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Depth integrated modelling of submarine landslide
evolution

Abstract Submarine landslides are a major geohazard among
worldwide continental slopes, posing significant threats to off-
shore infrastructure, marine animal habitats and coastal urban
centres. This study establishes an original numerical package for
time-efficient modelling of the entire submarine landslide evolu-
tion covering the pre-failure shear band propagation, slab failure
and post-failure dynamics. The numerical scheme is based on the
conservation of mass and the conservation of momentum and
combines the shear band propagation theory and the depth-
integrated method, with the consideration of the drag force from
the ambient water. Shear band propagation in the weak layer and
slab failure in the sliding layer are controlled by the strain soften-
ing and rate dependency of the corresponding undrained strength
parameters. The post-failure behaviour in the sliding layer, such as
retrogression upslope and frontally confined and frontally emer-
gent mechanisms downslope, is also simulated. The numerical
results from the proposed method are comparable to the analytical
solutions and the large deformation finite element analysis. Ap-
plication of this method to a back analysis of the St. Niklausen
slide in Lake Lucerne reproduced the observed shape of the mass
transport deposits, the position of the main scar and the travel
distance. Because of its easy implementation and efficiency, the
proposed numerical method for modelling of submarine land-
slides seems promising for practical applications.

Keywords Debris flow . Submarine landslides . Weak
layer . Numerical modelling . Offshore engineering

Introduction
Submarine landslides are a major natural geohazard commonly
occurring in offshore continental slopes. They present significant
threats to offshore infrastructure, in particular in the North Sea
(Bryn et al. 2005), the Gulf of Mexico (Jeanjean et al. 2005), the
Nankai Trough (Yamamoto et al. 2015), the offshore Northwest
Australia (Hengesh et al. 2013) and the Caspian Sea (Hill et al. 2015)
where offshore resource explorations are active. Some significant
historical events have been reported to have triggered disastrous
tsunamis, for example the giant Storegga landslide that occurred
8200 years ago, the case off Papua New Guinea in 1998 (Synolakis
et al. 2002) and the latest Sulawesi landslide in 2018 that might
have caused the deadly Palu tsunami (Liu et al. 2020).

A local failure zone triggered by e.g. excess water pressure
accumulation may evolve into a catastrophe covering a series of
successive failures with strength reduction during shearing in
sensitive clays (e.g. Puzrin et al. 2004; Zhang et al. 2015). Marine
clay sediments are typical sensitive clays mainly because of the
surface charge under seawater conditions, with the soil sensitivity
(the ratio between the peak and residual strengths) normally
ranging from 2 to 6 (Randolph and Gourvenec 2011). Another
important characteristic of submarine landslide is the flowing
rheology of sliding materials that acts between the flow and the

bed (Khaldoun et al. 2009; Grue 2015). Evaluations of slope stabil-
ity, post-failure flow dynamics and consequences are key elements
of risk assessment of submarine landslides, which need proper
considerations of strain softening and rheology attainted to the
failed sensitive soils.

Many numerical studies have been carried out with the focus
mainly on replications of the run-out features such as the travel
distance and velocity during the past two decades (Gauer et al.
2005; Pastor et al. 2014; Issler et al. 2015; Dey et al. 2016; Dong et al.
2017; Zhang et al. 2019). Among them, mesh free methods such as
the smoothed particle hydrodynamics and the material point
method, the Eulerian-based computational fluid dynamics and
the arbitrary Lagrangian-Eulerian methods have become increas-
ingly popular because of their advantages in dealing with large
deformation. In spite of them, the simple depth-integrated method
based on the shallow water condition is still the most widely used
numerical method for the debris flow dynamics modelling espe-
cially for practical engineering applications (Dong et al. 2020).
Until now, a dozen of commercial packages, e.g. DAN (Hungr
1995), Debris2D (Liu and Huang 2006), MassMov2D (Beguería
et al. 2009), RAMMS (Christen et al. 2010) and EDDA (Chen and
Zhang 2015), along with many in-house numerical programmes
such as the BingClaw (Kim et al. 2018), have been emerging and
developed with the implementations of different depth-integrated
models. They can simulate the debris flow dynamics well enough
with considerations of various rheological models. However, al-
most all these programmes need input information about the
volume and initial velocity of the failed mass, which are usually
difficult to determine without proper consideration of the initia-
tion mechanism for submarine landslides. Moreover, a one-off
input makes these programmes unable to reflect post-failure pat-
terns, such as retrogressive failure and gradual ploughing common
in submarine landslides. Attempt has to be made to integrate the
pre-failure initiation and post-failure mechanisms into the
favoured depth average method for more accurate as well as
time-efficient modelling of flow dynamics in submarine landslides.

