However, the expected bias of the assembled dataset can 
also be assessed by comparing the analyzed case histories with the 
larger databases of mobility estimates shown in Fig. 2. Figure 2 
also shows H/L values measured by Scheidegger (1973), Li (1983) 
and the Canadian database that underlies PRE-RA (Mitchell et al. 
2020b), an empirical runout estimation tool that is described in 
more detail below. For cases that are duplicated in the datasets, the 
most recent reference is used. Comparing the data, on average, the 
cases analyzed in the present work appear more mobile than those 
compiled by Scheidegger (1973) and Li (1983), and similar to those 
compiled by Mitchell et al. (2020b). It can thus be expected that 
the resulting forecasts may be biased towards high moblity. This 

Fig. 2   Volume vs. H/L of cases in the database of rock avalanche case 
histories. For comparison, H/L data collected by Scheidegger (1973), 
Li (1983), and Mitchell et al. (2020b) are shown. Cases are sorted by 
path material. References to DanW and/or Dan3D analyses, as well as 
papers summarizing the case histories, are provided in Supplemen-
tary Table  S1. Labels: 1. Zymoetz, 2. Crammont, 3. Six des Eaux, 4. 
Huascaran, 5. Kolka, 6. Mt. Meager, 7. Mt. Steele, 8. Nomash River, 9. 
Sherman Glacier, 10. Thurweiser, 11. McAuley Creek, 12. Val Pola, 13. 

Avalanche Lake, 14. Goldau, 15. Mystery Creek, 16. Turnoff Creek, 17. 
Madison Canyon, 18. Chisca, 19. Hope, 20. West Salt Creek, 21. Frank, 
22. Guinsaugon, 23. Bingham Canyon, 24. Sentinel, 25. Daubensee, 
26. Rinderhorn, 27. Rautispitz, 28. Platten, 29. Chehalis, 30. Flims, and 
31. Molveno. Inset: explanation of the H/L ratio, with H defined as the 
vertical height between the tip of the scarp and toe of the deposit, 
and L the horizontal distance between the two
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can be partially accounted for using expert judgement, as detailed 
below; however, this will be an important factor when interpreting 
resulting forecasts.

Quantification of calibration uncertainty

Probabilistic calibration methodology

The database of rock avalanche case histories has been back-analyzed 
with a numerical model, using a probabilistic methodology that 
quantifies calibration uncertainty. In this work, we use the runout 
model Dan3D-Flex (Aaron and Hungr 2016b), which combines a solid 
mechanics based flexible block model with Dan3D, a fluid-mechanics 
based runout model. In Dan3D-Flex, the mass is initially simulated as 
a flexible block that can translate and rotate over 3D topography. At 
a user specified time, the mass turns “flow-like,” and its behavior is 
governed by the Dan3D simulation algorithm (McDougall and Hungr 
2004). The Dan3D algorithm is a depth averaged, Lagrangian descrip-
tion of the equations of motion, solved using smooth particle hydro-
dynamics (McDougall and Hungr 2004; Hungr and McDougall 2009). 
A key feature of Dan3D is that it simulates the development of strain-
dependent internal stresses, whose magnitude is governed by an inter-
nal friction angle (Savage and Hutter 1989; Hungr 2008). Dan3D-Flex is 
thus suitable to simulate cases that fail along a planar rupture surface, 
such as a bedding plane, as flow-like behavior only occurs sometime 
after the onset of motion (as described in the introduction). Although 
we use Dan3D-Flex here, the probabilistic simulation methodology we 
use is generally applicable to other numerical runout models.

When performing a back-analysis with Dan3D-Flex, a number 
of model inputs must be selected and/or calibrated. With reference 
to Fig. 3, these parameters are as follows:

1.	 The initial spatial extent and depth distribution of the failed 
mass. This is typically assessed through comparison of pre- 
and post-event digital elevation models, or a reconstruction 
of the pre-failure topography based on geomorphic evidence. 
Uncertainties in this input are not addressed in the present 
work, but can be considered based on the methods presented 
in Jaboyedoff et al. (2020).

2.	 The location and extent of any basal rheology changes (e.g., 
due to a change in the material type encountered along the 
path, as described in Fig. 1).

3.	 The values of parameters that govern all basal rheologies used, 
which will be denoted by the parameter vector b.

4.	 The rigid motion time, which is the amount of time that the 
simulation is governed by the flexible block model, before flow-
like behavior occurs (Aaron and Hungr 2016b). In Fig. 3, the 
cyan outline shows where the mass is located when flow-like 
behavior is specified to occur for the example case shown.

5.	 The volume and spatial distribution of entrainable substrate. 
As described in McDougall and Hungr (2005), this can be 
estimated based on geomorphological mapping and is not 
described in the present work.

Previous work has shown that simulation results are insensi-
tive to the user specified value of the internal friction angle, so 
long as it is kept within a reasonable range (Hungr 1995, 2008). 
Additionally, Aaron and Hungr (2016b) show that simulation 
results are insensitive to the rigid motion time, so long as the 
landslide mass has mostly vacated the rupture surface at the time 
it switches to fluid behaviour. Thus, of the five parameters speci-
fied above, b exerts the strongest control on the numerical model 
results, and it is for this reason that model calibration is focused 
on constraining b.

The parameters typically calibrated in a back-analysis are those that 
govern the basal rheology and the associated basal shear resistance 
term, �zx . These basal rheologies represent the bulk resistance to motion 
that arises between the flowing fragments of rock and the material they 
overrun, which varies depending on the location along the runout path 
(Fig. 1). Dan3D-Flex features an open rheological kernel, so that a vari-
ety of rheologies can be used to simulate different resistance behavior 
exhibited by the source and path material. An overview of these rheolo-
gies is provided in Hungr and McDougall (2009), and only the Voellmy 
and frictional rheologies will be briefly summarized here.

