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Combining spatial modelling and regionalization 
of rainfall thresholds for debris flows hazard map‑
ping in the Emilia‑Romagna Apennines (Italy)

Abstract  Landslides hazard assessment requires the combination 
of spatial and temporal probabilities. In this work, we combine spa-
tial modelling and regionalization of debris rainfall thresholds for 
assessing both these probabilities and map debris flows initiation 
hazard over 15 × 103 km2 of the Emilia-Romagna Apennines (Italy). 
In this area, debris flows are spatially and temporally less frequent 
than earth slides and earth flows. However, more than a hundred 
debris flows occurred in October 2014 and September 2015 during 
two large rainstorms clusters in Parma in Piacenza provinces; some 
tens of debris flows are reported to have occurred in the past and few 
others have occurred recently. Since landslides inventory maps used 
for land use planning only consider some large debris flows accumu-
lation fans, and substantially no information is given on the slopes 
along which these phenomena might occur, this study aims to fill this 
gap by creating a hazard map using the evidences collected after the 
recent abovementioned multi-occurrence events. Different spatial 
statistical models (Frequency Ratio [FR], Weight of Evidence [WOE] 
and Logistic Regression [LR]), set up with various combinations of 
geo-environmental causal factors, have been trained using 60% of 
debris flow initiation points mapped after the 2014 and 2015 events. 
The predictive performances of the models have been compared by 
success rate curves using the remaining 40% of initiation points of 
the 2014 and 2015 events. The model with the best predictive capa-
bility (area under the curve > 0.96) has been further validated using 
the spatial distribution of other debris flows occurred in the period 
1972–2016, and its outputs have been classified into spatial probability 
classes. Furthermore, the annual exceedance probability of recently 
published debris flows 3 h cumulated rainfall triggering thresholds 
has been calculated for in 185 rain gauges and regionalized by spatial 
interpolation. Finally, spatial and temporal probability maps ranked in 
a 0–1 range have been combined into a regional debris flows initiation 
hazard map that, on the basis of the return periods, is associated to 
different yearly probability values. The resulting hazard map classi-
fies 0.87% of the area as high hazard, 2.83% as medium hazard, 0.5% 
as low hazard and the remaining 95.81% as null hazard. The spatial 
distribution of hazardous zones is quantitatively and qualitatively 
consistent with the spatial distribution of past debris flows. Further-
more, it is coherent with geomorphological common sense and it has 
proven sufficiently accurate in discriminating as hazardous the debris 
flows initiation zones of phenomena occurred after it was produced. 
On such a basis, despite its limitations, we consider the debris flows 
hazard map produced sufficiently reliable to integrate existing inven-
tory maps in land-use regulation and emergency planning.

Keywords  Debris flows · Spatial models · Rainfall thresholds · 
Hazard mapping · Apennines · Italy

Introduction
Landslides hazard mapping at regional scale requires the combi-
nation of spatial and temporal probabilities (Remondo et al. 2005; 
Guzzetti et al. 2006; Corominas et al. 2014; Thiebes et al. 2017). Spa-
tial probability is generally assessed using a variety of statistically 
based landslide susceptibility models that rely on the analysis of 
the relationships between the spatial distribution of past landslide 
events and a number of geo-environmental factors. These meth-
ods have been recently thoroughly reviewed by Reichenbach et al. 
(2018) who suggested to classify them into (i) classical statistics 
(e.g. logistic regression, discriminant analysis and linear regres-
sion), (ii) index-based (e.g. weight of evidence and heuristic analy-
sis), (iii) machine learning (e.g. fuzzy logic systems, support vector 
machines and forest trees), (iv) neural networks, (v) multi-criteria 
decision analysis and (vi) other statistics. While classical statistics 
and index-based methods have been widely used already since the 
1990s (Atkinson and Massari 1998; Carrara et al. 1999), more com-
puting demanding methods such as machine learning and neural 
networks have grown in usage in the last decade and are nowadays 
popular methods to implement spatial probability mapping (Catani 
et al. 2013; Conforti et al. 2014; Youssef et al. 2016; Kalantar et al. 
2017; Arabameri et al. 2021). Statistical methods have pros and cons 
that depend upon scales, datasets, methods and purposes (Fell et al. 
2008; Hearn and Hart 2019) and have also been quite widely used 
to map debris flows initiation as well as debris flows propagation 
susceptibility at regional scale (Mark and Ellen 1995; Delmonaco 
et al. 2003; Carrara et al. 2008; Chevalier et al. 2013; Heckmann et al. 
2014; Bertrand et al. 2013, 2017). On the other hand, the temporal 
probability of landslides and debris flows occurrence in a given 
area can be assessed either with probabilistic methods based on 
historical data (Coe et al. 2004), magnitude-frequency relation-
ships (Hungr et al. 2008) or, ultimately, with rainfall thresholds 
and their associated exceedance probability in a given period of 
time (Crosta 1998; Peruccacci et al. 2017). On this respect, it should 
be pinpointed that while the spatial distribution of (cumulated or 
averaged) rainfall is sometimes considered and analysed as another 
geo-environmental factor during landslide susceptibility assess-
ment (Youssef et al. 2016; Ali et al. 2021), the exceedance probability 
of rainfall thresholds in a given period of time is an independent 
temporal probability value that can be combined with spatial prob-
ability related to the susceptibility of the terrain in order to assess 
the hazard of an area in quantitative terms (Guzzetti et al. 2005; 
Corominas and Moya 2008; Jaiswal et al. 2010; Wu and Chen 2013; 
Thiebes et al. 2017).

In a similar manner, in this work, we aim to map debris flows 
initiation hazard zones over the Emilia-Romagna Apennines 
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(Italy), by combining regional scale susceptibility modelling (to 
assess spatial probability), with regionalization of the exceed-
ance probability of debris rainfall thresholds recently proposed 
by Ciccarese et  al. (2020) (to assess temporal probability). 
Despite the fact that debris flows accumulation fans account for 
only 0.2% of total landslides deposits area in Emilia-Romagna 
Apennines (Emilia-Romagna Region 2018a) and that known 
debris flows events are a few hundred out of more than 14 thou-
sand landslides records (Piacentini et al. 2018), making them 
significantly less frequent in space and time than other types 
of landslides such as earth slides and earth flows (Ronchetti 
et al. 2007; Bertolini et al. 2017; Mulas et al. 2018), debris flows 
are in any case to be considered a significant potential threat to 
human activities in this region, mostly because of their rapidity 
that can cause widespread damages and, eventually, casualties. 
This has been made evident by the multi-occurrences debris 
flows events occurred in October 2014 and in September 2015 
in the provinces of Parma and Piacenza respectively. Back then, 
large mesoscale convective system rainstorm clusters triggered 
altogether more than a hundred debris flows within the time 
span of few hours, causing severe damages to many roads, some 
houses and a remarkable geomorphological impact on slopes 
and streams (Corsini et al. 2015, 2017; Ciccarese et al. 2016, 2017; 
Scorpio et al. 2018). The relevance of debris flows in the Emilia-
Romagna Apennines can also be evidenced by considering the 
remarkable effects and damages reported by various authors 
caused by other tens of debris flows occurred in the past decades 
(Moratti and Pellegrini 1977; Papani and Sgavetti 1977; Rossetti 
and Tagliavini 1977; Tagliavini 1989; Pasquali 2003). Therefore, 
since the existing landslide deposits inventory map (Emilia-
Romagna 2018a) only outlines large debris flows accumulation 
fans and sporadic debris flows deposits along the slopes, and no 
indication is substantially given on the slopes along which these 
phenomena might more probably occur in the future, mapping 