Uphill retrogressive failure in sensitive clays was firstly sup-
posed to be formed by a series of rotational slip surfaces (Bjerrum
1955), and hence the volume of initial failure can be determined
according to the limit equilibrium or limit analysis and forwarded
to any depth-integrated debris flow package. However, it has no
simple way to deal with progressive rotational failure with the limit
equilibrium or limit analysis, let alone the translational failure
mechanism that has been increasingly recognised from recent site
investigations of submarine landslides (Kvalstad et al. 2005,
L’Heureux et al. 2012, Quinn et al. 2012). The latter, however, can
be well explained by the shear band propagation (SBP) theory
developed by Puzrin and Germanovich (2005) and followed by
many other studies (Viesca and Rice 2012; Puzrin et al. 2010, 2016;
Zhang et al. 2017, 2019; Buss et al. 2019). The SBP approach
assumes the shear band initiates and propagates within a favoured
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(weak) layer depending on the pre-conditioning sedimentary his-
tory and triggering conditions, potentially followed by active and
passive slab failure at uphill and downhill, respectively. Criteria for
catastrophic shear band propagation and slab failure with specific
geometry and loading conditions have been recently developed
and applied into back analyses of several historical events
(Stoecklin 2019; Zhang et al. 2020). In addition, large deformation
numerical modellings of progressive failure have extended the SBP
analysis from shear band propagation to complex post-failure
behaviours (Dey et al. 2016; Zhang et al. 2019; Stoecklin et al.
2020). However, these large deformation numerical methods large-
ly rely on heavy programmes and expert users in addition to the
low computational efficiency, which hence limit their practical
applications.

This study mainly aims to introduce an original package for
modelling the submarine landslides by numerically solving the
SBP governing equations with the simple depth-integrated meth-
od. The proposed package is able to cover the whole process of the
landslide from shear band initiation and propagation to complex
post-failure behaviours such as the retrogressive failure, ploughing
and run-out. The solutions of flow dynamics are obtained from a
simple finite difference scheme by considering materials of strain
softening and rate dependency. For its simplicity and efficiency,
the depth-integrated-based SBP package is rather promising for
practical applications. In addition, the package can be easily im-
plemented, with light coding, into any existing debris flow soft-
ware and in-house programmes using the depth average
approximation.

Theory and governing equation
The approach is based on the classical flow dynamics equations
with considerations of mass and momentum conservations, anal-
ogy to the well-known Savage–Hutter model (Savage and Hutter
1989). The depth integration (or averaging) approximation was
used, which assumes the length of the sliding mass is much greater
than the depth, satisfying the shallow water condition (or Saint
Venant condition). The depth integration method has become the
most widely used approach for debris flow modelling, due to its
easy implementation and efficiency. In a traditional depth-
integrated debris flow modelling, a debris flow can be divided into
two layers: a plug layer and a shear layer, with the friction taking
place in the shear layer only. Variations of the kinematic properties
along the depth are neglected and flow dynamics parameters such
as the velocity and pressure are averaged in the plug layer. Figure 1
a gives a schematic model for the traditional depth-integrated
debris flow modelling.

Although the depth integration approximation is originated for
debris flow modelling, it is also applicable to simulate the failure
initiation and progressive failure with SBP in weak layers, as
shown in Fig. 1b. Soils within a weak layer undergo strain softening
during shearing, leading to strain localisation and hence shear
band propagation along the weak layer. Upon sufficient magnitude
of shear band propagation, catastrophic failure might occur with
the SBP in the weak layer limited either by slope flattening or upon
active/passive failure in the sliding layer. Within the SBP model,
the weak layer (or shear surface) and sliding layer are, respectively,
similar to the shear layer and plug layer in the traditional debris
flow modelling using the depth integration method. Observed
from finite element modelling, soils below the weak layer

remained intact during shear band propagation and post-failure
stages (Zhang et al. 2015) and were hence assumed rigid in the
depth-integrated modelling.

A great advantage of the depth-integrated modelling of shear
band propagation compared to the conventional one is that it is
capable of modelling the full process of a landslide in sensitive
clays covering initiation, slab failure, post-failure and deposition
behaviours. Rather than essential inputs in the conventional depth
integration methods, in the proposed method the volume and
velocity of the initially failed mass are automatically calculated
through the modelling. Furthermore, some complex and realistic
post-failure behaviours relevant to submarine landslides, such as
retrogression, ploughing and run-out, can also be simulated within
the proposed numerical scheme.

Figure 2 shows the mass and momentum conservations in an
infinitesimal block in the sliding layer. In each slice, conservation
of angular momentum with respect to the intersection of two
bounding radii, R and R + dR, from the local centre of rotation
is expressed by

P R−
s
2

� �
þ τ Rþ dR

2

� �
dl þ τdragRdl þ dIa

¼ P þ dPð Þ Rþ dR−
sþ ds
2

� �
þ τg Rþ dR

2

� �
dl ð1Þ

where P is the slope parallel force per unit thickness (N/m), s is
the thickness of the sliding layer (m), τ is the shear resistance and
τg is the gravity shear stress at the shear surface (Pa), τdrag is the
drag by the ambient water acting on the seabed surface (Pa), dl is
the infinitesimal slice length (m) and dIa is the rate of change of
angular momentum in each slice (kg m2 s−2). The gravity shear

a

b
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Initial sliding
mass

Sliding mass 
deposit

L

l

Shear surface (weak layer)

Post-failure surface

Fig. 1 a Depth-integrated analysis for traditional debris flow. b Depth-integrated
analysis for slides with shear band propagation in weak layer
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stress is given by