The Voellmy rheology is given by (e.g., Koerner 1976; Hungr and 
Evans 1996):

(1)�zx = −(�z f +
�gv2

x

�
)

Fig. 3   Example model set-up 
showing model parameteriza-
tion. A plan view, B oblique 
view. A change of material 
occurs downslope of the red 
material border, as the rock 
avalanche overruns saturated 
sediments
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where �z is the bed normal total stress, � is the density, g is gravita-
tional constant, vx is the velocity in the direction of motion, f is the 
friction coefficient, and ξ is the turbulence coefficient. Both f and 
ξ are calibrated parameters, or fitting coefficients, in the equivalent 
fluid context, and are selected based on the probabilistic calibration 
procedure detailed below. The friction coefficient, f, is a bulk value 
that represents the apparent friction coefficient between the mov-
ing rock avalanche and the substrate it moves over. The velocity-
dependent term in Eq. (1), whose magnitude is governed by ξ, com-
monly referred to as the turbulence coefficient, is used to account 
for all forms of velocity-dependent resistance, including potential 
pore fluid effects, which may be induced by rapid undrained load-
ing (Hungr and Evans 2004).

The frictional rheology, based on Coulomb frictional behavior, 
is given by:

where ∅b is the calibrated bulk friction angle, which includes pore-
pressure effects.

For the back-analyses presented in this paper, we parameterized 
the source zone using the frictional rheology, sedimentary path 
material with the Voellmy or Bingham rheology (the Bingham rhe-
ology, which assumes the rock avalanche acts as a Bingham fluid, 
governed by a velocity dependent viscous resistance and constant 
yield stress, is described in Hungr and McDougall 2009) and bed-
rock with the frictional rheology. A distinction is made between 
source zone and path material resistance, because the simulated 
rock avalanche is moving over different materials, and is therefore 
likely experiencing different basal resistance (Aaron and McDougall 
2019). This parameterization methodology is consistent with previ-
ously successful back-analysis using semi-empirical runout models 
(e.g., Geertsema et al. 2006; McDougall et al. 2006; Aaron and Hungr 
2016a; Moore et al. 2017).

Calibration uncertainty, defined in the introduction, results from 
an inability to accurately resolve the rheological parameters (e.g., f 
and ξ in Eq. (1)) based on a given set of field measurements. When 
the frictional rheology is used, there is little calibration uncertainty 
in the results, as back-analyses result in a single, best-fit friction 
angle. However, when the two parameter Voellmy or Bingham rhe-
ologies are used, there can be non-uniqueness and parameter cor-
relation in the calibrated results, which must be accounted for when 
making forecasts.

Therefore, for the N = 22  case histories where we used the 
Voellmy or Bingham rheologies (selected based on the substrate 
material considerations detailed above), we determined a posterior 
distribution of the model parameters using the Bayesian inference 
techniques detailed in Aaron et al. (2019). This calibration meth-
odology quantifies the quality of a simulation in terms of a fitness 
metric that can flexibly account for a variety of constraints, includ-
ing impact area, velocity, and deposit distribution, depending on 
data availability.

For each case, the fitness has been computed for a wide range 
of model parameter combinations. Parameter combinations are 
selected by systematically sampling the parameter space at regular 
intervals over the entire plausible parameters space. The model 
misfit for each parameter combination were then transformed 
into the model parameter’s posterior density distribution, which 

(2)�zx = −�z tan(∅b)

quantifies calibration uncertainty and is denoted as π(i)post
(
b|r(i)

)
 . 

Here, b is the vector of input parameters (for example, f  and � in 
Eq. (1)) and r is the vector of available observations with respect 
to which the misfit is quantified. The superscript i  indicates that 
the calibration is done on a case by case basis. Hence, we have 
N  distinct posterior distributions for N  cases in the database. A 
detailed discussion of the procedure to determine the posterior 
density distribution for a given case history is provided in Aaron 
et al. (2019).

More complex model parameterizations, which use more than 
two materials, could potentially be considered for both back-
analysis and forward prediction. The use of more complex models 
very likely means a larger number of model parameters, which 
necessitate different calibration techniques, for example, machine-
learning techniques such as Shahri et al. (2021). In this scenario, the 
grid search used to derive the parameter posterior distributions 
in this study would become too computationally intensive. Here, 
we minimize the number of input parameters, so that they can be 
constrained using field observations and our database of 31 case 
histories, as will be described in the "Assessment of mechanistic 
uncertainty" section.

Calibration results and discussion

The probabilistic back-analysis method described above has been 
applied to all cases in our database. A summary of all the back-
analyzed cases, including references to previous work, the back-
analysis parameterization, available constraints, and path materi-
als is presented in Supplementary Table S2. For cases where the 
frictional rheology was used in the source zone, the back-analyzed 
friction angles are shown in Fig. 4. As summarized in Aaron and 
McDougall (2019), these results show a volume dependent trend, 
which demonstrates a systematic reduction of basal resistance in 
the source zone as volume increases.

Fig. 4   Back-analyzed friction angles in the source zone. See Fig.  2 for 
case names that correspond to the case numbers. Figure modified after 
Aaron and McDougall (2019), with two new cases added (30 and 31)
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Four example parameter posterior densities for cases where the 
path materials were parameterized with the Voellmy rheology are 
shown in Fig. 5. All other posterior distributions are presented in 
the Supplementary Information. The abscissa of the posterior dis-
tributions shown in Fig. 5 is the friction coefficient, and the ordinate 
is the turbulence coefficient, described in Eq. (1). The contoured 
value is a measure of the goodness of fit that results when the cor-
responding friction and turbulence parameters are inputted into 
Dan3D for the given case history.

