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The role of discontinuities in the susceptibility, 
development, and runout of rock avalanches: 
a review

Abstract  Rock avalanche is one of the most spectacular and cata-
strophic type of natural hazard phenomena. Those events typically 
start with a giant rock block or multiple blocks becoming detached 
from the rock slope, progressively fragmenting and transforming 
into rapidly moving cohesionless rock debris. Discontinuities are 
widely distributed in rock masses. Although research on rock 
avalanche phenomena is extensive, the role of discontinuities in 
different phases of rock avalanches, including the susceptibility, 
development, and runout phases, has not been systematically and 
comprehensively addressed, which has aroused a long-standing 
controversial issue. In this paper, the effects of discontinuities on 
the three phases of rock avalanches are systematically reviewed and 
discussed. The preexisting discontinuities influence not only the 
detachment of rock masses in the failure process but also their dis-
integration and propagation during runout. As a precursory factor, 
discontinuities control the kinematic feasibility of rock slope failure 
and the rock mass strength and thus control the susceptibility of 
the rock slope to failure as well as the size and spatial distribution 
of potential rock slope failure areas. During the development phase, 
the existing discontinuities will propagate and coalesce, increasing 
the slope fragmentation and decreasing the resistance to failure, 
and the kinematics of detachment evolve. It is worth noting that the 
evolution and failure phase would not happen, or just in moments 
in an earthquake-triggered events(s) or similar events. During 
runout, the control of discontinuities on rock avalanches is primar-
ily reflected by shear and progressive fragmentation accompanied 
by heterogeneous distributions of stress and grain size, efficient 
energy transfer, and characteristic deposits. Nevertheless, dynamics 
of rock avalanches is complex, and controversial disputes remain; 
there is no straightforward conclusion. The inherent geology might 
play a dominant role in determining their strengthening or weaken-
ing effect in the various stages of rock avalanches. Several perspec-
tives on future research are discussed, and approaches for focusing 
on the challenging research required to better our understanding 
of the role of discontinuities are suggested.

Keywords  Discontinuity · Rock avalanche · Susceptibility · Failure 
development · Runout · Progressive fragmentation

Introduction
Rock avalanches (≥ 0.5 × 106 m3) are initiated by the breakage of a 
large rock block detached from a near-vertical cliff face, followed by 
disaggregation into smaller rock blocks during the initial sliding/
falling movement and further a transition into flow-like motion 
of fragmented rocks (Petley 2013; Strom 2021). Therefore, rock 

avalanches generally develop from block slides to granular flows 
(Strom 2021). They have been documented and investigated since 
the nineteenth century and appear to be ubiquitous in mountain-
ous regions (Petley 2013). Catastrophic examples include the Frank 
Slide (Cruden and Krahn 1973), the Hope Slide (Brideau et al. 2005), 
the Luanshibao rock avalanche (Wang et al. 2018), and the 24 June 
2017 event that completely destroyed Xinmo village in China (Fan 
et al. 2017) (Fig. 1). Although most have been reported as isolated 
events, strong earthquakes in mountainous areas (e.g., the 1964 
Alaska earthquake and the 2008 Wenchuan earthquake) can cause 
many large rock avalanches with severe consequences (Keefer 1984; 
Yin et al. 2009; Qi et al. 2011).

Rock avalanches are usually characterized by very high mobility 
and long runout potential. Their mobility is commonly quantified 
by the “apparent friction coefficient”, which is also called the “angle 
of reach” or “Fahrböschung”, as introduced by Heim (Corominas 
1996; Lucas et al. 2014). Nevertheless, a better characterization of 
mobility other than the angle of reach has also been proposed (e.g., 
Strom et al. 2019). The reasons for the high mobility of rock ava-
lanches, i.e., the apparent friction coefficients that are commonly 
lower than the friction coefficients of natural rock materials (Hsu 
1975; Hutter et al. 1995), are still controversial open questions. As a 
consequence, research on rock avalanche phenomena is extensive, 
including evaluations of the failure mechanism of large rock slopes 
(e.g., Benko and Stead 1998; Seijmonsbergen et al. 2005; Crosta 
et al. 2014; Fan et al. 2017), physical experimentation to investigate 
parameters and mechanisms involved in rock avalanches (e.g., 
Dubovskoi et al. 2008; Manzella and Labiouse 2009; Paguican et al. 
2014; Lin et al. 2020), and studies of the deposits to elucidate these 
phenomena (e.g., Crosta et al. 2006; Dunning 2006; Charrière et al. 
2016; Dufresne et al. 2016).