τg ¼ γ
0
sþ ds

2

� �
sinθ ð2Þ

where γ′ is the submerged unit weight of soil (N/m3) and θ is the
slope angle; while the rate of change of angular momentum is
expressed by

dIa ¼ ρ sþ ds
2

� �
Rþ dR

2
−
s
2
−
ds
4

� �
∂2u
∂t2

dl ð3Þ

where ρ is the saturated density of soil (kg/m3), u is the dis-
placement (m) and t is the time (s). Generally, change in slope
angle in a submarine slope is not significant, i.e. the curvature is
small, and thus one may assume s≪ R and dR≪ R. Hence, Eq. (1)
becomes

dP
dl

− τ þ τdrag−τ g
� � ¼ ρs

∂2u
∂t2

¼ ρs
∂v
∂t

ð4Þ

where v is the velocity (m/s). Note that soil constitutive models
relate values of P and τ to the displacement u and its gradient du,
which will be detailed later. A rheology model from fluid mechan-
ics was used similar to previous debris flow modelling (e.g. in Liu
and Huang 2006, Christen et al. 2010, Dong et al. 2017, Kim et al.
2018), in addition to the soil mechanics-based strain softening.

Shear resistance in the weak layer
Within the weak layer (shear surface), soils are subjected to simple
shear whereby the shear stress is limited to the shear strength and,
considering a linear degradation and the Herschel-Bulkley rheo-
logical rule (Coussot 1997; Zhang et al. 2019), is given by

τ ¼ su;w ¼ max τp;w þ τ r;w−τp;w
� � δp

δpr
; τ r;w

� 	
� 1þ η

v
vref

� �n� 	
ð5Þ

where τp, w and τr, w are peak and residual shear strengths in the
weak layer, respectively (Pa); δp is the plastic shear displacement
across the weak layer (m), δpr is the value of δ

p to soften the shear
strength to the residual (m), vref is the reference velocity (m/s), η is
the dimensionless viscous parameter (consistency coefficient) and
n is the flow index. Though the current study used the linear
degradation and Herschel-Bulkley rheological model, one may
easily adapt the method with implementations of non-linear
strength degradations (e.g. the exponential degradation by Einav
and Randolph (2005)) and other rheological rules (e.g. the Bing-
ham model). Figure 3 gives examples of strain softening and
rheology rules in soils.

Within the elasticity regime, the shear stress is calculated as

τ ¼ Gδe ð6Þ

where G is the elastic shear stiffness (Pa/m) and δe is the elastic
shear displacement across the weak layer (m). Ignoring any shear
deformation in the sliding layer, the shear displacement across the
weak layer δ equals the sliding displacement u, i.e.

u ¼ δ ¼ δe þ δp ð7Þ

Drag forces from ambient water
The hydrodynamic drag on submarine landslides by ambient
water can be approximated by (Elverhoi et al. 2005)

a

b

Initial ground

Deformed ground

Shear surface

Initial block

Deformed block

Ground

Shear surface

Fig. 2 a Mass conservation of each soil block. b Momentum conservation of each
soil block
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τdrag ¼ 1
2
Cdρwv

2;Cd ¼ C f þ Cp ð8Þ

where Cd is the drag coefficient with Cf and Cp being its fric-
tional and pressure components respectively, and ρw is the seawa-
ter density (kg/m3). The hydrodynamic pressure drag of water
generally acts on the frontal upwind face of the sliding mass, while
the skin friction caused by viscous shearing acts on the surfaces
parallel to the sliding mass travel direction. The skin frictional
drag is dominant compared to the pressure drag for streamlined
bodies like a submarine sliding mass, and thus Cd = Cf is as-
sumed in the present study. In case that submarine landslides
are of bluff bodies, Cd ≈ Cp. The skin friction drag coefficient, Cf,
depends on the Reynolds number and the flow type and varies
at different positions of the sliding mass. The averaged friction
drag coefficient over the submarine sliding mass can be simpli-
fied by (Schlichting 1980; Norem et al. 1990; Elverhoi et al. 2010)

C f ¼ 1:89þ 1:62log
L
k

� �−2:5

ð9Þ

where L is the sliding mass length (m) and k is the roughness
length of the sliding mass surface in the range of 0.01–0.1 m. For
the length of the sliding mass varying between 10 and 1000 m, the

friction drag coefficient by Eq. (9) falls in the range of 0.005–0.016.
Such a small drag force is usually insignificant compared to the
shear resistance in the weak layer. Entrainment of water into the
sliding mass is not considered in the current numerical scheme.
The hydrodynamic pressure acting on the frontal upwind face may
cause a thicker front, which, in turn, gradually increases the frontal
drag force. Therefore, for flows exhibiting significant slide
ploughing patterns, it is essential to keep the pressure drag term.

Lateral earth pressure in the sliding layer
Within the sliding layer, soils undergo extension upslope and
compression downslope during SBP along the weak layer. Corre-
spondingly, slope parallel (lateral) earth pressure, σh, gradually
decreases and increases towards the active (upslope) and passive
(downslope) failure limits, respectively. Within the elastic regime,
it is expressed by

σh ¼ Epsεe ð10Þ

where Eps is the plane strain modulus (Pa) and εe is the elastic
normal strain. The earth pressure coefficient is given by the ratio
between the lateral and vertical (σv, Pa) stresses i.e.