debris flows initiation hazard zones by combining spatial and 
temporal probability, which is the aim of this research, can 
fill such information gap and, in perspective, can support the 
improvement of land use and emergency planning in the Emilia-
Romagna Apennines.

Methods

Study area and outline of work steps
The study area extends for approximately 15 × 103 km2 between 
43°44′23″N and 44°56′13″N and 9°11′59″E and 12°44′28″E (Fig. 1). It 
covers the Emilia-Romagna Apennines, i.e. the sector of the north-
ern Apennines located inside the administrative boundaries of 
the Emilia-Romagna Region (Italy). Elevation ranges from maxi-
mum 2165 m a.s.l. along the SE-NW mountain range watershed 
to less than 100 m a.s.l. at the Po plain margin. Rainfall averages 
approximately 1800 mm/year at the higher elevations (with sig-
nificant snow fall in winter) to only 800 mm/year at the transition 
to the Po plain. Large convective cells and systems develop in late 
summer and early autumn, especially in the most north-westerly 
portions of the study area, determining severe rainstorms events 
that can cause as much as one-fourth of yearly precipitation or 
so, to pour down within a few hours. The hydrographic network is 
dominated by SW-NE directed rivers, most of which are tributar-
ies of the Po river, flowing down the main structurally controlled 
valleys. Land cover is vastly dominated by forests and pastures, 
albeit a quite significant network of villages and roads is cover-
ing this mountain region. Geologically, the area is dominated by 
weak and highly fractured sedimentary rocks (Abbate et al. 1970; 
Bettelli and De Nardo 2001).

The outline of the main work steps is presented in Fig. 2. It 
should be noted, initially, that our analysis is limited to the suscep-
tibility to debris flow initiation and that, as such, it has been based 
on an inventory of initiation points. As Corominas et al. (2014) 

Fig. 1   Study area and spatial 
distribution of the debris flows 
initiation points used in this 
research
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correctly argued, different landslide types are controlled by differ-
ent combinations of environmental and triggering factors, and this 
should be reflected in the analysis of susceptibility. For this reason, 
they also suggest that a landslide inventory should be subdivided 
(when possible) into several subsets, each related to a particular 
failure mechanism and linked to a specific combination of causal 
factors. Consequently, in our case, it would have made no sense 
analysing at the same time the susceptibility to debris flows initia-
tion (that is basically related to the triggering of shallow slides) 
and that to flow propagation and accumulation, that are governed 
by different topographic, hydrographic and rheological factors 
that, moreover, are better accounted for in deterministic runout 
models rather than statistical susceptibility modelling. Therefore, 
a dataset of debris flow initiation points mapped after the 2014 and 
2015 events in Parma and Piacenza has been used to train different 
spatial statistical models (Frequency Ratio [FR], Weight of Evidence 
[WOE] and Logistic Regression [LR]), which were run with various 

combinations of geo-environmental causal factors. As specified in 
the next paragraphs, initiation points have been buffered by conver-
sion to 5 × 5 m grid cells, so that average values of topographic and 
of other causal factors around the points are considered. Another 
set of the initiation points of 2014 and 2015 events has been used 
as independent validation dataset 1 to compute success rate curves 
(SRC, Chung and Fabbri 2003) of all the spatial models. The model 
with the higher area under curve (AUC) has been further tested 
using a validation dataset 2 including debris flows initiation points 
from other areas of the Emilia-Romagna Apennines which have 
occurred in the period 1972 to 2016. On the basis of the SRC, the 
model outputs have been reclassified into spatial probability 
classes. Furthermore, the annual exceedance probability of debris 
flows triggering thresholds at 3 h cumulated rainfall recently pub-
lished by Ciccarese et al. (2020) has been calculated and regional-
ized by spatial interpolation. Finally, the multiplication of debris 
flows spatial and temporal probability maps returned the debris 

Fig. 2   Workflow adopted in this study for probabilistic debris flows initiation hazard mapping
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flows initiation hazard map that was classified on the basis of the 
return periods associated to different yearly probability values.

Spatial probability modelling

Spatial probability models have been trained and validated on the 
basis of a dataset of debris flows initiation points referring to the 
Parma 2014 and Piacenza 2015 events as well as to other debris flows 
events occurred elsewhere in the Emilia-Romagna Apennines in the 
period 1972–2016. The debris flows initiation points correspond to 
the centroid of small shallow translational failures at the head of 
slope incisions and creeks or along their side banks, from which the 
remobilized deposits were mixed with runoff water and evolved into 
‘debris flows’ and ‘debris floods’ (Hungr et al. 2001). Consequently, 
the spatial probability analysis considers the possible initiation of 
both these types of phenomena. Debris flows initiation points have 
been mapped on the basis of remote sensing and field surveys for 
the Parma 2014 and Piacenza 2015 events and on the basis of existing 
landslide’s occurrences databases (Piacentini et al. 2018), publications 
(Moratti and Pellegrini 1977; Papani and Sgavetti 1977; Rossetti and 
Tagliavini 1977; Tagliavini 1989; Pasquali 2003) and direct field sur-
veys, for other events in the 1972–2016 period. The extent of the shal-
low translational slope failures during the Parma 2014 and Piacenza 
2015 events ranged indicatively from 100 to 400 m2, and the involved 
material was coarse granular debris and blocks of sandstones and 
limestones derived by the weathering of heterogeneous weak rocks 
such as flysch and block-in-matrix clayey shales (Corsini et al. 2015, 
2017, 2019; Ciccarese et al. 2016). Specifically, the dataset includes 136 
debris flows initiation points referring to the Parma 2014 and Piacenza 
2015 events and 24 debris flows initiation points referring to debris 

flows phenomena occurred in the period 1972–2016 elsewhere in the 
Emilia-Romagna Apennines (Fig. 1 and Table 1).