Rock avalanche deposits typically present features such as multi-
facies, inverse grading and retention of rock mass characteristics 
(Hewitt 1999; Dufresne et al. 2016; Strom and Abdrakhmatov 2018; 
Schilirò et al. 2019), which are all associated with discontinuities 
within rock slopes. One common phenomenon in rock avalanche 
deposits is that rock mass disintegrates into numerous blocks with 
different sizes and shapes during runout processes. The role of 
those blocks in landslide movement has been gradually recognized 
by many researchers (e.g., Cagnoli and Romano 2012; Dufresne and 
Dunning 2017; Wu and Lan 2019, 2020; Lin et al. 2020). Those blocks are 
produced during progressive fragmentation and are largely determined 
by discontinuities. There has been a long-standing controversial 
issue regarding how discontinuities will affect the dynamics of rock 
avalanches. Some studies have suggested that disintegration following 
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discontinuities will increase the mobility of rock avalanches (e.g., Pollet 
and Schneider 2004), while others have argued that the existence of 
discontinuities may reduce runout because energy consumption will 
increase with the emergence of new surfaces (e.g., Locat et al. 2006; 
Crosta et al. 2007). It should be mentioned that the higher mobility of 
rock avalanches in high-latitude and high-elevation regions might be 
due to substrates with ice and snow. In addition, the slope inclination 
below the rock wall is also a constraining factor for the runout distance 
(e.g., Zhao et al. 2017). Nevertheless, discontinuities will play a role in 
rock avalanches.

There are several review papers about rock avalanches, focus-
ing on, for example, basic characteristics and classification crite-
ria (e.g., Strom 2021), body-substrate interactions (e.g., Dufresne 
2014), and numerical simulations (Iverson and Ouyang 2015; 
McDougall 2017); however, none of them have specifically dis-
cussed discontinuities. Some papers have explictly or inexplictly 
suggested that discontinuities have effects on the runout of the 
center of the sliding mass (e.g., Lin et al. 2020); the final size, 
shape, and spatial distribution of large fragments (e.g., Zhao et al. 
2018); and the formation and development of hummocks (e.g., 
Shea and de Vries 2008) of rock avalanches. The authors, however, 
are not aware of a major paper that systematically and compre-
hensively discussed the role of discontinuities in rock avalanches.

This paper presents a systematic review on the role of discontinuities 
in the susceptibility, development and, particularly, the runout of rock 
avalanches. First, some background considerations are briefly presented 
to introduce the reader to the discontinuities present at different scales 
and the different phases of a rock avalanche. Then, this paper discusses 
the control that discontinuities have on the susceptibility of large rock 
slopes to failure and development during the initiation of slope collapse. 
This is followed by a description and discussion on the role of discon-
tinuities during the runout phase. Finally, we present our perspectives 
for future research.

Background information and initial considerations

Scale of discontinuities
Discontinuities within a rock slope can include faults, bedding 
planes, joints, and cleavage at the macroscale and microscale (Palm-
ström 2001; Bao et al. 2019, 2020) (Fig. 2). A size-based classification 
of discontinuities is presented in Fig. 3. Their characteristics can be 
altered by various processes, including changes in the stress regime 
(e.g., unloading in response to river or glacial erosion and load-
ing in response to earthquakes) and weathering (e.g., freeze–thaw 
cycling). Macroscale discontinuities can be observed unaided, but 
some discontinuities and defects (Fig. 2) in “intact” material can 
only be seen with the help of specialized apparatuses (e.g., electron 
microscopes) (Lan et al. 2019).

Phases of rock avalanches

In this paper, three different phases of rock avalanches are defined.

1.	 An initial phase, during which rock slopes undergo processes 
that lead to an increased susceptibility to failure and processes 
that weaken the slope materials (e.g., tectonic activity and 
weathering)

2.	 A failure development phase, during which joint and fracture 
networks develop more tensile cracks and the deformation 
accelerates, which leads to at least part of the rock slope mass 
moving along the basal failure plane

3.	 A rapid movement phase, during which intact blocks fragment 
into numerous blocks with different sizes and shapes

These three phases are summarized and presented by a sim-
ple sketch of the evolution of the famous Frank Slide in Alberta, 

Fig. 1   Views of the Frank 
Slide (a) (Google Earth image, 
31 December, 2012), Hope 
Slide (b) (Google Earth image, 
4 August 2004), Luanshibao 
rock avalanche (c) (photo from 
Hengxing Lan, 14 May 2020) 
and Xinmo landslide (d) (photo 
from Hengxing Lan, 5 Septem-
ber 2018)
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Canada (Fig. 4). In this sketch, changes in the lithology in the South 
Peak of Turtle Mountain are illustrated by changes in shading and 
correspond to those described by Cruden and Krahn (1973); major 
tectonic faults are identified with solid black lines; discontinuities 
originating from tectonic uplift and rock mass shearing are identi-
fied with dashed black lines; bedding and discontinuities associ-
ated with bedding are identified with solid and dashed gray lines, 
respectively; the main sliding plane is identified with the solid red 
line; and the failed mass is identified with dotted black lines (Fig. 4). 
Although the origin of the Frank Slide was possibly accompanied 
by anthropogenic factors, it still presents three phases that are 
applicable for illustrating general cases. Another reason for choos-
ing the Frank Slide for illustration is that it has been intensively 

and comprehensively investigated (e.g., Cruden and Krahn 1973; 
Pedrazzini et al. 2012; Charrière et al. 2016).

It must be mentioned that for rock avalanches triggered by 
earthquakes, the second phase will not happen, or strictly speak-
ing will occur in moments. Nevertheless, the definition of the three 
phases can involve both earthquake-triggered rock avalanches and 
cases that evolve to failure over time and therefore are necessary. 
Earthquake-triggered rock avalanches can be discussed in the con-
text of phases 1 and 3, ignoring phase 2.