K ¼ σh

σv
ð11Þ

which should be bounded by two limits at active and passive
failure states. The averaged vertical stress in the sliding layer is
given by

σv ¼ 1
2
γ

0
s ð12Þ

With an undrained condition for cohesive material, the limits
of the lateral earth pressure coefficient can be approximated by

Ka ¼ 1−2χ and Kp ¼ 1þ 2χ ð13Þ

where Ka and Kp are the earth pressure coefficients at the active
and passive failure states respectively, χ = su,s/σv represents the
current strength ratio with su, s being the current shear strength
of soils in the sliding layer. Considering the strain softening and
rate effect, the current shear strength su, s can be expressed by

su;s ¼ max τp;s þ τ r;s−τp;s
� � γp

γpr
; τ r;s

� 	
� 1þ η

γ̇

γ̇ref

 !n" #
ð14Þ

where τp, s and τr, s are the peak and residual shear strengths in
the sliding layer respectively, γp is the plastic shear strain across
the weak layer, γpr is the value of γp to soften the shear strength to

the residual, γ̇ is the shear strain rate and γ̇ref is the reference

shear strain rate (1/s).

Depth-integrated finite difference scheme
The finite difference (FD) method was used to numerically solve
the governing equation (4). The solution domain should be chosen
as covering all potential failure regions, usually bounded by flat
terrains. A rough estimation of shear band propagation limit can
be made according to Zhang et al. (2019). The solution domain is

a

b
0

Fig. 3 a Strain softening in soils. b Rate effect in soils
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then discretised into a series of infinitesimal blocks (i.e. one-
dimensional meshes). Figure 4 shows a schematic set of numer-
ical meshes (or soil blocks bounded by dashes) in both space
and time domains. The material point, where displacement u,
horizontal coordinate x, block height h, block length l, slope
angle θ, gravity shear stress τg and current soil strength in the
weak layer su, w are stored, is initially located at the centre of
each soil block and marked as a solid circle in the figure. Other
parameters, such as lateral earth pressure σh, slope parallel force
P, earth pressure coefficient K, inter-block normal strain ε and
current soil strength in the sliding layer su, s are stored at the
boundary points (see black hollow circles in the figure). Inter-
mediate time intervals (see red hollow circles in the figure) are
used to calculate velocities.

An explicit FD scheme, coded in Python, was developed with a
Lagrangian framework whereby the numerical meshes move with
the sliding mass. Such that, the mass conservation is apparent by
maintaining the constant area in each soil block, i.e. s l = cons.
Using the central difference and mesh scheme in Fig. 4, Eq. (4) is
discretised as

P j
iþ 1

2
−P j

i− 1
2
− τ j

i þ τ j
drag;i−τ

j
g;i

� �
l ji ¼ ρhj

i
l ji
t

v
jþ 1

2
i −v j−

1
2

i

� �
ð15Þ

where the counters i∈ [0,Nx] and j∈ [0,Nt] refer to points in
space and time domains respectively, with t representing the
time step (s). It is convenient to set i = 0 and Nx at flat areas where
shear band propagation should be restricted. Therefore, the
Dirichlet boundary conditions were set, i.e. v0 ¼ vNx ¼ 0. For the

initial step, the forward difference is used whereby Eq. (4) is
discretised as

P0
iþ 1

2
−P0i− 1

2
− τ0i −τ

0
g;i

� �
l0i ¼ ρh0i

l0i
t
2v

1
2
i ð16Þ

assuming the initial velocity is nil everywhere (i.e. the Dirichlet
initial condition).

Incremental displacement of each material point is calculated
using the central difference as

uj
i ¼ uj−1

i þ v
j− 1

2
i t ð17Þ

and hence the position of each material point is updated as

xjþ1
i ¼ xj

i þ uj
i cosθ

j
i ð18Þ

The new slope angle is then calculated according to the new
position of the material point. The new length of each soil block is
calculated as

l jþ1
i ¼ l ji þ

uj
iþ1− uj

i−1

2
ð19Þ

and its new height can be estimated accordingly based on the
constant area (mass conservation). A detailed FD algorithm is
illustrated in Fig. 5a. The elastic and plastic components (with

superscripts of ‘e’ and ‘p’ respectively) of uj
i can be worked

out by comparing the trial mobilised shear stress (¼ G uj
i ) to

Material point storing 

Block boundary storing 

Intermediate time interval storing

h

Fig. 4 An example of numerical meshes and material points
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the current shear strength in the weak layer su, w. The shear
strength for the next step is then updated with an explicit manner
according to the solved plastic shear displacement and softening
rule. The flowchart for updating su, w is shown in Fig. 5b.