A spatial training dataset has been generated by random selec-
tion of 60% of the Parma 2014 and Piacenza 2015 debris flows (i.e. 
82 points), while a validation dataset 1 has been created using the 
remaining 40% of points (i.e. 54 points), which has been used for 
assessing the predictive performances of spatial models inside the 
same areas the models have been trained. Although it is relatively 
more common to have a 70/30% partition between training and 
validation (see for instance Youssef et al. 2016; Kalantar et al. 2017; 
Arabameri et al. 2021), with some notable exceptions that use also a 
50/50% partition (Conforti et al. 2014), and aware that some studies 
have demonstrated that a changing partition can affect the outputs 
of the spatial models (Shirzadi et al. 2018), our choice of a 60/40% 
partition has been mostly driven by the need to train the model 
while guaranteeing also an adequate number of validation points in 
this relatively data-points scarce application. For this same reason, 
we have also created a validation dataset 2 that includes 100% of the 
debris flows initiation points in the 1972–2016 period (i.e. 24 points) 
located in other areas of the Emilia-Romagna Apennines, which has 
served the purpose of assessing the performance of the selected 
model outside the areas of training. Prior to spatial analysis with 
FR, WOE and LR, debris flows initiation points have been rasterized 
with 5 × 5 m grid cells, resulting in one single ‘representative’ grid 
cell for each debris flows initiation point.

The dataset of geo-environmental spatial causal factors includes 
slope angle, slope curvature, slope aspect, flow accumulation, dis-
tance to streams, land-cover and bedrock lithology (Fig. 3a–g). 
These parameters have been chosen as they are the most influen-
tial for the possible trigger of shallow translational slides that can 
evolve into debris flows. Slope angle is influential for any type of 

Table 1   Consistency of the debris flows initiation points datasets

Date Province (code) Location (valley or municipality) No. debris flows initiation points per 
dataset

Training Validat. 1 Validat. 2

13–14/09/2015 Piacenza (PC) Various loc. (Nure-Trebbia-Aveto valleys) 66 44

13/10/2014 Parma (PR) Various loc. (Parma-Baganza valleys) 16 10

5/11/2016 Parma (PR) Case Mazzette (Albareto) 2

25/10/2011 Modena (MO) Tagliole (Pievepelago) 1

8/11/2010 Bologna (BO) Chiapparotto (Camugnano) 1

24/12/2009 Modena (MO) La Merizzana (Pievepelago) 1

20/01/2009 Bologna (BO) Serraglio (Lama Mocogno—Barigazzo) 1

1/12/2008 Bologna (BO) Cà Gardella (Granaglione) 1

18/04/2005 Modena (MO) Santa Scolastica (Romanoro) 1

16/101980 Parma (PR) Rio d’Agna (Corniglio) 1

11/9/1972 Reggio E. (RE) Various loc. (Secchia valley) 14

19/09/1953 Piacenza (PC) Ottone (Ottone) 1

Total 82 54 24
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Fig. 3   Maps of the geo-environmental causal factors and 3 h rainfall thresholds for 185 rain gauges. For the explanation of land cover types 
and bedrock lithology codes please refer to Table 2
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landslide, as they are gravity-driven phenomena. Curvature allows 
to discriminate concave to convex morphological patterns. Aspect, 
generally a minor factor of influence, might eventually condition 
the antecedent soil moisture or the production of regolith and slope 
debris in variably exposed slopes. Flow accumulation reflects the 
possibility that underground flow parallel to slope might be a fac-
tor in triggering shallow slides, as it is considered such in some 
deterministic methods. The distance to stream can be positively 
correlated to slides that had actually the possibility to transition to 
debris flows as they occurred close to streams and, also, it indirectly 
considers the fact that discharge during rainstorm can be a factor 
of slope toe erosion that might favour shallow slides. Land cover is 
also another rather influential factor for many types of slope insta-
bilities, and especially for shallow slides tree roots or the absence 
of them might play a role. Bedrock lithology, in this case, has been 
considered as a proxy of the surface deposit texture (for which 
no map at regional scale is actually available across the Emilia-
Romagna Apennines) which is obviously related to the fact that 
the mobilized debris is coarse enough to originate to a debris flow.

All of the topographic-related variables have been derived 
by a Digital Elevation Model at 5 × 5 m grid cells of the Emilia-
Romagna Apennines. Slope angle has been classified into 6 classes, 
five in 10° ranges (in order to use a finer seeding in the most 
common slope values) and one class for all values higher than 50° 
(Table 2). Aspect has been classified into 9 classes that correspond 
to the conventional eight main cardinal directions plus flat. Slope 
curvature has been ranked in the 9 classes resulting from all the 
possible combinations of positive and negative planar and profile 
curvature values (a positive planar curvature indicates convexity 
in the across slope direction while a positive profile curvature 
indicates concavity along slope dip). Flow accumulation has been 
calculated in terms of contributing areas (after pre-processing the 
DEM with a fill function to eliminate morphological depressions 
and make the model hydrologically consistent) using a D8 flow 
algorithm. The subdivision into 7 classes has also taken into con-
sideration the relative number of initiation points in the classes. 
Distance to stream (i.e. the Euclidean distance) has been calcu-
lated by retrieving all streams network element using the stream 
definition function. Even in this case, the subdivision into 6 dis-
tance classes has taken into consideration the relative number of 
initiation points at various distances. Land cover has been derived 
from the 2018 edition dataset of the official land cover map of the 
region (Emilia-Romagna Region 2018b). This dataset represents 
Corine classes in the first 3 levels of detail and other additional 
classes at higher levels of detail. Altogether, 17 classes have been 
used: 1–12 derive from the 2nd level, 13–16 derive from the 4th level 
and class 17 from the 5th level of detail (Table 2). Bedrock lithology 
has been ranked into 10 classes by grouping on a lithological basis 
the formations of the geological map of Emilia-Romagna Region 
at 1:10,000 scale (Emilia-Romagna Region 2006). Classes corre-
spond to lithotypes ranging from massive rocks, to flysch (with 
different lithic to pelite ratios), marls, olistostrome shales and 
shales at variable consolidation and tectonic disturbance degree. 
Prior to spatial modelling, all the geo-environmental variables 
have been rasterized at 5 × 5 m grid cells.