During the initial phase, the rock mass and discontinuity char-
acteristics define the slope susceptibility to failure. Large slopes 
can develop various features, such as giant and cohesionless joints, 
intense fracturing, and slickensides. Most of these characteristics 
are inherited from tectonic deformations and sedimentation, and 
large-scale discontinuities might also be formed in rock slopes dur-
ing seismic activities. Further weathering and deformation can lead 
to an increased susceptibility to failure through the coalescence of 
discontinuities and cohesion loss within the rock mass (Lan et al. 
2003, 2004, 2010). This initial phase is commonly characterized 
by extremely slow deformation with poorly developed disconti-
nuities in the rock mass, and the trend of deformation velocity 
is illustrated in Phase 1 in Fig. 5. Figure 4a shows a simple sketch 
of the initial phase for the Frank Slide. The initial phase in Fig. 4a 
corresponds to the stage in which discontinuities slowly develop a 
basal sliding zone.

The development of a rock slope failure (second phase of con-
tinued activity leading to slope collapse) has been the subject of a 
considerable amount of research. Field studies, numerical analyses, 
and monitoring results have shown that this stage is characterized 
by one or a combination of substantial deformation, accelerating 
and decelerating periods, and rock mass dilation. In this phase, 
certain features, such as breakaway scarps and tensile cracks, which 
are commonly controlled by discontinuities, are observed (Fig. 4b). 
This phase can be reached after further weathering and disaggrega-
tion of the rock mass, typically through coalescence of discontinui-
ties and/or the formation of through-going shear zones. During this 
phase, discontinuity-bounded blocks with larger scales appear in 
the rock slope, and an increase in the deformation velocity is com-
monly observed (Fig. 5). In some cases, reactivation or long-term 
slow motion can still occur within the remaining intact rock mass 
behind (above) the detachment zone after failure.

Fig. 2   Discontinuities at different scales within a slope-forming 
rock mass. Fault dividing granite and slate in southeastern Tibetan 
Plateau, China (a); bedding, cross-bedding joints, fault, and accom-
panying folding within sedimentary formations in Nyingchi, China 
(b); bedding and foliation in a sample of metamorphism gneiss in 
Nyingchi, China (c); and microscale cracks in the Longmaxi Shale 
from Sichuan Province, China (d). Photos from Hengxing Lan

Fig. 3   Main types of discon-
tinuities and their average 
lengths (Palmström 2001)
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The third phase, exhibiting extremely rapid movement and 
accumulation, is the most destructive and catastrophic (Fig. 4c). 
Large rock masses detach from high elevations and rapidly travel 
a few kilometers toward valley floors in a matter of minutes, or 
in some cases across valleys to the opposite slope. Weak discon-
tinuities could cause stress and shear concentrations, forming 
numerous blocks with different sizes and shapes. Notably, the size 
and distribution of these blocks are not disorderly but regular 
(see “Observations from realistic field cases”). The velocity of the 
sliding mass is extremely fast (Fig. 5) and occurs as a coherent 
or at least partially coherent body due to the flow-like materials 
(numerous blocks).

The above description of the three phases of rock avalanches 
suggests that the role of discontinuities in rock avalanches is 
non-negligible.

Role of discontinuities in the susceptibility and development 
of rock slope failures

Discontinuities and the susceptibility of rock slopes to failure
The tectonic history of an area can provide the trigger for large 
earthquakes and landslides (Barth 2014). Seismic activity can 
cause entire rock slopes, especially those along active faults, 
to disaggregate into several giant cohesionless rock blocks. In 
addition, faulting and seismicity lead to strong loading and folding 
and cause the formation of structural planes with different scales 
in rock masses (Kim et al. 2004). Those areas might be prone 
to be source areas of rock avalanches. Macro-structural planes 
provide preliminary weaknesses that can become part of primary 
sliding planes (Weidinger et al. 1996; Schramm et al. 1998). Under 
these conditions, an initial large fissure on the slope produced by 
earthquake loading can lead to the occurrence of rock slope failure 
and subsequent rock avalanche (Strom 2006).

It has been widely recognized that the spatial distribution of 
rock avalanches triggered by large earthquakes is clustered along 
active faults (Strom and Korup 2006; Weidinger 2006). Faulting 
and seismicity leading to a region prone to large landslides can 
be observed in the Wenchuan earthquake (e.g., Yin et al. 2009; Dai 
et al. 2011; Qi et al. 2011); rock avalanches triggered by this event are 
found to cluster along the faults with an average distance of 2.5 km 

Fig. 4   A sketch of the initial (a), development (b), and movement 
(c) phases of a representative rock avalanche. The purple rectangle 
indicates one of the positions where “shear and fragmentation pro-
cesses” occur within the moving rock mass, which is described in 
more detail in Fig. 8. The blue rectangle indicates one of the positions 
where “simple shear processes” occur within the moving rock mass, 
which is described in more detail in Fig. 9. Not to scale. Figure modi-
fied after Cruden and Krahn (1973) and Charrière et al. (2016)

Fig. 5   Conceptualized deformation velocities for each of the phases 
of a rock avalanche in the context of landslide velocities. Figure mod-
ified after Leroueil (2001)
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away (Fig. 6). In addition, source areas and transition areas of rock 
avalanches are intersected by active faults in many case studies (e.g., 
Xu et al. 2012; Wang et al. 2018).