For cases where bedrock was encountered as the path material, 
the back-analyzed friction angles are shown in Table 1. These angles 

are representative of the bulk basal resistance experienced by the 
simulated rock avalanche as it moved over the bedrock substrate. 
For one case, the West Salt Creek Rock Avalanche, the Bingham rhe-
ology was found as the best-fit rheology. As summarized in Aaron 
et al. (2017), this is thought to be because this case overran saturated 
fine grained material, whose shear behavior can be described by 
the Bingham rheology.

Our results show that there is minimal variance (and therefore 
minimal calibration uncertainty) in the back-analyzed source zone 
friction angles, as well as the best-fit friction angles for cases that 
overran bedrock as the path material. This is because the source zone 

Fig. 5   Example calibration 
results when the path material 
is sediment and parameterized 
using the Voellmy rheology. 
A Mt Meager, with a contour 
interval of 0.025. B McAuley 
Creek, with a contour interval 
of 0.01. C Avalanche Lake, with 
a contour interval of 0.001. 
D Madison Canyon, with a con-
tour interval of 0.001. The black 
dot indicates the parameter set 
that results in simulations that 
best match the constraints. 
The units of the turbulence 
coefficient are m/s2. The black 
line on the best fit simulation 
results shows the observed 
impact area

A

B

C

D
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friction angles are well resolved by the presence or absence of depo-
sition in the source zone (e.g., Moore et al. 2017), and the observed 
impact area well resolves best-fit friction angles along the path (e.g., 
Grämiger et al. 2016). However, significant calibration uncertainty 
must be considered when making forecasts of potential rock ava-
lanches that overrun sedimentary substrates, as shown in Fig. 5C, D.

Assessment of mechanistic uncertainty

In this section, we provide a decision tree that can guide the assess-
ment of the similarity of a potential future rock avalanche to the 
back-analyzed cases in the database, and therefore address mech-
anistic uncertainty associated with forecasting rock avalanche 
motion. The parameters required to make a forward prediction 
with a semi-empirical numerical runout model are the same as 
those required for back-analysis (summarized in Fig. 3); however, 
when making predictions the parameters can no longer be cali-
brated. Two of these inputs, the thickness and distribution of the 
initial failure, and the availability of entrainable sediment, must be 
estimated based on separate geomorphological, structural, and/or 
slope stability analyses (McDougall and Hungr 2005; Jaboyedoff 

et al. 2020) and will not be described in the present paper. All other 
parameters can be selected by assessing the similarity of the case 
of interest to the cases in the database, as described on the decision 
tree shown in Fig. 6.

The first node in Fig. 6 represents the possibility of catastrophic 
failure, defined as sudden failure of the entire unstable volume. 
Catastrophic failure is contrasted with piecemeal failure, where 
the unstable volume unravels. For cases that fail in a piecemeal 
manner, it is expected that runout will be much shorter than if 
catastrophic failure occurs. An example of piecemeal failure is the 
Randa rockfall, where 30 M m3 of rock unravelled in a series of 
small volume failures, creating a large talus cone at the base of the 
slope (Eberhardt et al. 2004). The decision framework presented 
in Glastonbury and Fell (2008) can be used to guide the assess-
ment of the likelihood of catastrophic failure. Based on the avail-
able evidence, all of the cases analyzed in the present work failed 
catastrophically, so no guidance can be given about assessing the 
runout of a piecemeal failure mechanism on the basis of these cases.

If failure is catastrophic, the next step given in Fig. 6 is to sepa-
rate the study site into the source zone and path (these zones are 
shown in Figs. 1 and 3, and described in the introduction). Guidance 
for how to make this division can be taken from the cases in the 
databases. For Huascaran, Thurweiser, Bingham Canyon, Nomash 
River, Madison Canyon, Mt Meager, Avalanche Lake, Guinsaugon, 
Rinderhorn, Flims, Rautispitz, and Platten, the location of the rheol-
ogy change is easy to predict as there is a clear distinction between 
the source and path materials. Six des Eaux, Val Pola, Mystery Creek, 
Goldau, Molveno, and Frank all descended steep source slopes 
before spreading out on a valley floor. For these cases, good results 
were found by using the source zone resistance parameters until the 
rock avalanches encounter valley floor sediments. For Daubensee 
and Chehalis, the path material was bedrock, so no change in rheol-
ogy was implemented between the source zone and path. The only 
case that did not fit well into this framework was McAuley Creek. As 
summarized in Aaron (2017), this could be due either to plowing of 
potentially entrainable sediments, or to multiple failures.

Table 1   Best-fit friction angles for cases that overran bedrock. The 
value for Thurweiser is based on Sosio et al. (2008), Chehalis is based 
on Si et al. (2018), Daubensee is based on Grämiger et al. (2016), and 
Bingham Canyon is modified based on Moore et al. (2017)

Case name (case number) Volume (M 
m3)

Path material 
friction angle 
(°)

Thurweiser (10) 2.2 24

Chehalis (29) 2 25

Daubensee (25) 5.1 21

Bingham Canyon (23) 30 20

Fig. 6   Decision tree to guide 
the selection of parameters 
for the prediction of rock ava-
lanche runout using Dan3D-
Flex. The blue branch indicates 
the decision process for 
parametrizing the source zone, 
and the red branch indicates 
that for the path

Given Volume Scenario
Does failure occur as a single event?

No guidance provided here

Divide study site into source zone
and path

No

Yes

Does failure occur along a clearly 
de�ned rupture surface?