A Pearson’s correlation coefficient matrix between pairs of the 
raster maps of selected geo-environmental variables is presented in 
Table 3. Results show a correlation coefficient lower than 0.3 in all 

pairs, with only an exception of 0.39 between slope and land cover. 
Values in these ranges are typically associated to a substantial lack 
of correlation or to a very low correlation level. Consequently, all 
of the geo-environmental variables have been considered suitable 
for spatial probability modelling and no further tests of multicol-
linearity have been carried out. Furthermore, it is also important 
to underline that in the areas used for training the spatial models 
(i.e. the portions of Parma and Piacenza provinces covered by the 
training dataset of initiation points), all of the classes of the geo-
environmental causal factors considered (including all of the litho-
logical classes) are represented, allowing for an extrapolation of the 
results of statistical analyses to the entire study area.

Spatial probability modelling has been carried out using FR, 
WOE and LR statistical methods. The FR method is a very simple 
bivariate method. In practice, the spatial frequency ratio of event 
occurrence (i.e. debris flows initiation) in a given class of causal 
factors is divided by the spatial frequency ratio of occurrence of 
that class of causal factor in the study area. A ratio higher than a 
unit indicates a probability higher than average, and vice versa. 
The overall ‘susceptibility’ score is obtained by pixel by pixel sum 
of FR values obtained for all the classes of causal factors occurring 
in that specific point in space. The WOE is a slightly more complex 
bivariate statistical method based on Bayes’ theorem (Lee 1989; 
Agterberg et al. 1993; Bonham-Carter 1994; Denison et al. 2002). It 
computes the prior (unconditional) and the posterior (conditional) 
probability of having an event (i.e. a debris flow initiation) for each 
class of the causal factors considered a positive and negative weight 
(W + and W −) is calculated and the sum of the two weights is the 
so-called contrast (C). A positive (or negative) contrast indicates 
a positive (or negative) statistical correlation between the class of 
the causal factor and the event. The overall ‘susceptibility’ score is 
obtained by a linear combination of C values. The LR is a multivari-
ate method (Cox 1958; Agterberg et al. 1993) based on maximum 
likelihood estimates obtained by transforming dependent vari-
ables into logit variable (i.e. natural log of the odds of the variable 
occurring or not). LR can be applied even if the variables show 
conditional dependence. It can be used on categorical or continu-
ous variables, even if they are not normally distributed (Hosmer 
et al. 2013). To compute the probability of occurrence of an event 
(i.e. debris flows initiation) in a given combination of classes of 
causal factors, an s-shaped curve is created by linear regression 
producing ‘y’ values between − ∞ and + ∞ and transforming it in a 
function of probability (p) between 0 (as ‘y’ approaches − ∞) and 
1 (as ‘y’ approaches + ∞). Finally, a Z-value is obtained by a linear 
combination of all the regression parameters (estimated through 
the maximum likelihood criterion) associated to each independ-
ent variable (i.e. class of causal factor) that expresses the relative 
contribution of the classes of causal factors to determine the event 
(a positive coefficient for a positive correlation and vice versa).

The WOE, LR and FR models have been run in parallel by using 
the training dataset of debris flows initiation points and by test-
ing various different combinations of spatial causal factors (see 
Table 4). The total number of combinations has been arbitrarily 
limited to the 13 potentially most significant ones, and each com-
bination includes from 3 to 6 causal factors maps. This resulted 
in a total of 39 predictive models that have been compared by 
SRC (Chung and Fabbri, 2003) obtained using validation dataset 
1. The model with the higher AUC has been further tested against 
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Table 2   Classes of the geo-environmental causal factors considered in the spatial analysis, relative frequency and WOE contrast

Factor Code Class No. debris flows 
initiation points

Relative frequency (%) Contrast

Slope Angle (°) 1 0–10 8 9.8  −1.3221

2 10–20 18 22.0  −0.7333

3 20–30 24 29.3 0.4169

4 30–40 26 31.7 1.4258

5 40–50 4 4.9 0.6956

6  > 50 2 2.4 2.2723

Slope aspect 1 Flat 0 0.0 0.0000

2 North 6 7.3  −0.7601

3 Northeast 4 4.9  − 1.2156

4 East 16 19.5 0.4218

5 Southeast 9 11.0  −0.1433

6 South 16 19.5 0.8402

7 Southwest 12 14.6 0.5017

8 West 7 8.5  −0.2868

9 Northwest 12 14.6 0.0448

Slope curvature 1 1 - Planar ( +) - Profile ( −) 5 6.1  −1.5281

2 2 - Planar (-) - Profile ( −) 14 17.1 0.3826

3 3 - Planar (0) - Profile ( −) 0 0.0 0.0000

4 4 - Planar ( +) - Profile ( +) 11 13.4  −0.0205

5 5 - Planar (-) - Profile ( +) 45 54.9 1.4754

6 6 - Planar (0) - Profile ( +) 2 2.4  −0.8981

7 7 - Planar ( +) - Profile (0) 1 1.2  −1.4408

8 8 - Planar (-) - Profile (0) 3 3.7  −0.1926

9 9 - Planar (0) - Profile (0) 1 1.2  −2.0707

Flow accumulation
(km2)

1 0–0.00025 33 40.2  −0.7264

2 0.00025–0.001 20 24.4  −0.2374

3 0.001–0.01 12 14.6 0.4452

4 0.01–0.2 13 15.9 2.1272

5 0.2–0.5 1 1.2 1.5918

6 0.5–1 2 2.4 2.9812

7  > 1 1 1.2 1.4183

Distance to stream
(m)

1 0–5 40 48.8 2.8281

2 5–25 15 18.3  −0.0190

3 25–50 10 12.2  −1.4780

4 50–150 9 11.0  −0.8846

5 150–250 8 9.8 0.1719

6  > 250 0 0.0 0.0000
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validation dataset 2, in order to assess its performances also outside 
the area of training. On the basis of the results of the SRC obtained 
with validation dataset 1, the model outputs have been partitioned 
into 4 classes including susceptibility values associated to 0–40% 
(high), 40–70% (medium), 70–90% (low) and 90–100% (negligible) 
of cumulative predicted debris flows initiation areas.