Large-scale discontinuities provide kinematic contexts, such 
as detachable and cohesionless rock blocks. Small-scale discon-
tinuities can affect the overall strength of rock mass. With time, 
increased damage to rock slopes due to internal and external fac-
tors (e.g., weathering, internal deformations, human activities, seis-
mic loading, and river undercutting) will increase their susceptibil-
ity to initial slope failure (Li et al. 2017; Donati et al. 2020).

Discontinuities and the development of rock slope failures

Continued slope deformation, leading to the coalescence of discon-
tinuities and weakening of the rock mass, increases the susceptibil-
ity of the rock slope to failure, resulting in the transition to a phase 
where deformation accelerates and failure develops (Lan et al. 2005, 
2010; Donati et al. 2020). Therefore, there are many weathered and/
or oxidized joint planes within the rock mass in the rock avalanche 
source area. The opening discontinuities allow for runoff water 
to infiltrate the rock mass and potentially trigger slope collapse 
(Catane et al. 2008; Xu et al. 2012). For example, it is found that 
the initiation zone of the 2000 Yigong landslide had five joint sets 
that, in combination with micro-crack propagation and pore water 

pressure changes in the rock mass under the effect of freeze–thaw 
cycling, led to slope collapse (Zhou et al. 2016).

During the deformation phase, the rock mass response was 
mainly controlled by faults and joint networks. Oppikofer et al. 
(2008) used sequential terrestrial laser scanning point clouds to 
quantify the deformation of a rock slope and found that pre-failure 
deformations were controlled by the various discontinuities pre-
sent in the slope. Severin et al. (2014) used ground-based radar and 
observed that the movement, block separation, and yielding of a 
rock mass in an open pit slope were defined by structures in the 
rock. In addition, tensile cracks and scarps can be clearly seen in 
field surveys or satellite imagery at the trailing edge. For instance, 
in 2017, a rock avalanche buried Xinmo village in Maoxian County, 
Sichuan Province, China; several clear head scarps were observed 
by optical satellite images collected during different phases of 
deformation (Fan et al. 2017). These scarps form along weak planes 
within the intact rock body. When tensile stresses are large enough, 
the weak plane detaches, becoming a daylighting discontinuity, and 
more movable large rock blocks detach from the intact source rock.

Before a large rock mass dynamically disintegrates, the failure 
process usually involves an initial unloading stage as rock falls or 
small rockslides or collapses (Crosta et al. 2007; Hungr et al. 2014). 
This trend has been witnessed for many non-seismic-induced rock 
avalanches (e.g., Crosta et al. 2007; Catane et al. 2008; Yin et al. 2011; 

Fig. 6   Locations of rock avalanches in the Wenchuan earthquake-
influenced area. The rock avalanche data are from Qi et al. (2011) and 
Xu et al. (2011). Rock avalanches with areas smaller than 100,000 m2 

are not shown. The shaded relief map was created from the Shut-
tle Radar Topography Mission digital elevation model (https://​earth​
explo​rer.​usgs.​gov/)
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Xu et al. 2012; Aaron and Hungr 2016). For instance, during field 
investigations performed a few days before the occurrence of the 
Jiweishan rockslide–rock avalanche, falls of thousands of cubic 
meters were generated (Yin et al. 2011). This phenomenon suggests 
that rock had detached and become unstable because of the coa-
lescence and formation of discontinuities.

The development of the base sliding surface and the bedding 
plane inclination are both crucial for triggering collapse and have 
a significant impact on the failure volume (Dai et al. 2011; Vick et al. 
2020a, b). The Xinmo village rock avalanche, which occurred in 
Mao County, Sichuan Province, China (24 June 2017), is a typical 
case of rock slope failure along dominant joints and bedding planes. 
It is clear that the rock mass slid along a bedding plane (attitude 
N80°W/SW ∠47°) (Fan et al. 2017; Fig. 7). Slickensides and bedding 
planes are commonly observed along the scarp and sliding planes 
after failure. Similar failure surfaces provided the conditions for 
the Frank Slide (e.g., Locat et al. 2003) and others (e.g., Aaron and 
Hungr 2016). Therefore, the coalescence of preexisting discontinui-
ties and accompanying discontinuity-bounded blocks can trigger 
the failure of the rock slope.

Role of discontinuities in the runout of rock avalanches

Mechanisms for discontinuities affecting runout
The high mobility of rock avalanches cannot be ascribed to simply 
the lower friction coefficient of the basal layer without considering 
the changes that occur inside the sliding mass as it flows (Abele 
1994; Campbell et al. 1995; Clavero et al. 2002; Strom 2015; Johnson 
et al. 2016; Zhang et al. 2016; Zhang and McSaveney 2017). Given 
the assumption that the sliding body is moving due to a lower fric-
tional resistance along the sliding surface, the entire sliding body 
should accelerate, which the rheological behavior changes observed 
in the field do not support (Strom 2015). Internal friction in the 
sliding mass should be considered to unravel the long runout of 
rock avalanches.