-Use Flexible block model
-Use volume dependent 
  friction angle (Fig. 4)

Use high strength in 
the source zone 

NoYes

To parameterize 
source zone

Glacial Ice
-Use methodology described

in Sosio et al. (2012)

Sediment
-Use Voellmy rheology

-Use a posterior distribution 
estimated by evaluating Eq. (6)

-Consider if volume of 
entrainable material is signi�cant 

(McDougall & Hungr, 2005)

Estimate Dominant Path
Material

To parameterize 
path

Bedrock
-Use frictional rheology

-Select friction angle based
on previous cases (Table 1)
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Following the subdivision of the study site into source and 
path, the relevant parameters for each of these material zones 
need to be specified. For the source zone (blue branch in Fig. 6), 
the parameters should be evaluated based on an analysis of the 
potential rupture surface. If failure is expected to occur along a 
continuous planar feature, then the flexible block model should 
be used. As summarized in Aaron and Hungr (2016b), the rigid 
motion distance can be selected based on an examination of the 
pre-failure topography. Aaron and Hungr (2016b) also showed that 
the final predicted impact area is insensitive to the choice of rigid 
motion distance, and good results have been found by specifying 
that fragmentation occurs when most of the failed mass has vacated 
the source zone (e.g., Aaron and Hungr 2016a; Aaron et al., 2017; 
Castleton et  al. 2016; Grämiger et  al. 2016; Moore et  al. 2017). 
Therefore, the rigid motion distance can be selected a priori and it 
is not recommended that this parameter be varied in a probabilistic 
context. If failure is along an irregular surface then the flexible 
block model should not be used, as fragmentation is likely to occur 
close to the onset of failure.

Based on the calibration results, the frictional rheology should 
be used in the source zone, and the friction angle can be assigned 
based on the failure volume, which must be estimated prior to 
performing a runout analysis. Mechanistic uncertainty is limited 
when selecting this parameter, which can be done based on a lower 
bound or linear fit to the values in Fig. 4, depending on how much 
conservatism is desired for a particular forecast. For smaller vol-
ume cases, the back-analyzed frictional resistance corresponds to 
a friction angle a few degrees less than the limit equilibrium value, 
determined based on the dip of the rupture surface. This corre-
sponds to the strength required for a catastrophic failure to initiate.

The red path in Fig. 6 is used to parameterize the path materials. 
If the path material is glacial ice, then parameters can be selected 
based on Sosio et al. (2012). For bedrock, the frictional rheology 
should be used to parameterize basal resistance, and preliminary 
guidance for the value of the friction angle can be taken from 
Table 1. For probabilistic predictions, a range of friction angles can 
be used; however, due to the limited number of case histories in 
the database that overran bedrock, it is presently difficult to give 
guidance on the probabilities to assign to these values, so some 
subjective judgment is needed.

For cases that overrun sediments, the selection of resistance 
parameters along the path is a highly uncertain part of a forward 
runout prediction, and expert judgement is presently required 
to assess the similarity of a potential future rock avalanche to a 
calibrated case history in the database. Therefore, we propose a 
statistical methodology to combine the results of back-analyses 
into a probability density function, which can then be used to make 
probabilistic estimates of rock avalanche runout. This methodology 
is summarized in the following section.

Probabilistic prediction framework

In this section, we detail a predictive simulation framework that 
accounts for both data induced and mechanistic uncertainties, and 
can be used to parameterize the path material. Similar methodolo-
gies have been applied for other processes, such as snow avalanches 
and landslide generated waves (e.g., Straub and Grêt-Regamey 

2006; Mergili et al. 2018a; Fischer et al. 2020). This section focuses 
on cases that overrun sediments, as they represent the majority 
of cases in the database; however, the same methodology can be 
applied to other types of substrate if the appropriate calibration 
data becomes available.

In this framework, we propose an expert-based prediction 
method that aims at leveraging relevant information from the 
complete event database. We will denote the outcome or event of 
interest for a future rock avalanche as E , which could be related 
to any attribute that must be predicted to assess rock avalanche 
risk, for example, that the future rock avalanche has an impact at a 
certain location or that the runout exceeds that particular location. 
It is also possible to extend the methodology to estimate the predic-
tive distribution of other quantities of interest such as the overall 
run-out area and/or the velocity at a certain location. However, in 
the present work, we will only assess impact probabilities and the 
resulting runout exceedance probabilities, as these are often the 
most important parameters to obtain from a runout model in a 
rock avalanche risk analysis.

The predictive probability for the event E, given the obser-
vations available for the cases in the database, is denoted by 
ppred

(
E|r(1), … , r(N)

)
 and can be determined by:

The first term in the integral, p(E|b) , represents the probability of 
a future outcome given the parameter vector, and can be evaluated 
by examining numerical model outputs when parameter vector b 
is used as input. As Dan3D-Flex is not a probabilistic model, when 
it is run for a particular parameter vector the output is determin-
istic (for example, an impact at a certain location will or will not 
be simulated to occur). However, there is some uncertainty in this 
deterministic outcome, as Dan3D-Flex will not perfectly reproduce 
an observed impact area when the optimal parameter set is cho-
sen (this can be seen by comparing measured and modelled impact 
areas in Fig. 5). In the present work, we do not explicitly consider this 
source of uncertainty, and assign a value of p(E|b) = 1 to all areas 
where impacts are simulated to occur, and a value of p(E|b) = 0 to all 
locations outside of the simulated impact area. Further examination 
of the p(E|b) term is provided in the discussion.

The second term in Eq. (3), πpost
(
b|r(1), … , r(N)

)
 , is the param-

eter’s posterior density based on evidence given by the combined 
set of available data of all events in the database. In an idealized 
situation, in which there is reason to believe that all cases in the 
database follow the same underlying parameter distribution, and 
additionally that cases are independent and observations without 
error, the combined posterior is simply given by a normalized prod-
uct of the individual posteriors. In reality, however, we are facing 
large levels of mechanistic uncertainties and sparse, potentially 
erroneous observations, which make this type of Bayesian inference 
unfeasible for our situation. More specifically, when comparing the 
back-analyzed posterior parameter distributions for the cases in 
the database (see Supplementary Information), two posterior dis-
tributions seldom coincide. This is likely caused by differences in 
the mechanism(s) governing movement of the individual cases.