In the sliding layer, the incremental axial strain is given by

ε jiþ 1
2
¼ −2

uj
iþ1− uj

i

l jiþ1 þ l ji
ð20Þ

a

b

Last step

Solve equation 
from momentum 

conservation

Update kinematic 
quantities

Update slide 
geometries from 

mass conservation

Update soil 
properties

Remesh
assessment

Start

Input 
parameters

End

No

, 

, 

Yes
, 

Shear layer

No

, 

, 

Yes
, 

Sliding layer

Fig. 5 a Overall numerical scheme. b Numerical scheme for shear stress calculation in weak layer and slope parallel earth pressure calculation in sliding layer
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where compression is taken as positive. The vertical strain is the
opposite to the axial strain as the volume change is nil. Elastic and
plastic components (with superscripts of ‘e’ and ‘p’ respectively) of

ε jiþ1
2
in the sliding layer can be figured out comparing the slope

parallel earth pressure to the limits (active and passive earth
pressures) as also shown in Fig. 5b. Similarly, the plastic compo-

nent of the incremental shear stain γ j
iþ1

2
is calculated and thus

the current shear strength in the sliding layer, su, s, is updated
based on Eq. (14).

The updated gravity shear stress and slope parallel force are
given by

τ jþ1
g;i ¼ γ

0
s jþ1
i sinθ jþ1

i and P jþ1
iþ 1

2
¼ σ jþ1

h;iþ 1
2
s jþ1
iþ 1

2
ð21Þ

where s jiþ1
2
is calculated using a central difference, i.e.

s jiþ1
2
¼ 0:5 s jiþ1 þ s ji

� �
.

The mesh size and time step are chosen based on the following
criteria.

& The mesh size should be sufficiently small so that it may fully
capture the evolution of the process zone, where the shear
strength reduces from the peak to the residual, in the weak
layer. The process zone length is slightly larger than the char-
acteristic length lu (m) (Zhang et al. 2015), which is given by
(Puzrin and Germanovich 2005)

lu ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δpr Epsh

τp;w−τ r;w

s
ð22Þ

The mesh size is then suggested to satisfy

l <
lu
20

ð23Þ

& The time step should be small sufficiently so that the numerical
‘wave’ would not pass through a mesh in every step, that is

l
t
> c ð24Þ

where c is the ‘wave’ speed (m/s) with its maximum beingffiffiffiffiffiffiffiffiffiffiffi
Eps=ρ

p
in the study.

& The mesh size may turn large or small upon extension or
compression and thus need remesh upon over distortion, in
spirit of the arbitrary Lagrangian-Eulerian method. The upper
limit is governed by (23) while the lower limit is governed by
(24).

A trial analysis has shown that numerical results are accurate
sufficiently as long as both criteria (23) and (24) are met.

Treatment of the failure initiation
The initiation history for submarine landslides varies according to
the type of external factor that might trigger a failure, for example
whether the trigger is a gradual increase in loading condition until
a limiting shear stress is reached, or alternatively failure is initiated
by shear strength reduction in the critical layer.

If the gradual increase in loading is assumed to occur
uniformly along the whole weak layer, the shear band will
initiate from the most critical point. In this case, the strength
reduction during shearing and SBP in the weak layer and
global failure in the sliding layer are self-driven and inherently
reflected in the constitutive model. This type of initiation may
occur in nature due to external factors such as seismic shaking,
volcanic eruption, rapid sedimentation and diapirism. The
pseudostatic seismic shaking force, if relevant, has to be con-
sidered as a driving force in addition to the gravity force,
whereby Eq. (15) becomes

P j
iþ 1

2
−P j

i− 1
2
− τ j

i þ τ j
drag;i−τ

j
g;i−τ

j
h;i

� �
l ji ¼ ρhj

i
l ji
t

v
jþ 1

2
i −v j−

1
2

i

� �
ð25Þ

where τh = ραhscosθ is the pseudostatic shear stress (Pa) with ah
being the horizontal pseudostatic acceleration (Pa).

A different initiation history might comprise an initial softened
zone where the sediment strength is smaller (relative to the ambi-
ent shear stress) than surrounding material within the weak layer.
Catastrophic SBP occurs with sufficient driving force from the pre-
softened zone. Initial reduced strength within the pre-softened

a

b

Frontally confined (ploughing)

Retrogression

Shear surface in weak layer

Frontally emergent (run-out)

Retrogression

Shear surface through sliding layer to seabed

Fig. 6 Different post-failure mechanisms in submarine landslides: a Frontally
confined (ploughing) and b Frontally emergent (run-out)
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zone has to be assigned in the numerical modelling to consider
this type of failure initiation history, which is given by

su;w ¼ τ0; x∈ xa; xbð Þ ð26Þ

where τ0 is the current shear strength in the pre-softened zone
(Pa) and xa and xb are the two ends of the pre-softened zone.