Physical experiments have revealed that the high shear rates of 
granular particles could reduce the internal friction (e.g., Bagnold 

1954), cause higher damage (Zhang and McSaveney 2017), and 
facilitate high mobility (Lin et al. 2020). Intensive shear and frag-
mentation processes are common in the movement phase of rock 
avalanches. Those processes could be described through a widely 
accepted simplified facies model (Fig. 8) (e.g., Pollet and Schneider 
2004; Crosta et al. 2007; Davies and McSaveney 2009; Dunning and 
Armitage 2011; Dufresne et al. 2016; Strom and Abdrakhmatov 2018; 
Wang et al. 2018) and appear along the preexisting discontinui-
ties or weaknesses in lithologic units (Pollet and Schneider 2004; 
Dunning 2006; Crosta et al. 2007; Pedrazzini et al. 2013; Weidinger 
et al. 2014). Shear zones (subparallel, subvertical or horizontal) are 
common both within the body and at the base of rock avalanche 
deposits (e.g., Schramm et al. 1998; Charrière et al. 2016; Dufresne 
et al. 2016; Wang et al. 2019). A lack of weak planes will limit the 
formation of shear zones in the moving body and at the base of 
the rock avalanche (Dufresne et al. 2016). In addition, slab-on-slab 
shearing and shear zones form, as illustrated in Fig. 9, according 
to numerous field surveys (e.g., Pollet and Schneider 2004; Strom 
2006; Charrière et al. 2016; Wang et al. 2019). Weak layers (slab-on-
slab) within the rock make laminar flow possible, and the deposits 
present pseudostratified bodies without any mixing (Strom 2015).

Therefore, shear and fragmentation processes dominated by dis-
continuities reduce the internal friction and further facilitate the 
long runout of the sliding mass. It has been suggested that joints 

Fig. 7   Bedding planes observed at the scarp and failure surface of 
the Xinmo village rock avalanche in 2017. Photo from Hengxing Lan, 
5 September 2018

Fig. 8   Fragmented rock in the facies model of rock avalanches. The 
red solid lines denote subparallel shear zones. The dashed lines 
denote other shear zones along weak layers formed by impact. The 
blue areas denote surviving shear zones. Not to scale. Figure modi-
fied after Weidinger et al. (2014) and Dufresne et al. (2016)

Landslides 19 & (2022)1396



can lead to a reduction in frictional resistance (Corominas 1996), 
a reduction in shear strength by approximately 30% (Zhang et al. 
2018b), or a very low residual strength (no cohesion with internal 
frictional angle ranging from 10° to 25°) along rupture surfaces 
(Wang et al. 2017), which can allow the moving rock mass to achieve 
longer runouts than expected.

In addition, the finest fraction of rock avalanche deposits can 
occupy over 90% of the fragment surface area, and the diameter 
of those materials is usually less than 1 μm (Davies et al. 2020). 
Therefore, the energy dissipation consumed in this part cannot 
be ignored during rock avalanche movement. According to the 
assumption of the Griffith theory of failure on the micron scale, 
in which most of the energy is utilized in creating a new rock sur-
face, not enough energy is dissipated by fracture formation and 
frictional resistance during the rock avalanche movement phase 
(Davies et al. 2020). Therefore, Davies et al. (2020) showed that most 
of the energy is not consumed during microscopic brittle failure 
by enlarging suitably oriented defects but is consumed by efficient 
energy dissipation in the form of elastic body-wave energy disag-
gregating materials formed during shearing and fragmentation, 
and previously cracked grains on the microscopic scale play a key 
role in efficient energy dissipation. On the macroscopic scale, het-
erogeneous blocks and pressure distributions lead to larger defor-
mations than those due to homogeneous blocks and pressure distri-
butions (Lan et al. 2010). Therefore, microscopic and macroscopic 
discontinuities both contribute to increasing the runout width and 
length of rock avalanches.

Observations from realistic field cases

Observations from realistic field cases have also explicitly or inex-
plicitly suggested that discontinuities have effects on the runout of 
the sliding mass. In the long-runout Luanshibao rock avalanche, 
discontinuities are widely found in the scarp and deposit carapace 
(Fig. 10), suggesting that discontinuities may play a non-negligible 
role in both the failure and movement phases. Surveys of field cases 
were performed either in detail on individual cases or in a statisti-
cal manner based on many cases.

Detailed surveys of individual field cases commonly attempt to 
relate the characteristics of blocks in deposits to discontinuities in the 
source area. Numerous heterogeneous blocks will be produced during 
the movement phase of rock avalanches. Charrière et al. (2016) per-
formed a quantitative analysis of the block volumes in the deposit cara-
pace of the Frank Slide and found that the discontinuities in the source 
area controlled the block size distribution in the deposit carapace, and 
the block volumes in both areas could be described by a lognormal 
distribution. The discontinuities in the source area of the Frank Slide 
were also very well developed according to previous research (Charrière 
et al. 2016). Therefore, the block size distribution of the carapace can 
partly reflect and represent the characteristics of discontinuities in the 
source area, which has also been recognized by other studies (Kent 1966; 
Weidinger et al. 2014; Charrière et al. 2016; Wang et al. 2019).