Following this observation, we hypothesize that the case his-
tories in the database sample various rock avalanche movement 

(3)ppred
(
E|r(1), … , r(N)

)
= ∫ p(E|b)πpost

(
b|r(1), … , r(N)

)
db
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mechanisms that occur along the path, and that potential future 
events will behave similarly to a subset of these cases. A few 
examples of potential mechanisms include effects from confine-
ment (Strom et al. 2019; Mitchell et al. 2020b), liquefaction of path 
material (Buss and Heim 1881; Hungr and Evans 2004), fragmen-
tation of the rock avalanche material (Davies et al. 1999), and/or 
plowing of entrainable substrate (McDougall and Hungr 2005).

We formalize this hypothesis by partitioning all cases of the 
database into N  disjoint “classes,” referred to as c(i) for i = 1,…,N. 
Each “class” denotes the specific movement mechanism(s) that 
occurred along the path for a given case history, which combine 
to result in the case-specific posterior distribution. We further-
more denote the probability that the case we want to predict 
falls into class c(i) as p(c(i)) . As the classes are disjoint, we have ∑N

i=1
p
�
c(i)

�
= 1 and can use the law of total probability to break 

down the combined parameter’s posterior into:

in which π(i)post(b|r(i)) is the model parameter posterior distribution 
for class c(i) . The formula in Eq. (4) can be understood as a weighted 
average of the back-analyzed posterior distributions with weights 
given by the probabilities that a future event falls into one of the N 
classes. At present, we only consider evaluating Eq. (4) for the case 
where the path material is sediment, using the parameter poste-
rior distributions given in the Supplementary Information. This 
procedure is equally applicable to cases that overrun bedrock and 
glacial ice; however, the best fit parameters for these case histories 
are generally given by a single, best-fit friction angle (e.g., Sosio 
et al. 2012; Aaron 2017). Therefore, π(i)post(b|r(i)) in Eq. (4) would be 
given by a single, best fit friction angle.

In order to assess the probability that a potential future rock 
avalanche falls into a given class, we will explore an approach 
based on expert judgement, that can take guidance from past 
experience with landslide run-out modeling (Sassa 1985; Hungr 
et al. 2002; Hungr and Evans 2004; Aaron and McDougall 2019). 
Experts can assign the probability that the predicted event falls 
into class p

(
c(i)

)
 . A simple way of doing this is to subjectively 

determine the similarity between events in the database and the 
case that is to be predicted and to denote it wi . For an arbitrary 
similarity scale, the desired probability is then given by:

Substituting this into the previous analysis yields the com-
bined posterior probability distribution:

Note that Eq. (6) naturally reduces to the arithmetic average if 
a similarity value wi = 1 is chosen for each case in the database. 
The result of evaluating this arithmetic average is shown in Fig. 7. 
In Fig. 7, the high probability zones correspond to places where 
the best-fit parameters of many case histories overlap (this can 
be seen by comparing Fig. 7 to the posterior distributions given 
in the Supplementary Information). As discussed previously, the 

(4)πpost(b|r(1), … , r(N)) =

N∑

i=1

π(i)post(b|r(i))p(c(i))

(5)p
�
c
(i)
�
=

wi
∑N

j=1
wj

(6)πpost(b�r(1), … , r(N)) =

∑N

i=1
π(i)post(b�r(i))wi

∑N

i=1
wi

presence of multiple high probability zones in Fig. 7 is likely caused 
by different movement mechanism(s) occurring along the path.

Evaluation of forecasting methodology

We have evaluated our methodology by applying it to the Frank 
Slide and the Turnoff Creek rock avalanche (Cruden and Krahn 
1978; Beguería et al. 2009), using the methodology detailed below. 
We selected these cases because they have different confinement 
conditions and volumes, and therefore represent a sampling of rock 
avalanche types that may be encountered when performing rock 
avalanche risk assessment.

When applying our methodology to these two case histories, we 
excluded any case-specific information about the basal resistance 
parameters prior to deriving source zone friction angles and pos-
terior probability density functions for the analyses (i.e., the cases 
were excluded from the calibration data for a cross-validation). 
However, we did not vary the source volume, the location of the 
boundary between source and path material, or the rigid motion 
distance. Further, as these two cases have already occurred, we 
are able to compare the observed runout to the simulated results. 
We therefore term the resulting probabilistic results as “pseudo-
forecasts,” both because we are simulating events that have already 
occurred, and because we do not explore all possible sources of 
uncertainty. Further validation of this method, exploring more 
sources of uncertainty, is the subject of ongoing work.

For each of the pseudo-forecasts, we used four different pos-
terior parameter distributions for the path materials, calculated 
using Eq. (6), to derive probabilistic forecasts of impact area. The 
use of four different distributions enabled testing of the sensitivity 
of forecast results to the selected subjective weightings, as well as 
the influence of both calibration and mechanistic uncertainty on 
forecasting results.

The four different posterior distributions used in Dan3D-Flex 
are described in Table 2. Scenario POS (case posterior) in Table 2 
was selected to isolate the influence of calibration uncertainty 

Fig. 7   Probability density function derived from combining the 
best-fit Voellmy parameters from all the case histories. A description 
of the posterior probability density is provided in the "Probabilistic 
calibration methodology" section, as well as Aaron et al. (2019). The 
contour interval is 0.001
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on forecasting results, as the use of the case specific posterior 
only accounts for uncertainties in the calibration data. The next 
three scenarios explore the sensitivity of forecasting results to 
increasing mechanistic uncertainties, with EXP (expert judge-
ment) having less mechanistic uncertainty than EQL (equally 
weighted posteriors), and EQL less than UNI (uniform distri-
bution over parameter space). The UNI scenario represents the 
scenario of making forecasts in the absence of a database of cali-
brated parameters for the path material.