Treatment of the slab failure and the post-failure landslide evolution
After catastrophic propagation, the overlying sliding layer may
undergo active and passive failure during unloading and loading
at uphill and downhill slope portions, respectively (Puzrin et al.
2016; Zhang et al. 2019). This failure mechanism for landslides in
sensitive clays has been identified and discussed by many studies
(e.g. Bernander 2000, Puzrin et al. 2004, Puzrin and Germanovich
2005, Locat et al. (2011), Zhang et al. 2015, Buss et al. 2019), and is
able to explain the large scale of submarine landslide (Kvalstad
et al. 2005). Analytical criteria for initiation of shear band propa-
gation and active/passive failure under the quasi-static condition
have been presented in Zhang et al. (2019); however, the post-
failure dynamics needs numerical investigation. Different post-
failure mechanisms can be recognised as shown in Fig. 6. At the
uphill slope portion, failure might be extended as a form of

retrogression with the downward transport of sliding mass; while
at the downhill slope portion, depending on whether or not the
sliding mass can be confined by the front intact soil blocks, two
types of failure mechanisms, i.e. frontally confined (or ploughing)
and frontally emergent (or run-out), can be identified.

The retrogression and frontally confined mechanisms can be
automatically reflected by the current numerical scheme as both limit
the shear band propagation within the weak layer. The frontally
emergent mechanism, however, needs special treatment as the shear
surface might develop through the sliding layer to the seabed surface.
Puzrin et al. (2016) have thoroughly discussed themorphology evolution
and criteria for the twomechanisms. In this study, a simple criterion for
static conditions proposed in their study was used to distinguish the
frontally emergent from the confined mechanism, which is

h > 4
su;s
γ 0 ð27Þ

where h is the heave of the confined sliding mass (m) and su;s
is the average undrained shear strength in the sliding layer (Pa).
Once criterion (27) is satisfied, the shear surface is altered in the
numerical scheme from the weak layer to the seabed with the shear
band segment in the sliding layer 45° inclined with respect to the

Sliding layer

Weak layer

X

Z

h 0

Ground

H

Fig. 7 Numerical model used for landslides with shear band propagation

Table 1 Base parameters for numerical analyses

Parameter Value Unit

Length of slope 8000 m

Young’s modulus for plane strain conditions, Eps 2649 kPa

Shear stiffness in the weak layer, G 1656 kPa/m

Poisson’s ratio, υ 0.495

At rest earth pressure coefficient, K0 0.75

Gravity acceleration, g 9.81 m/s2

Saturated density, ρ 1870 kg/m3

Soil sensitivity in the weak layer 5

Soil sensitivity in the sliding layer 1

Residual plastic shear displacement, δpr 0.2 m

Dimensionless viscous parameter, η 0.0, 0.5

Flow index, n 0.15

Reference shear strain rate, γ̇ref 1.0 1/s

Reference shear rate, vref 1.0 m/s
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slope parallel direction, which is consistent with the conventional
failure plane under undrained conditions.

Numerical modelling and verifications
In this section, the above depth-integrated numerical scheme is
adopted to model large-scale submarine landslides, with the re-
sults compared with the large deformation finite element (LDFE)
modelling. The dynamic large deformation finite element analysis
was conducted based on the approach termed remeshing and
interpolation technique with small strain (RITSS: Hu and Ran-
dolph 1998). The analysis divides the whole process into a series of
small strain increments, each having sufficiently small time step to
avoid mesh distortion, followed by remeshing and interpolation of
field variables from old to new meshes. The updated Lagrangian
calculation is undertaken by the commercial package Abaqus/
Standard (Dassault Systems 2014) in each increment, and more
details about the finite element modelling can be found in Zhang
et al. (2019).

Numerical details
A curvilinear model used here comprises an upper sliding layer
and an intermediate weak layer, as shown in Fig. 7. The weak layer,
providing locus for shear surface, is assumed to be parallel to the

ground surface which is antisymmetric about the slope centre and
described by an exponential function (as documented in the
Appendix) for base cases. Effect of the geometry function is also
addressed later. In Fig. 7, θc is the maximum slope angle at the
centre, H is the half-height of the slope (m), h is the depth of the
weak layer (m) and s (=hcosθ) is the thickness of the sliding layer
(m). The length of the model was set to 8000 m so that the slope
angles at two ends approach zero. Base geometry and soil
properties are the same with those in Zhang et al. (2019) and listed
in Table 1. A total of 40 cases were conducted with various soil
properties and geometries given in Table 2. The soil sensitivity in
the weak layer was adopted as 5 which is typical for offshore
environments, while much less softening with St = 1 was assumed
in the sliding layer which was kept consistent with Zhang et al.
(2019) for comparison. Cases were considered either with or with-
out rate effects, with the former representing the quasi-static
condition and the latter the dynamic condition.

Shear band initiation and propagation
Figure 8 a and b show the distributions of the mobilised shear
stress during shear band initiation due to two types of triggering
(gradual increase of loading or decrease of strength) respectively,
for the case S05 (as shown in Table 2) without rate effects. Note
that the origin of the coordinate system was set at the slope centre.
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The peak mobilised shear stress at the slope centre is smaller
than the peak shear strength of τp = 10 kPa when the weak layer
depth is h = 8 m. With increasing h, the shear band initiates when
the maximum shear stress exceeds the shear strength. When h = 9
m, the progressive shear band propagation is apparent though the
slope is still stable after maintaining the loading condition for 100
s, as shown in Fig. 8a. When h is increased to 10 m, catastrophic
shear band propagation occurs where the shear band length grows
rapidly to near 200 m within 2 s.