Interesting patterns of the heterogeneous distribution of 
deposit block size have been revealed by quantitative statistics 
(Fig. 11) (e.g., Zhang et al. 2016; Wang et al. 2020). The block size 
is more heterogeneous in the initial part of the deposition area, 
and it gets smaller and becomes more homogeneous toward the 
distal part (Fig. 11), which has also been recognized by other 
studies (Charrière et al. 2016). The Frank Slide, which has a het-
erogeneous block size distribution across the deposition area 
(Charrière et al. (2016), propagated far away from the source. 
Lan et al. (2010) studied the micromechanical extensile behav-
ior of rock and revealed that micro-tensile cracks produced by 
grain-scale heterogeneous block size distribution can accumulate 
and develop into mesoscopic tensile cracks and macro-fractures, 
facilitating the development and propagation of macro-cracks. 
Compared with homogeneous materials, heterogeneous blocks 
can induce larger deformations and transfer kinematic energy 
more efficiently (Lan et al. 2010). Discontinuities in the source 
area affect the block size distribution (Dunning 2006; Dunning 
and Armitage 2011), stress distribution (Aaron and Hungr 2016; 
Dufresne et al. 2016), and runout distance (Sun et al. 2021).

Implications of numerical and physical experiments

Multiple studies have been dedicated to simulating and calibrat-
ing the long runout lengths of rock avalanches that have occurred. 

Fig. 9   Sketches showing rock 
mass movement affected by 
preexisting weak layers and 
discontinuities. The dashed 
lines denote the weak planes. 
The gray blocks denote 
fragmented hard rock, and the 
white blocks denote harder 
rock. Movements parallel to 
weak layers are shown in both 
a and b. Not to scale. Figure  
modified from Pollet and 
Schneider (2004)
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Numerical models are extensive, but there are no universal consti-
tutive laws that can be adopted (Pastor and Crosta 2012). To date, 
various numerical models have been developed and applied to sim-
ulate many rock avalanches and can be generally grouped into two 
categories: continuum models and discontinuum models (Table 1).

Continuum models usually use depth-averaged shallow flow 
equations (McDougall 2017). The movement of blocks in the slid-
ing body is ignored when adopting depth-averaged shallow flow 
equations, and most are used to predict travel distance, deposit 
depth, and runout time (Wu and Lan 2019). Although a consider-
able amount of information is gained through the above approach, 
a next step to achieve more comprehensive predictions requires 
considering other features of the deposits (Thompson et al. 2010; 
Dunning and Armitage 2011; Strom 2015; Dufresne et al. 2016). In 
addition, solving for large deformations remains a challenge in 
continuum modeling. The disaggregation stage implies brittle 
behavior of the initially intact rock mass, leading to fragmenta-
tion. To solve for the rock characteristics that would arise from 
behavior, discontinuity development would need to be considered 
in the simulated model. Modeling large block surfacing and move-
ment in marginal areas of the deposit during runout (Sosio et al. 

2008; Aaron and Hungr 2016) are also challenging for continuum 
approaches. Another disadvantage of continuum approaches is 
associated with the assumption that a mass flow is a homogenous 
material, even when different lithologies are involved (Margielewski 
2006; Crosta et al. 2007).

Discontinuum models have the advantage of integrating 
complex features. For example, different lithologies of the rock 
mass can be represented in discontinuum models, and propagation 
of discontinuity and brittle behavior can be modeled (Thompson 
et al. 2010; Lan et al. 2019). The distinct element method (DEM) 
(Cundall and Strack 1979) has been widely used to reproduce 
long-runout rock avalanches (Taboada and Estrada 2009; Boon 
et al. 2015; Zhao et al. 2016, 2017; Wang et al. 2017). The DEM can 
reproduce more details of certain phenomena, such as reverse 
grading, the decrease in block size with increasing travel distance, 
and the retention of the characteristics of the source area. In 
particle flow code (PFC) modeling of the Jiweishan rock avalanche, 
shear-induced fragmentation and characteristics of deposits 
were reproduced by considering bedding planes and joints in the 
source area rock mass (Zhang et al. 2019). Using discontinuous 
deformation analysis (DDA) modeling, Wang et al. (2021) found 

Fig. 10   Widely distributed 
discontinuity sets in the rock 
mass of the scarp and large 
blocks (only some are shown 
in the figure) in the deposit 
carapace of the Luanshibao 
rock avalanche. Photos from 
Hengxing Lan, 14 July 2020

Fig. 11   Block size distributions 
at different locations in the 
deposition area along the cen-
tral axis of the rock avalanche. 
Each column in the bar graph 
indicates a location where 
block size data are collected. 
Distance is measured from the 
headscarp of landslide. Data in 
a and b are from Zhang et al. 
(2016) and Wang et al. (2020), 
respectively
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that the degradation in the shear strength of rock masses controlled 
by joints significantly contributed to the long runout distance and 
high velocity of the Donghekou rock avalanche. In addition, by 
considering the block size distribution determined by the source 
area structures, the velocity of the sliding mass and the deposit 
morphology were reasonably reproduced for the Xinmo landslide 
(Wu and Lan 2019). These studies provide promising results and 
inexplicitly indicate the importance of discontinuities for shear 
fragmentation, block size distribution, and runout; however, more 
reliable predictions of runout still require additional efforts, e.g., 
more precise representations of the characteristics of source area 
discontinuities.