Probabilistic simulation results were obtained by first pre-
computing the model results for a regular grid of parameter com-
binations. For the selected case histories, values of the friction 
coefficient were selected between f = 0.05 to 0.30 with steps of 
0.01 and turbulence coefficients were selected between � = 100 m/
s2 and 2000 m/s2 with steps of 100 m/s2. This range of param-
eters was selected as it encompasses the most likely values of the 
parameters (Fig. 7), while keeping the number of simulations 
reasonable. The input posterior probability density functions 
were then randomly sampled 105 times, and the pre-computed 
results corresponding to the randomly sampled parameters were 
combined to determine exceedance probabilities (defined as the 
probability of an event going a specified distance or further). A 
value of 105 random samples was selected based on preliminary 
testing, which revealed that results stabilized using this value.

Forecasting results were further cross checked using “The 
Probabilistic Runout Estimator – Rock Avalanche (PRE-RA),” a 
statistical tool presented in Mitchell et al. (2020b). PRE-RA can 
be used to make probabilistic predictions of parameters such 
as runout length. This is achieved through the use of survival 
functions derived from linear regression using a database of 
49 Canadian rock avalanche case histories. In the present work, 
the outputs of this model were compared to predictions made 
using Dan3D-Flex. Two regression equations were used to com-
pare empirical-statistical and numerical predictions, which are 
described in Table 2. These included 1) a prediction of runout 
length based on volume and fall height, and 2) a prediction of 
runout length based on volume, fall height, and topographic con-
finement. These equations, and associated regression coefficients, 
were presented in Mitchell et al. (2020b).

Frank slide

The Frank Slide was a rock avalanche that occurred in 1903 in 
Alberta, Canada. A number of previous studies have analyzed this 
event (Cruden and Krahn 1978; Cruden and Hungr 1986; McDougall 
2006), so only a few details relevant to the present analysis will be 
presented. The topographic rasters used for the surface the rock 
avalanche travelled over, as well as the thickness of material in the 
source zone, are the same as that used in McDougall and Hungr 
(2004). Following the methodology summarized in Fig. 6, the path 
was separated into source and path zones, as shown in Fig. 8.

This event involved an estimated volume of 37 M m3, so a fric-
tion angle of 15° was selected for the source zone (Fig. 4). To con-
struct the posterior probability distribution for the EXP scenario 
(Table 2), all cases were assigned equal weight, except for events 
that transitioned into debris avalanches/ debris flows (Huascaran, 
Nomash, Mt. Meager, Zymoetz and McAuley). Since the Frank Slide 
moved over unconfined topography, these cases were assigned a 
weight of zero. The resulting posterior PDF is shown in Fig. 9.

The results of the probabilistic analysis of impact area are 
shown in Figs. 10 and 11. As can be seen in Fig. 10, all four meth-
ods of assigning weights for the parameter posterior distribution 
result in a significant probability of exceedance being assigned to 
the observed runout. The main difference between these methods 
is in the precision of the forecasts, with POS resulting in the most 
precise forecasts, followed by EXP, EQL, and UNI.

A similar result is seen in Fig. 11 when comparing the Dan3D-Flex 
and PRE-RA results. All methods assign a significant exceedance prob-
ability to the observed runout, with POS assigning the highest and the 
two PRE-RA methods the lowest. The inset in Fig. 11 shows the prob-
ability density of the predicted minus observed runout, which can be 
used to assess the precision of the pseudo-forecasts. PRE-RA predicts 
the largest spread about the observed runout (indicating that these 
forecasts are the least precise), followed by the Dan3D-Flex results.

Turnoff creek

The Turnoff Creek rock avalanche occurred in 1992 in British 
Columbia, Canada, and involved an estimated 4 M m3. It failed along 

Table 2   Descriptions of Dan3D-Flex numerical scenarios and PRE-RA empirical scenarios used to test the forecasting methodology

Scenario name Description

Dan3D-Flex Numerical Model 
Scenarios

POS Posterior distribution for the case determined from its own back-analysis

EXP Expert judgement to weight the case histories in the database

EQL Equal weighting of all case histories

UNI Uniform distribution for the parameter space (database of calibrated 
case histories not taken into account)

PRE-RA Empirical Model Scenarios No Confinement 
Variables

Regression only based on volume and fall height

C = 0 Regression based on volume, fall height and unconfined topography

C = 1 Regression based on volume, fall height and confined topography
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a continuous bedding plane (Beguería et al. 2009). An overview of 
this rock avalanche is shown in Fig. 12. Following the methodology 
presented in Fig. 6, the study site was divided into source zone and 
path material, as shown in Fig. 12. Using the calibration data pre-
sented in Fig. 4, a friction angle for a 4 M m3 failure is expected to be 
approximately 21°. This value is a few degrees below the limit equi-
librium angle and was selected in the source zone. A rigid motion 
distance was selected to correspond with the landslide fragmenting 
when most of the failed material had vacated the source zone.

After assigning a friction angle to the source area, the likely path 
materials were assessed. Beguería et al. (2009) reported that there 
was limited evidence of entrainment in the deposit, and the site was 
classified by Mitchell et al. (2020b) as having unsaturated sediment 
based on literature review and geomorphic interpretation. Based on 
this information, as well as the decision tree presented in Fig. 6, the 
path materials were parameterized using the Voellmy rheology. For 
the EXP scenario, all cases were equally weighted except for those 
that transitioned into a debris flow/debris avalanche. These cases 
were assigned lower, non-zero weights, based on the considerations 
of the path material detailed above. The resulting posterior PDF is 
shown in Fig. 13.

The resulting runout exceedance probabilities are shown in 
Figs. 14 and 15. Similar to the Frank Slide case, the POS simula-
tions result in the most accurate and precise predictions, fol-
lowed by the EXP, EQL, and UNI. The Fig. 15 inset shows that the 
PRE-RA results are less precise than the Dan3D-Flex results, but 
do assign a significant exceedance probability to the observed 
runout. Additionally, the PRE-RA predictions that include lateral 
confinement are much more conservative than all other fore-
casts. Prior to this case occurring, assessment of whether this 
case would have frontal or lateral confinement would likely be 
highly uncertain, so these predictions would have been difficult 
to definitively rule out.