In order to convert susceptibility into spatial probability, the 
Bayesian posterior probability associated to each susceptibility 
class has been calculated and normalized in a 0–1 (min–max) 
range. Normalization has been necessary because using few tens 
validation ‘landslide’ pixels with some thousand pixels making 
up the validation study area inevitably returns Bayesian’ poste-
rior probability values strongly shifted toward extremely low val-
ues, which would be substantially masked by the (much higher) 

temporal probability component when the two probabilities are 
multiplied to assess the combined spatio-temporal probability. 
Specifically, normalization of the Bayesian’ posterior probability 
in a 0–1 range has been carried out by considering as 0 (mini-
mum) the probability associated to the specific susceptibility 
value below which no validation landslide (pixel) is found and 
as 1 (maximum) the probability associated to the higher suscep-
tibility value that corresponds to a landslide occurrence (pixel) in 
the validation dataset. Furthermore, as the number of pixels with 
susceptibility values higher than that associated to max prob-
ability resulted limited, they were all associated to the high prob-
ability class. At the same time, since the lower susceptibility class 
returned an almost null scaled probability, all the pixels with sus-
ceptibility values lower than that associated to null probability 

Table 2   (continued)

Factor Code Class No. debris flows 
initiation points

Relative frequency (%) Contrast

Land cover 1 UrF, urban fabric 0 0.0 0.0000

2 InCT, industrial, commercial and transport units 0 0.0 0.0000

3 MiDC, mine, dump and construction sites 0 0.0 0.0000

4 ArA, artificial, non-agricultural vegetated areas 0 0.0 0.0000

5 ArL, arable lands 0 0.0 0.0000

6 PeC, permanent crops 0 0.0 0.0000

7 Pa, pastures 2 2.4  −0.9711

8 HeAA, heterogeneous agricultural areas 0 0.0 0.0000

9 Fo, forests 70 85.4 1.8894

10 SHV, scrub and/or herbaceous vegetation associations 6 7.3  −0.0352

11 OSLVe, open spaces with little or no vegetation 2 2.4 0.0589

12 InW, inland wetlands 0 0.0 0.0000

13 WaCLV, water courses (little vegetation) 0 0.0 0.0000

14 WaCAV, water courses (abundant vegetation) 2 2.4 0.0000

15 Riv, riverbanks 0 0.0 1.1015

16 CaWa, canals and waterways 0 0.0 0.0000

17 WaB, water bodies 0 0.0 0.0000

Bedrock lithology 1 AG, massive rock + gypsum 5 9.8 0.6048

2 Bl, flysch (lithic/pelite alternated L/P > 3) 18 6.1 0.9328

3 Blp, flysch (lithic/pelite alternated 0.3 < L/P < 3) 33 22.0 0.1448

4 Bp, flysch (lithic/pelite alternated L/P < 0.3) 0 40.2 0.0000

5 C, weakly cemented sandstones 0 0.0 0.0000

6 Da, shales 0 0.0 0.0000

7 Dm, marl 2 0.0  −0.4899

8 Dol, olistostrome shales 2 2.4  −0.5791

9 Dsc, tectonized shales 8 2.4 0.1417

10 APA, palombini limestones with shales 14 9.8 1.2694
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have been included in the so-called negligible probability class. 
Results were such, in our case, that a normalized spatial prob-
ability of 0.8 was associated to the high susceptibility class, 0.4 
to the medium class, 0.2 to the low class and 0 to the negligible 
class, thus allowing for a spatial probability map at 5 × 5 m grid 
cells to be obtained.

Temporal probability assessment by regionalization of triggering 
thresholds

The debris flows rainfall triggering thresholds by Ciccarese et al. 
(2020) have been used to support temporal probability assessment. 
Such dataset includes thresholds at 30′, 1 h, 2 h, 3 h and 6 h cumulated 
rainfall for 185 rain gauges distributed across the Emilia-Romagna 
Apennines. In this work, the 3 h rainfall thresholds have been used, 
ranging from 2 to 151 mm/3 h (Fig. 3h). For the aim of this research, 
the 3 h rainfall thresholds were preferred to thresholds associated 
to other durations since (i) a duration of 3 h is reached only during 
large scale rainstorms that last for a significant period of time, being 
related to convective cells or convective systems, accounting for the 
fact that the majority of the debris flows inventoried in Emilia-
Romagna Apennines have actually occurred during such type of 
events; (ii) the 3 h thresholds are associated to a high predictive 
capability of the multiple occurrences events of 2014 and 2015 ( as 
evidenced by an AUC from 0.88 to 0.97 in Ciccarese et al. 2020); thus, 
they are quite reliable predictors of debris flows triggering; (iii) the 
distribution of 3 h threshold values is less scattered in space across 
the Emilia-Romagna Apennines than lower duration thresholds and, 
also, they better mimic the spatial distribution of rainfall regimes in 
the various altimetric zones of the study area. The annual exceed-
ance probability (AEP) of 3 h rainfall thresholds in each of the 185 
rain gauges has been calculated using Gumbel probability distribu-
tion coefficients ‘α’ and ‘u’ based on long-term precipitation records. 
The AEP value in rain gauges has been regionalized by interpolation 
in 500 × 500 m grid cells by inverse distance weighted (IDW) and no 
geographically weighted regression. A resampling was finally per-
formed in order to obtain a map of yearly probability (in 0–1 range) 
at 5 × 5 m grid cells size.

Hazard mapping

Finally, a debris flow initiation hazard has been created by 
numerically multiplying the spatial probability and the temporal 
probability maps at 5 × 5 m grid cells size. The resulting yearly 
spatio-temporal probability values, i.e. the hazard of poten-
tially having a debris flow in a given grid cell, have been ranked 
into classes by computing the corresponding associated return 
period and by grouping results into the following range classes: 
11–30 years for high, 30–100 years for medium, 100–300 years for 
low and > 300 years for negligible hazard class.

Results

Spatial probability
The success rate curves for the 39 spatial models tested against 
validation dataset 1 and their AUC are represented in Fig. 4a and 
Table 5. The SRC are generally quite good and the AUC rather high 
(between 0.8909 and 0.9694), pointing to a significant predictive 
capability of all the models. In general, all of the LR models per-
form comparatively better than FR and WOE with any combination 
of causal factors considered. With each modelling method, models 
run with causal factors combination 11 (i.e. slope, lithology, cur-
vature, flow accumulation and distance to stream) are the ones 
returning relative maximum AUC (i.e. FR Model 11, WOE Model 24 
and LR Model 37; see Fig. 4b).

In absolute terms, with respect to validation dataset 1, the best 
performance is that of LR Model 37, with an AUC of 0.9694. This 
model has been further analysed against validation dataset 2, in 
order to assess its capability to correctly discriminate the location 
of debris flows initiation points from other areas of the Emilia-
Romagna Apennines. The SRC with validation dataset 2 (Fig. 4c) 
has also a quite high AUC (0.9168), indicating a good predictive 
capability of the model even outside the area of training. The SCR 
with validation dataset 1 has also been used to classify the outputs 
of LR Model 37 (i.e. values from 0 to 0.11328) into 4 susceptibility 
classes. The partition into 4 susceptibility classes and the corre-
sponding association to spatial probability classes according to the 

Table 3   Pearson’s correlation coefficient matrix between pairs of the raster maps of selected geo-environmental variables

Slope angle Land cover Slope aspect Bedrock lithology Distance to 
stream

Flow accumulation Slope curvature

Slope angle 1.000000

Land cover 0.394086 1.000000

Slope aspect 0.052232 0.036479 1.000000

Bedrock lithology  −0.230025  −0.056750  −0.011817 1.000000

Distance to 
stream

 −0.132879  −0.201855  −0.062941  −0.005275 1.000000

Flow accumula-
tion

 −0.098714 0.007464  −0.045163  −0.004507  −0.104373 1.000000

Slope curvature  −0.289363  −0.172302  −0.079975 0.071645 0.199269 0.162109 1.000000
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approach illustrated in ‘Spatial probability modelling’ has resulted 
in 0.73% of the study area being classified at high spatial probability 
(normalized probability = 0.8), 1.45% of the study area being classi-
fied at medium spatial probability (normalized probability = 0.4), 
2.01% of the study area being classified at low spatial probability 
(normalized probability = 0.2) and 95.80% of the study area being 
classified at negligible spatial probability (normalized probabil-
ity = 0) (Fig. 5a).