Physical experiments play a significant role in gaining a better 
understanding of the propagation mechanisms and factors 
influencing the velocity and deposit characteristics of rock 
avalanches (Manzella and Labiouse 2009). Due to the volume effect 
of rock avalanches or the difficulty in matching the scaling laws, 
many physical experiments have focused on a few limited factors 
(e.g., fragmentation, basal substrate, and topography). The results 
of some physical experiments have revealed the discontinuity 
effect on rock avalanches. Manzella and Labiouse (2009) showed 
experimental evidence that the sliding mass will travel longer by 
involving modeled discontinuity sets. Lin et al. (2020) performed 
groups of experiments with different configurations of analog blocks 
and suggested that shearing concentration or the slab-on-slab form 
of motion inside the sliding mass may facilitate the high mobility 
of rockslides and rock avalanches. Paguican et al. (2014) simulated 
the formation of hummocks using different material layers based 
on scaled analog models and found that preexisting discontinuities 
affect the kinematics and dynamics of hummocks through shear 
processes. Similar other scaled analog experiments on the formation 
and evolution of hummocks have also been performed (e.g., Shea and 
de Vries 2008). Those analog models show that different lithologies 
are key in the formation of hummocky topography in rock avalanche 
deposits and create conditions for shear and fragmentation processes. 
The constraints of discontinuities on shear fragmentation and block 
size have also been recognized by many other physical experiments 
considering the rock mass structure (e.g., Bowman et al. 2012; Haug 
et al. 2021; Lin et al. 2021).

Perspectives on further research
A considerable amount of research has been completed to under-
stand the role of discontinuities at the macroscale and microscale 
in the susceptibility of large rock slopes to failure, slope failure 
mechanisms, and progressive slope fragmentation. Field observa-
tions, physical simulations, and recent numerical models suggest 
that the role of structure is also important during the runout of 
large rock avalanches; however, this has not been researched in 
depth. The aim of this section is to provide some perspectives on 
the future fieldwork, numerical modeling, and physical experiments 
required to gain a better understanding of the role of discontinui-
ties in the runout of large rock avalanches.

Complementing evidence from field cases

The characteristics of field rock avalanche cases are commonly 
described qualitatively or semi-quantitatively, accompanied by 
few quantitative measurements (e.g., Legros 2002; Guo et al. 2014; 
Li et al. 2014, 2016; Lucas et al. 2014; Zhan et al. 2017; Mitchell et al. 
2020; Strom et al. 2019). Statistical analysis based on many field 
cases commonly focuses on the constraints of volume and topog-
raphy on the runout (e.g., Zhan et al. 2017; Strom et al. 2019) and 
seldom considers discontinuities. With the help of remote sensing 
technology (e.g., terrestrial laser scanning and unmanned aerial 
vehicle survey), some researchers have studied the relationship 
between the structural plane of the source area and the deposit 
carapace block (e.g., Charrière et al. 2016) and found that the source 
area’s fracturing exhibits a primary control on the block size dis-
tribution of the surficial deposits based on statistical analysis. It 
is recommended, based on more field cases and sample locations, 
to perform statistical analysis to reveal the relationship between 
the characteristics of discontinuities in the source area (e.g., den-
sity, length, aperture, and dip angle) and the runout of rock ava-
lanches. It is also suggested to focus on typical unconfined cases, 
such as the Frank Slide (Charrière et al. 2016), Luanshibao rock 
avalanche (Wang et al. 2018), and Tagarma rock avalanche (Wang 
et al. 2020), for which more ideal exposure conditions in the source 
areas and deposits are expected. In addition, a comparison between 
the runout of rock avalanches and the characteristics of rock 

Table 1   Major numerical 
landslide runout models

a Y: some properties of discontinuities can be considered in numerical modeling

Model Type Y/Na Reference

DAN3D Continuum N Aaron and Hungr (2016)

PFC Discontinuum Y Thompson et al. (2010); Zhang et al. (2019)

MassFlow Continuum N Ouyang et al. (2017)

MatDEM Discontinuum Y Scaringi et al. (2018)

MassMov2D Continuum N Beguería et al. (2009)

LS-RAPID Continuum N Sassa et al. (2010)

r.avaflow Continuum N Mergili et al. (2012, 2017)

LA Hybrid Y Wu and Lan (2019)

DDA Discontinuum Y Zhang et al. (2018a); Do and Wu (2020)
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discontinuities should be performed when the other factors are 
similar. Therefore, a more detailed categorization of datasets based 
on influencing factors will reduce the scattering in observations, 
making the resulting correlations between rock mass properties 
and avalanche characteristics more revelatory (e.g., Nicoletti and 
Sorriso-Valvo 1991; Corominas 1996; Guo et al. 2014; Mitchell et al. 
2020; Strom et al. 2019).