Discussion

The analysis framework presented here provides a method to 
make probabilistic forecasts of rock avalanche motion that fits 
naturally into the landslide risk analysis framework (e.g., Hungr 
2016). This method accounts for both calibration and mecha-
nistic uncertainty, which were quantified based on a database 
of 31 case histories. Calibration uncertainty was assessed by 
applying a probabilistic calibration methodology to each case 
in the database, and the results show that significant calibration 
uncertainty is only present when the path material is sediment. 
Additionally, minimal mechanistic uncertainty was found to be 
associated with the source zone basal resistance parameters, 
as they are well explained by volume. In contrast, significant 
mechanistic uncertainty exists when the path material is sedi-
ment. We thus propose a method, based on expert judgement, to 
account for calibration and mechanistic uncertainty in the path 
material parameters. We then investigated the accuracy, preci-
sion, and relative contributions of these two types of uncer-
tainty by making pseudo-forecasts of two case histories that 
have already occurred.

Overall, we found that mechanistic uncertainty is greater than cali-
bration uncertainty when predicting rock avalanche motion. For the 
two cases presented here, the range of potential runout was increased 4 
to 5 times when mechanistic uncertainty is accounted for when making 
predictions (this can be seen by comparing the POS to EXP cases in 
Figs. 11 and 15). This highlights the need for further research into the 

Fig. 8   Overview of the Frank 
slide, showing the source zone, 
deposit, and material boundary 
used for the pseudo-forecast. 
Figure is modified after Aaron 
et al. (2019)

Fig. 9   Posterior probability density function for the path material, 
used for the Frank Slide EXP scenario. The contour interval is 0.001
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mechanisms that control rock avalanche movement along the path. 
This would better constrain the similarity of future cases to those pre-
sent in the database, reducing mechanistic uncertainty and resulting in 

more precise predictions. Additionally, while the cases in our database 
appear to be somewhat biased towards high mobility (Fig. 2), a future 
event may be more mobile than all of the cases in the database.

Fig. 10   Probabilistic analysis 
of impact area for the Frank 
Slide using four different 
posterior probability distribu-
tions for the path material. 
POS) posterior distribution, 
EXP) expert judgment, EQL) 
equal weighting, UNI) uniform 
distribution. Refer to Table 2 
for more detailed descriptions 
of the four scenarios

Fig. 11   Comparison of numerical and empirical predictions for the 
Frank Slide. The section line used is labelled a-a’ in Fig. 10. Refer to 
Table 2 for descriptions of the four Dan3D-Flex numerical scenarios 
and two PRE-RA empirical scenarios. Further details on PRE-RA can 
be found in Mitchell et  al. (2020b). The inset shows the probability 

density for predicted distance minus observed runout distance for 
the six methods, with zero representing a prediction that matches 
the observed runout distance, positive numbers an overprediction, 
and negative numbers an underprediction
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A key aspect of the proposed methodology is the use of expert 
judgement to assess how similar cases in the database are to a 
future case of interest. In practice, this will be difficult to do, espe-
cially when making a decision to exclude the more mobile cases in 
the database (due to the fact that the resulting predictions will be 
less conservative than if these cases are included). Figures 10 and 
12 show that the results are relatively insensitive to this choice of 
weighting, so long as the uniform weighting is not used (which 
results in the most conservative predictions). Reasonably conserva-
tive forecasts can be made by equally weighting all case histories. 
These forecasts could then be refined by adding in the subjec-
tive weights, at the expense of some transparency in the forecast 
procedure.

Some guidance regarding the subjective weighting terms can 
be taken from the database of calibrated case histories. The cases 
with the lowest best-fit friction coefficients for the path material are 
Mt. Meager, Nomash River and Huascaran (Plafker and Ericksen 

1978; McDougall and Hungr 2005; Guthrie et al. 2012). The debris 
involved in the Mt. Meager and Nomash River cases became chan-
nelized, and in both cases, the moving mass entrained significant 
quantities of surface water and loose saturated sediments and 
transformed into debris avalanches (McDougall and Hungr 2005; 
Guthrie et al. 2012). For forward analysis where the rock avalanche 
will not become channelized, these case histories can be assigned 
a low weight when deriving a posterior density function for the 
path material parameters. Systematic mobility enhancement due 
to channelization was also noted by Mitchell et al. (2020b). Simi-
larly, the Huascaran rock avalanche became channelized, but also 
had its mobility enhanced by glacial ice in the source zone (Plafker 
and Ericksen 1978; Evans et al. 2009). It can therefore be assigned 
a low weight for forward analyses of cases that do not have these 
characteristics. Additionally, modern machine learning algorithms, 
which have been successfully applied to fields such as landslide 

Fig. 12   Overview of Turnoff Creek. Image: Google Earth, Digital 
Globe

Fig. 13   Posterior probability distribution for the Turnoff Creek 
rock avalanche path material parameters derived based on expert 
weighting of the cases in the database. The contour interval used is 
0.001

Fig. 14   Probabilistic analysis of impact area for the Turnoff Creek 
rock avalanche using four different posterior probability distribu-
tions for the path material. POS) posterior distribution, EXP) expert 
judgment, EQL) equal weighting, UNI) uniform distribution. Refer to 
Table 2 for more detailed descriptions of the four scenarios
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susceptibility mapping (e.g., Zhang et al. 2019; Abbaszadeh Shahri 
and Maghsoudi Moud 2021; Zhou et al. 2021), could also be applied 
to assist with the selection of similarity parameters (Vasu et al. 
2018). However, the paucity of available 3D input data in our current 
database limits the amount of data available to train these models. 
As the database grows, these methods may become more applicable 
in the future.