Spatio‑temporal probability and hazard map

The regionalization of the annual exceedance probability (AEP) 
of the 3 h triggering rainfall thresholds resulted into a map of 
continuous values ranging from 0.0114 to 0.1145 year−1 (Fig. 5b). 
The spatio-temporal probability map displays values ranging 
from 0.0 to 0.0892 year−1 (Fig. 5c). Being obtained by multiply-
ing the spatial probability map and the regionalized AEP map, 
a 0 value is obtained for each grid cell that was considered hav-
ing null spatial probability. These values have been reclassified 
into 4 hazard classes corresponding to different return period 
ranges, obtaining 0.87% of the study area classified as high haz-
ard (i.e. return period 11–30 years), 2.83% as medium hazard 
(i.e. return period 30–100 years), 0.5% as low hazard (i.e. return 
period 100–300 years) and the remaining 95.81% as negligible 
hazard (i.e. return period > 300 years) (Fig. 5d). Substantially, 
the spatial distribution of hazard values over the study area is 
governed by the spatial distribution of susceptibility and, conse-
quently, the associated spatial probability. In practice, only grid 
cells in which a given spatial probability of having debris flows 
initiation exists are considered hazardous at some level. On the 
other hand, the spatial distribution of AEP values associated to 
rainfall thresholds acts as a scaling factor of spatial probability, 
so that areas that have analogue spatial probability but different 

probability of occurrence of triggering rainfall conditions are 
potentially classified at different hazard levels. The influence 
of temporal probability values over the spatial distribution of 
hazard values is mostly evident on a regional scale, where two 
mountain sectors similarly characterized by a relatively large 
number of grid cells at high spatial probability might result 
having a different number of grid cells classified at high or at 
medium hazard because the temporal probability of occurrence 
of triggering rainfalls is significantly different in one sector than 
the other.

Discussion

Limitations of the hazard map
One intentional limitation of this research is that it only analyses 
the hazardousness of slopes with respect to the initiation of debris 
flows. Thus, it does not consider the whole process of runout and 
deposition which are certainly relevant for hazard assessment. 
However, taking runout and deposition areas into account at 
regional scale would have required using training ad validation 
points referring to runout and deposition zones since, as already 
mentioned, these processes are governed by different topographic, 
hydrographic and rheological conditions. Moreover, potential 
runout and deposition areas are actually better accounted for by 
using dynamic runout models (Hungr 1995; Hurlimann et al. 2008; 
Berti and Simoni 2014; Liu et al. 2021). Thus, it was decided that 
mapping the susceptibility to runout and deposition was beyond 
the scopes and possibilities of this research. Furthermore, debris 
flows initiations areas are represented, for spatial analysis pur-
poses, by a single ‘representative’ initiation grid cell 5 × 5 m located 
at the centroid of the shallow roto-translational slides that trig-
gered debris flows during the 2014 and 2015 events. This is cer-
tainly a limitation, as the causal factors considered might actually 

Table 4   Different combinations of geo-environmental causal factors considered in the spatial analysis

Comb Debris flows 
initiation points

Slope angle Slope aspect Slope St. curvature Flow accumul Distance to 
stream

Land cover Bedrock 
lithology

1  ×   ×   ×   × 

2  ×   ×   ×   × 

3  ×   ×   ×   × 

4  ×   ×   ×   ×   × 

5  ×   ×   ×   ×   × 

6  ×   ×   ×   ×   × 

7  ×   ×   ×   ×   ×   × 

8  ×   ×   ×   ×   ×   × 

9  ×   ×   ×   ×   ×   × 

10  ×   ×   ×   ×   ×   × 

11  ×   ×   ×   ×   ×   × 

12  ×   ×   ×   ×   ×   ×   × 

13  ×   ×   ×   ×   ×   × 
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have a certain variability outside the representative pixel but still 
inside the real extent of the shallow slide area. Nevertheless, as the 
extent of such phenomena was indeed quite limited (100 to 400 
m2 as already reported in ‘Methods’ and references therein), this 
variability should be also limited. However, it is undoubtful that 
we might have introduced some under sampling of the variability 
of geo-environmental conditions at debris flows initiation areas. 
At the same time, the identification of initiation point of debris 
flows from archive data was rather tentative, leading to a quite large 
uncertainty on the actual conditions at the initiation points. That’s 
why these events have not been used for training models, but, only, 
for a second-level validation of model outputs.

The geo-environmental variables selected for the analysis should be 
commented with respect to their significance at the scale adopted for 
their analysis. On that respect, we have tested 13 different combinations 
of geo-environmental variables mapped at 5 m grid cells on the basis of 
original data surveyed at a similar level of nominal spatial accuracy. The 

combination that resulted in performing better in terms of discriminant 
capacity, included slope angle, standard slope curvature, flow accumula-
tion, distance to stream and bedrock lithology. Therefore, these are the 
factors that have the higher importance in determining debris flows ini-
tiation in our area. As for the morphometric variables, the role they play 
on shallow slides triggering is quite straightforward, as they encompass 
a number of physical and hydro-mechanical factors. The use of a DEM 
originally at 5 m grid cells is a guarantee of the representativeness of the 
calculated morphometric variables at such scale of detail. The contrast 
values obtained by the WOE method (reported in Table 2), which are 
intuitive indicators of the importance of each class of the parameters 
used in our analysis, show positive correlation from over 20° of slope, 
with maximum correlation to slope angles higher than 50°. Regarding 
slope curvature, the most influential class (high contrast) is the one 
combining a negative planar curvature to a positive profile curvature 
that is typical of the head zone of slopes incisions and creeks. The flow 
accumulation is similarly positively correlated to debris flows initiation 