Advancing numerical and physical experiments

The critical role of pre-failure structures in the shear and frag-
mentation processes of rock avalanches has been demonstrated by 
various numerical (discontinuum) and physical simulations (e.g., 
Zhao et al. 2018; Lin et al. 2020; Wang et al. 2021). However, some 
simulations, such as DEC and DDA (see Table 1), do not consider 
the emergence and evolution of new discontinuities during frag-
mentation, especially those formed due to coalescence of smaller 
joints and breakage along weak planes, leading to real fragmenta-
tion processes that cannot be simulated. Some simulations, such as 
PFC and MatDEM (see Table 1), can consider complex fragmenta-
tion processes but are limited by the number of particles. Increas-
ing the ability of the DEM to simulate a large number of particles 
and represent realistic discontinuities in the failure mass is still a 
major challenge. Wang et al. (2021) found that different discontinui-
ties yield almost identical runout distances, but the same material 
and simple configurations of discontinuities were used in differ-
ent simulations, and realistic discontinuities, including different 
weak layers, were not considered. In addition, it is also significant to 
quantitatively characterize the complex discontinuities in the fail-
ure and sliding rock mass using various parameters, such as num-
ber, length, space, and dip, which could be obtained based on geo-
graphic information science technology. The relationship between 
those parameters describing discontinuities and the runout of 
rock avalanches will be indicative. In numerical simulations, the 
evolution of those parameters during the sliding processes could 
be revealed. However, there are only a few studies that have inves-
tigated the quantitative relationship between discontinuities and 
runout. For example, the correlation between the dominant joint 
dip angle and the landslide mobility index (H/L) has been studied 
by numerical simulations (Sun et al. 2021); however, only the control 
of joint dip on the failure process of landslides has been considered.

In addition, simulations of the shear and fragmentation pro-
cesses and the accompanying development of new discontinuities 
are still challenging because of the difficulties in obtaining and 
representing the information of complex discontinuities. Difficul-
ties in obtaining pre-failure discontinuity information in the source 
area can be overcome through novel techniques, such as laser scan-
ning (Jaboyedoff et al. 2007) or photogrammetry at the back scarp 
of the rock slope. Macciotta and Derek (2015) found a direct way 
to use the block size distribution at the source of a rock fall calcu-
lated through photogrammetric techniques to develop a discrete 
fracture network with the surveyed rock block sizes. Mapped dis-
continuities can be used to calculate block sizes in the rock mass at 
the source of rock avalanches through several methods (Cai et al. 
2004; Palmstrom 2005; Kim et al. 2007; Macciotta and Derek 2015). 
Potential failure volumes can also be estimated for simulation pur-
poses through analysis of the geometry of major discontinuities, 
as has been shown by many researchers. This work highlights the 

importance of detailed and comprehensive structural and litho-
logical models. Additionally, enhanced field data acquisition and 
modeling will require bridging our understanding of the multiple 
factors affecting rock avalanche runout through parametric physi-
cal models and thus should pay considerable attention to the role 
of discontinuities.

Furthermore, difficulties in representing discontinuity charac-
teristics in laboratory experiments can be overcome by applying 
novel techniques, such as jointed analog blocks (Lin et al. 2020) 
or arrangement of bricks (Manzella and Labiouse 2009). In addi-
tion, physical experiments in laboratory or field environments are 
still insufficient to reveal the effects of discontinuities on rock ava-
lanches. Although some physical experiments have studied the frag-
mentation of blocks with distinct discontinuities (Bowman et al. 
2012; Lin et al. 2020), statistical information on the discontinuity of 
the failure mass is still absent. As mentioned above, characterizing 
complex discontinuities in the failure and sliding rock mass using 
quantitative parameters is also necessary for physical experiments. 
Moreover, comparison studies between small-scale physical experi-
ments and realistic field cases of rock avalanches are recommended.

Concluding remarks
This paper presents a systematic and comprehensive review of the 
state of understanding of the role of discontinuities in the suscep-
tibility of a rock slope to failure during the development of failure 
and the runout of rock avalanches.

As a precursory factor, discontinuities control the kinematical 
feasibility of rock slope failure and the rock mass strength. This, 
together with the local topography, defines the susceptibility of 
the rock slope to failure. In such a way, discontinuities define the 
spatial distribution of rock slope failures. During the development 
of failure, existing discontinuities will propagate and coalesce to 
increase the slope deformation, therefore decreasing the resistance 
against failure, and the kinematics of detachment evolve. During 
runout, the control of discontinuities on rock avalanches is pri-
marily reflected by the propagation processes and the morphology 
characteristics of the deposits. Effective shear and fragmentation 
accompanied by heterogeneous stress and block distributions, 
which will make the propagation longer, are significantly controlled 
by preexisting discontinuities or weak lithological units and in turn 
define the mobility and characteristics of avalanche deposits. Effi-
cient energy transfer in the finest fraction leads to longer runout 
and is also affected by microscopic discontinuities.

This paper further proposes some perspectives on further 
research. It is suggested to directly compare the characteristics of 
discontinuities in the source area and the runout of rock avalanches 
based on data collected from realistic field cases, and this com-
parison should be done when the other factors are similar. It is also 
suggested to explicitly and precisely represent discontinuities in 
back analyses and numerical and physical simulations, which will 
promote the understanding of the mechanism behind the role of 
discontinuities in the runout of rock avalanches, and novel tech-
niques, such as laser scanning and photogrammetry, should be 
applied first to acquire precise discontinuity data.

It should be noted that the dynamics of rock avalanches are 
highly complex. A long-standing controversial issue will still remain 
with regard to how discontinuities control or affect the dynam-
ics of rock avanches. There will likely not be a straightforward 

Landslides 19 & (2022)1400



conclusion. The inherent geology might play a dominant role in 
determining their enhancing or weakening effect in the various 
stages of rock avalanches.
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