The two example pseudo-predictions were compared to those 
made using PRE-RA, an empirical-statistical tool. As shown in 
Figs.  11 and 15, PRE-RA and Dan3D-Flex provide complemen-
tary analyses of potential runout distance. Compared to PRE-RA, 
Dan3D-Flex tends to predict higher exceedance probabilities in the 
proximal path, which could potentially lead to extending of hazard 
zones associated with low return periods if a screening level analy-
sis is further refined through numerical modelling. This difference 
is primarily caused by the use of a single friction angle in the source 
zone, selected based in Fig. 4, which governs the minimum runout 
distance predicted by the numerical model. As can be seen in Fig. 4, 
this parameter appears to be well correlated with volume and is 
thus not subject to significant mechanistic uncertainty.

Further differences between PRE-RA and the Dan3D-Flex 
results were noted for the Turnoff Creek case history. Figure 15 
shows that assumptions made for confinement, which can be dif-
ficult to predict before an event, can have a strong influence on 
the runout lengths predicted by PRE-RA. The use of Dan3D-Flex, 
which explicitly considers path topography, can help to address 
this source of uncertainty (Fig. 15).

We did not explicitly consider uncertainty in the representa-
tion of topography (Mergili et al. 2018a; Zhao and Kowalski 2020), 
or uncertainties in model output (which could be introduced 
through the p(E|b) term in Eq. [3]. As can be seen in Figs. 10 and 
14, the modelled impact is underpredicted in some areas of the 

source zone and path. Practitioners applying this method for a 
risk assessment may choose to select a buffer zone around the 
model predictions based on professional judgement to mitigate 
this. Alternatively, a statistical distribution could be fitted to the 
distance between the observed deposit and the best-fit simu-
lated deposit to quantify the variation in the underpredictions. 
This would allow the calculation of a probabilistic buffer around 
the modelled deposit. This could be refined by considering sys-
tematic trends in areas that are underestimated if they can be 
defined.

This analysis has focused on the uncertainty in the rheologi-
cal parameters used in the model, which is consistent with the 
approach taken by other methods for forecasting flow-like land-
slide motion (Sun et al. 2020, 2021). However, there are some dif-
ferences between the presented method and other, recent methods. 
The first has to do with the selection of parameter combinations for 
probabilistic forward analysis. In the present work, parameters are 
selected at regular intervals, which requires the increment between 
parameter values to be small enough to adequately represent the 
input posterior parameter distribution. This could be a strong 
limitation if other sources of uncertainty are considered, such as 
multiple uncertain path materials, as computational complexity 
may become an issue. In this case, more efficient methods may be 
required to derive runout probabilities (Calvo and Savi 2009; Sun 
et al. 2020, 2021).

Another difference between our method and those previously 
presented is the procedure for specifying the probability distri-
butions of the input parameters. In the present work, we empiri-
cally derive the distribution based on a large database of calibrated 
case histories, using a method that accounts for parameter non-
uniqueness and correlations. Previous work has generally assumed 
a probability distribution (often a normal distribution) based on 
expert judgement and/or small amounts of available laboratory 
tests (Calvo and Savi 2009; Quan Luna 2012; Sun et al. 2020). The 
assumption of normally distributed input parameters can ignore 
the parameter correlations which are present on Fig. 5 and in the 
Supplementary Information.

A key advantage of the presented approach is that a practitioner 
must only define the model geometry, the spatial distributions 
of rheologies, and case history weights. All other steps are then 
automatically executed using Matlab scripts. Thus, there is mini-
mal additional work required by the user to apply our method, as 
compared to deterministic methods often used in practice today. It 
should be noted that this ease of use does not obviate the need for 
expert judgement when selecting case history weights, and inter-
preting the simulation results. The computation time of applying 
our method can be long (on the order of 10’s of hours); however, 
this may be reduced in the future through implementing the models 
on modern graphical processing units, and/or developing emula-
tion techniques (e.g., Zhao et al. 2020).

A limitation of the prediction framework proposed in this paper 
is that it does not provide guidance regarding the prediction of the 
extent of other hazards often associated with rock avalanches, such 
as rock avalanche-generated sediment mass flows and air blasts 
(e.g., Mitchell et al. 2020a; Penna et al. 2020). These associated haz-
ards represent an important component of the risk associated with 
rock avalanches. For example, at Goldau, a mud wave radiated out 
around the main deposit and triggered a tsunami in Lake Lauerz 

Fig. 15   Comparison of numerical and empirical predictions for the 
Turnoff Creek rock avalanche. The section line used is labelled b-b’ 
in Fig.  14. Refer to Table  2 for descriptions of the four Dan3D-Flex 
numerical scenarios and two PRE-RA empirical scenarios. The inset 
shows the probability density for predicted distance minus observed 
runout distance for the six methods, with zero representing a predic-
tion that matches the observed runout distance, positive numbers 
an overprediction, and negative numbers an underprediction
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(Bussmann and Anselmetti 2010). Future work should incorporate 
a method to predict the impact area of associated hazards into the 
present probabilistic forecasting framework.

Conclusions
A database of thirty-one rock avalanche case histories has been 
compiled, and a probabilistic rock avalanche runout methodology, 
which accounts for both calibration and mechanistic uncertain-
ties, has been developed based on calibration back-analyses of the 
cases using Dan3D or Dan3D-Flex. It was found that forecasts are 
governed by both calibration and mechanistic uncertainties asso-
ciated with the bulk basal resistance experienced by the rock ava-
lanche along the path. Thus, it is recommended that a parametric 
or Monte-Carlo analysis, based on a probability density function 
derived by combining the results of multiple back-analyses, be used 
to forecast runout. Results from two case histories used to test the 
proposed framework show that the numerical model predictions 
can be used to refine those made by empirical techniques, and 
that the inclusion of expert judgement can refine the predictions 
further.
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