Fig. 4   Success rate curves (SRC) of models run with different combi-
nations of geo-environmental causal factors and classification of sus-
ceptibility values into spatial probability values. Legend: a SRC of all 

spatial models; b SRC of models with factors combination no. 11; c 
SRC of LR model 37; d classification of model 37 outputs into spatial 
probability values
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over many classes, indicating that although the factor is influential in 
general, the extent of the contributing area areas is not such a significant 
factor. As regards bedrock lithology, it plays a role as it is substantially a 
proxy of the characteristics of the slope deposits that are mobilized by 
shallow slides and that initiate debris flows. Actually, an ideal dataset for 
the analysis would have been a map of slope deposits types. But being 
not available for the study area, bedrock lithology has been used as a 
surrogate. Even in this case, the scale of surveys of the geological maps 
that has been used to derive lithological map is originally at 1:10,000, 
so that the original information is sufficiently detailed as to be resam-
pled at 5 m grid cells. Nevertheless, the usage of a limited number of 
lithological classes has certainly introduced a level of simplification of 
the real variability of the lithological conditions along the slopes, also 
because the involved formations are in many cases lithologically and 
structurally complex. In this case, contrast values (see Table 2) indicate a 
positive correlation to massive rocks and flysch with high lithic to pelite 
ratios, as well as to limestones. Expectedly enough, a null or negative 
correlation is with shales and marls or flysch with a large pelite com-
ponent. A comment should also be passed for the absence of land cover 
from the combination of factors that performs better. Since the large 
majority of debris flows occur in forests (with a contrast value largely 
positive), one would expect this class to be discriminant. However, such 
a land cover class is also by far the most widespread in the study area, 
limiting the statistical significance of the factor. Even in this case, the 
scale and detail of original data is sufficient for a resampling at 5 m grid 
cells without altering information.

The approach adopted to assess the temporal probability of debris 
flows involves a number of assumptions. Some are inherent to the 
methodology adopted by Ciccarese et al. (2020) for the assessment of 
triggering rainfall thresholds, and they are thoroughly discussed in 
their paper. In this study, for all the reasons explicated in ‘Temporal 
probability assessment by regionalization of triggering thresholds’, 
we have considered the 3 h cumulate rainfall thresholds as the most 

significant one for hazard mapping purposes. Among these reasons, 
the main one is that thresholds at 3 h cumulated duration are only 
reached when large convective cells or even mesoscale convective 
systems take place, which was the condition leading to all the known 
multi-occurrence debris flows events. This makes the 3 h duration 
more suitable for our mapping purposes than thresholds at 30′ or 
1 h, that on the contrary can be reached even during single rainstorm 
events. A positive computational consequence of using 3 h thresholds 
is that they refer to rainfall events with pluriannual return periods, 
thus with an annual exceedance probability lower than unit that is 
ideal to compute annual probability in a 0–1 year−1 range. The spatiali-
zation at regional scale of annual exceedance probability of thresholds 
referring to single rain gauges is also a source of uncertainties in our 
analysis. We selected an inverse distance weighted interpolator over 
other possible ones (such as kriging), since we wanted to maintain 
unaltered the values in the data nodes (i.e. the rain gauges). We also 
decided to apply no geographically weighted regression, by taking 
into consideration that debris flows are associated to convective rain-
storm events, whose intensity in space upon occurrence cannot be 
univocally related to ground elevation. Nonetheless, it is undoubted 
that these assumptions are reflected on the computed hazard values. 
Finally, being based on the analysis of past rainfall data, the expected 
annual probability of occurrence of triggering rainfall thresholds 
across the study area does not consider the possibility that, due to 
changing climatic trends, high-intensity rainfall events can in the 
future have a different spatial distribution and a higher frequency 
in time. This implies that in some parts of the study area, the actual 
probability to have debris flows in the future might be higher than 
computed in our hazard assessment.

The use of grid cells for landslide susceptibility mapping has also 
some quite well-known drawbacks. One is that the number of non-
landslide (‘stable’) cells is often much larger than the number of land-
slide (‘unstable’) cells, resulting in a sampling bias that can affect the 

Table 5   Results of the success rate curves for Frequency Ratio (FR), Weight of Evidence (WOE) and Logistic Regression (LR) models run with 
different combinations of geo-environmental causal factors, expressed in terms of area under curve (AUC)

Meth Model Comb AUC​ Meth Model Comb AUC​ Meth Model Comb AUC​

FR Model 1 Comb 1 0.8909 WOE Model 14 Comb 1 0.8992 LR Model 27 Comb 1 0.8939

FR Model 2 Comb 2 0.8893 WOE Model 15 Comb 2 0.8992 LR Model 28 Comb 2 0.9028

FR Model 3 Comb 3 0.9467 WOE Model 16 Comb 3 0.9510 LR Model 29 Comb 3 0.9530

FR Model 4 Comb 4 0.9431 WOE Model 17 Comb 4 0.9582 LR Model 30 Comb 4 0.9591

FR Model 5 Comb 5 0.9062 WOE Model 18 Comb 5 0.9004 LR Model 31 Comb 5 0.9010

FR Model 6 Comb 6 0.9203 WOE Model 19 Comb 6 0.9351 LR Model 32 Comb 6 0.9335

FR Model 7 Comb 7 0.9318 WOE Model 20 Comb 7 0.9151 LR Model 33 Comb 7 0.9332

FR Model 8 Comb 8 0.9470 WOE Model 21 Comb 8 0.9516 LR Model 34 Comb 8 0.9599

FR Model 9 Comb 9 0.9221 WOE Model 22 Comb 9 0.8886 LR Model 35 Comb 9 0.9176

FR Model 10 Comb 10 0.9397 WOE Model 23 Comb 10 0.9198 LR Model 36 Comb 10 0.9506

FR Model 11 Comb 11 0.9496 WOE Model 24 Comb 11 0.9651 LR Model 37 Comb 11 0.9694

FR Model 12 Comb 12 0.9442 WOE Model 25 Comb 12 0.9536 LR Model 38 Comb 12 0.9568

FR Model 13 Comb 13 0.9473 WOE Model 26 Comb 13 0.9566 LR Model 39 Comb 13 0.9539
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classification (Reichenbach et al. 2018). In our case, the consequence 
was that the outputs of the spatial models were numerically biassed 
toward very low values. Such bias has been bypassed by reclassifying 
the model outputs in terms of spatial probability on the basis of the 
outcomes of the SRC, but the reclassification itself is a source of uncer-
tainty. Another drawback of grid cells-based analysis is that resulting 
maps are often difficult to interpret, with single grid cells with high 
values being typically surrounded by grid cells at lower values and vice 
versa. Our results in terms of combined spatial and temporal probability 
made no exception. Nevertheless, the problem has been addressed by 
performing a ‘post-processing’ of the modelling results, i.e. by grouping 
spatial–temporal probability values into hazard classes related to key 
return periods. This has significantly limited the pixel-to-pixel vari-
ability of the results, making the map much easier to be interpreted.