The criterion for catastrophic SBP is given by (Zhang et al. 2017)

τp;w
γ0h

< tanθlu ð28Þ

where tanθlu is a tangent slope gradient with measured dis-
tance of lu from the steepest point. With the properties listed in

Table 1, the critical depth is about hcri = 9.2 m, which is well
between the numerical results i.e. between 9 and 10 m. h = 10 m
was chosen in the following such that the value is around 10%
higher than the critical ensuring the failure initiation. Similar
evolution of mobilised shear stress relative to the shear strength
can be observed during the decrease of the shear strength as
shown in Fig. 8b. Shear band propagates progressively when
τp = 11 kPa but catastrophically when τp = 10 kPa, between which
the critical value of τp = 10.7 kPa given by (28) falls in.

Figure 9 shows the shear band growth and distributions of
mobilised shear stress during the catastrophic shear band prop-
agation. At t = 5 s, the length of the fully softened zone is less
than 100 m and the process zone, where the shear stress ranges
between the peak and residual strengths, at each end of the
fully softened zone is slightly shorter. The shear band covering
both the fully softened and process zones is still limited at this

(m) -400 -200 0 200
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Fig. 10 Configurations of shear band and post-failure surface at different stages for the case S01
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Fig. 11 Numerical model used for frontally emergent analysis
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stage with the mobilised shear stresses at far fields the same
with the gravity shear stresses. The shear band propagates
quickly with a maximum rate of 35 m/s which approaches the
compression wave velocity

ffiffiffiffiffiffiffiffiffiffiffi
Eps=ρ

p ¼ 37 m/s and can be much
larger than the transport velocity of the sliding mass. The
results in terms of the shear band length from the DAM anal-
ysis compare well with the results from the LDFE analysis. After
t = 10 s, the fully softened zone is dominant compared to the
process zone within the shear band whereby the contribution
from the process zone is negligible. Therefore, considering that
the shear resistance in the shear band is constant at the resid-
ual, the force equilibrium between the shear resistance and the
gravity shear stress gives

∫
l
2

− l
2
τg−τ r
� � ¼ 0→∫

l
2

− l
2
r ¼ 0→r ¼ 0 ð29Þ

where l is the shear band length (m) and r is the average
shear stress ratio within the shear band. Equation (29) gives
the final shear band length of l = 1644 m under the quasi-static
condition (Puzrin et al. 2016). According to Zhang et al. (2019),
Eq. (29) is a conservative estimation and a more accurate
prediction considering the contribution of the process zone
generates the critical shear band length of l = 1482 m which is
around 10% smaller than that from Eq. (29). The final shear
band length with consideration of the rate effect is 1514 m, as
listed in Table 2, which is slightly larger than the accurate
prediction in Zhang et al. (2019) but smaller than the simple
prediction from Eq. (29). The final shear band length without
consideration of the rate effect, however, can propagate much
further to l = 2356 m.

Post-failure behaviour
Figure 10 presents the shapes of shear band and ground surface,
with contours of degree of softening SD = (su − τp)/(τp − τr) where
su is the current shear strength, at different post-failure stages for
the case S01 without rate effects. The results from the depth-
integrated analysis are compared to the LDFE analysis with veloc-
ity contours. The downslope and upslope segments of shear band
are denoted by lds and lus, respectively, with the total length l =
lds + lus. It is observed from both the depth-integrated and LDFE
analyses that slab failure is obvious at t ≥ 20s with passive failure
downslope and active failure upslope. The propagation rate of
shear band is faster downslope than upslope due to the significant
increase of soil volume downslope. The configurations resulted
from the depth-integrated analysis are quite comparable to the
LDFE analysis.

In summary, the results from the depth-integrated analysis, in
terms of the critical condition for shear band propagation and
arrest, and post-failure behaviour, have good agreement with the
results from the LDFE analysis and analytical solutions, validating
the numerical scheme proposed in the study.

Frontally confined vs frontally emergent mechanisms
To verify the ability of the numerical scheme in simulating the
frontally emergent behaviour, the case S02 was modified by setting
a higher strength to the downslope flat basin at x > 300 m (Fig. 11).
The undrained shear strength in the stronger basin is increased
from 10 to 40 kPa, such that the ploughing mechanism in this
region is effectively supressed, giving way to the frontally emergent
mechanism (i.e. run-out). Other parameters were kept the same as
in S02 without rate effects. The numerical model used for the
frontally emergent analysis is shown in Fig. 11.

Figure 12 shows the evolution of SBP in the weak layer and
post-failure configurations of the sliding mass surface for the

(m) 800 600 400 200 0 -200 -400 -600
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s: m, m
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Fig. 12 Numerical results of frontally emergent behaviours
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Fig. 13 a Shear band fronts, b slab failure fronts, and c shear band length and global failure length versus time for cases S01-05 without rate effects
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analysed case. For t < 10 s, the SBP in the weak layer dominates the
failure; when t = 10 s, the slab failure initiates upslope followed by
a retrogression. After the passive failure occurs downslope, the
sliding mass gradually accumulates confined at x = 300 m, increas-
ing the frontal heave. When the criterion for frontally emergent
mechanism (27) gets satisfied, the confined sliding mass runs out
over the seabed, serving as the new shear surface. The emergent
sliding mass finally settles at t = 150 s, with the front of the mass
transport deposit at around x = 750 m.