Reliability and usability of the hazard map

One way to assess the reliability of a map is to check the substantial 
correspondence of known debris flows initiation points with areas 
characterized by medium to high hazard. As previously mentioned, 
the spatial distribution of hazard mimics the spatial distribution of 
spatial probability scaled accordingly to the temporal probability 

of occurrence of rainfall triggering events. Consequently, on a 
quantitative basis, the success rate curves used to compare dif-
ferent statistical modelling approaches and combinations of geo-
environmental variables provide also indirectly an indication of the 
quantitative reliability of the hazard map. The significant predictive 
capability of the spatial model that has finally been used for obtain-
ing susceptibility values is evidenced by the SRCs obtained with two 
different independent validation datasets. Both the SRCs show that 
90% of the debris flow initiation points can be correctly predicted 
by mapping only 5% of the study area as hazardous. Furthermore, 
AUC of both SRCs are higher than 0.9. Particularly significant is 
the performance with validation dataset 2 that indicates that the 
model is capable of discriminating highly susceptible zones even 
outside the areas of training. This is made possible by the fact that 
the training areas (i.e. the portions of Parma and Piacenza prov-
inces covered by the training dataset of initiation points) include all 
possible classes of geo-environmental factors found in the regional 
study area. This has allowed obtaining statistical results that can 
be significant over to the entire study area. On a more qualitative 
basis, the good agreement between debris flows initiation points 
and grid cells characterized by medium to high hazard can be visu-
ally perceived in the maps presented in Fig. 6 that are examples 

Fig. 5   Results of the combination of spatial modelling and region-
alization of rainfall thresholds for debris flows hazard mapping. 
Legend: a Spatial probability of debris flows initiation; b temporal 

probability of rainfall thresholds (annual exceedance probability); c 
spatio-temporal probability of debris flows initiation; d classified haz-
ard of debris flows initiation
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from different locations inside the study area (Fig. 6a). The first two 
examples (Fig. 6b, c) refer to areas in the Piacenza and Parma prov-
inces, in which a significant number of debris flows initiation points 
from the 2014 and 2015 multiple occurrences events do actually fall 
into grid cells corresponding to medium to high hazard. The third 
example (Fig. 6d) represents an area in Reggio Emilia province in 
which a number of initiation points referring to other past debris 

flows events show a good correspondence with grid cells classified 
at medium to high hazard.

Another way to assess the reliability and usability of a map on a 
practical usage perspective is to check it against ‘geomorphological 
common sense’ (Hearn and Hart, 2019) and ground truths of debris 
flows after the map is produced. Actually, all of the grid cells clas-
sified as hazardous tend to be concentrated around and along the 

Fig. 6   Examples of the hazard map for different provinces in the 
study area. Legend: a Location of the examples; b Aveto valley (Prov-
ince of Piacenza); c Corniglio (Province of Parma); d Ventasso (Prov-

ince of Reggio Emilia); e Casalfiumese (Province of Bologna); f Monte-
fiore Conca-Saludecio (Province of Rimini)
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uppermost branches of creeks and streams. This pattern is quite 
evidently the result of the statistical influence of factors such as the 
distance to stream and flow accumulation. But this is certainly geo-
morphologically reasonable, given the fact that debris flows initia-
tion points must represent shallow slides that convey debris to the 
drainage network from which it was then mobilized by solid–liquid 
discharge. Another feature in the spatial distribution of hazardous 
grid cells that makes sense on a geological perspective is that haz-
ardous cells are much more frequent in slopes along which bedrock 
includes significant amounts of hard rocks such as limestones and 
sandstones. As a matter of fact, these are the lithologies that are 
predominantly involved in debris flows and that are common in 
the areas represented in Fig. 6b–d. On the contrary, such lithologies 
are rare in the areas represented in Fig. 6e, f that are consequently 
characterized by a very limited number of cells classified as hazard-
ous and that, as a matter of fact, have no record of known debris 
flows occurrences. Finally, the chance to evaluate the reliability of 
the hazard map for practical purposes has been given by an event 
that has taken place during 2020 in the locality of Fosso Riaccio 
(province of Modena). Field surveys have demonstrated that the 
upper initiation point recognized along the slope, as well as some 
lateral failures that have contributed to the event, correspond to 

areas in which the grid cells are classified at high to medium hazard 
(Fig. 7), while the accumulation zone is in a low initiation hazard 
zone. This is consistent with the aim of the method adopted and 
it indicates that the map correctly discriminates the parts of the 
slopes in which debris flows initiation is more probable.

Conclusions
In this study, we have used debris flows initiation information 
obtained after major multi-occurrence events in 2014 and 2015 in 
the Emilia-Romagna Apennines, together with data from archives 
and literature, in order to assess the spatial probability of initiation 
of debris flows at regional scale. In doing so, relevant thematic infor-
mation regarding debris flows and geo-environmental causal factors 
has been collected and processed using grid cells mapping units. We 
have tested different statistical models and combinations of causal 
factors and have quantified their performances using metrics asso-
ciated to the success rate curves. The outputs of the model provid-
ing best spatial predictive performances, have been reclassified in 
terms of spatial probability of debris flows initiation. At the same 
time, we have regionalized recently published rainfall thresholds, 
in order to map the annual probability of debris flows events. The 

Fig. 7   Debris flows event 2020 
in Fosso Riaccio (Province of 
Modena). Legend: a Hazard 
map and location of pictures; b 
main initiation zone character-
ized by shallow slope failures; 
c lateral scouring; d secondary 
slope failures along the debris 
flows track; e debris flows 
deposits along the track; f main 
debris flows accumulation fan
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combination of these products resulted in spatio-temporal prob-
abilities that have been ranked into hazard classes using ranges of 
return periods. The resulting hazard map is consistent both with 
the spatial distribution of past debris flows initiation points and 
with the geomorphological common sense. Furthermore, after being 
prepared, it has proven quite accurate in predicting the location of a 
debris flows that has occurred in 2020 inside the study area. On such 
a basis, despite its limitations, we consider the debris flows hazard 
map produced sufficiently reliable to integrate existing inventory 
maps in land-use regulation and emergency planning. On a gen-
eral perspective, similarly to other previous studies that considered 
the spatial and temporal probabilities of phenomena as independ-
ent values to be combined in order to assess hazard in quantitative 
terms, the approach adopted in this research can be replicated in any 
situation in which a sufficient amount of spatial information regard-
ing debris flows initiation zones and their possible causal factors, 
as well as specific rainfall thresholds, are available for the analysis.
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