Discussion
To further explore the ability of the depth-integrated numerical
scheme for modelling submarine landslides with shear band
propagation, parametric studies with respect to the effects of
the peak strength in the sliding layer, τp,s, the weak layer depth,
h, the half-height of the slope, H, the maximum slope angle, θc,
and the geometry function were conducted, as presented in this
section.

Effects of the peak strength in the sliding layer τp, s
The shear band fronts and slab failure fronts for cases (S01-S05)
with various peak strengths in the sliding layer and without rate
effects are given in Fig. 13 and Table 2. The distance between the
two slab failure fronts is defined as global length of the seafloor
affected by the slope failure (including retrogression, ploughing
and run-out; hereafter called global failure length), L, as labelled in
Fig. 1b. Similar to the shear band length, the downslope and
upslope segments of the global failure length are denoted as Lds
and Lus, respectively, with the total length L = Lds + Lus. Except for
the case S05 where slab failure is not relevant, the downslope
segments of the shear band length (lds) and the global failure
length (Lds) are much larger than their upslope counterparts (lus
and Lus, respectively), due to the increase of soil volume

downslope. This can be further verified by the fact that the down-
slope shear band and global failure lengths grow firstly and then
level off, after which they start growing again because of the
accumulation of downward moving sliding mass. For the upslope
segment, continued growth of the shear band and global failure
lengths can be observed until their maximums are reached. The
shear band length increases while the global failure length de-
creases with the increase of the shear strength in the sliding layer.
In cases where the shear strength in the sliding layer is comparable
to or less than the weak layer, the shear band fronts are close to the
slab failure fronts.

Figure 14 shows the shear band and slab failure fronts, shear
band length and global failure length for the cases S01-05 with the
consideration of the rate effect. Shear band and global failure
lengths for different cases are also summarised in Table 2. With
rate effects, the shear band length and global failure length are
much smaller than that without rate effects as a considerable
amount of energy has been dissipated through material damping
in the former. For the case S05, the upslope segment of shear band
is close to the downslope segment, which is in alignment with the
case of no rate effect.

Figure 15 shows final configurations of the sliding mass
deposit for cases S02-S04 without rate effects, compared with
the LDFE results. With the increase of the strength in the sliding
layer, the retrogressive failure upslope is gradually limited and
the sliding layer breaks off leaving a scar. Generally, most post-
failure features can be well replicated by the depth-integrated
analysis. The main shortcoming is that it is unable to simulate
the formation of horsts and grabens in the sliding layer as
identified in the LDFE analysis. This does not demerit the
practical application of the method for assessing the main
features of landslides, such as global failure length, velocity
and configuration of sliding mass deposit.
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Fig. 15 Final configurations of shear band and post-failure surface for cases a S02, b S03, and c S04 without rate effects
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Effects of the weak layer depth h
Table 2 summarises the shear band and global failure lengths
for cases S06-S10 characterised by different weak layer depths,
with and without rate effects. Note that the shear strength
ratio (which is the shear strength over the effective overbur-
den pressure) is assumed as 0.117 in the weak layer and as
0.234 (averaged) in the sliding layer. It can be observed that
the shear band length increases with the increase of the weak
layer depth, implying a greater propagation in the deep-seated
weak layer. The slab failure occurs upslope only for the case
of h = 50 m and does not occur at all for the case of h = 100
m.

Effects of the half-height of the slope H
In cases S10 to S12 in Table 2, the half-height of the slope varies
from 10 to 100 m. The shear band and global failure lengths
increase by almost a factor of 5 with the increase of the half-
height of the slope H from 10 to 100 m.

Effects of the maximum slope angle θc
The maximum slope angle θc varies between cases S12-S15 from 6°
to 16°. The shear band and global failure lengths dramatically
increase with the decrease of the maximum slope angle, implying
that shear band propagation can be more dangerous in milder
slopes. This explains the enormous volume of some submarine
landslides observed in very gentle slopes.

Effects of the geometry function
Different geometry functions were tested in examples S16 to S20,
with and without accounting for rate effects. In addition to the
exponential function, the hyperbolic function and logarithmic
functions were used as documented in the Appendix. In particular,
a family of logarithmic functions (Puzrin and Burland 1996) can

cover a wide spectrum of geometries by adjusting the value of eXu

(Zhang et al. 2019). It is found that, provided the same H and θc,
the results with the hyperbolic geometry are very close to that with
the exponential geometry, with the difference of around 5%. For
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Fig. 16 Illustration of St. Niklausen slide. a Bathymetry map with outline of the slide (after Schnellmann et al. 2005). b Pre-failure slope geometry (after Strasser et al. 2011)
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the cases with a logarithmic geometry, the shear band and global

failure lengths vary with the value of eXu. With the increase of eXu

from 2 to 15, the shear band and global failure lengths have almost
doubled.

Modelling of St. Niklausen slide
St. Niklausen slide is a subaqueous mass movement at the bottom
of the perialpine Lake Lucerne in Central Switzerland (Fig. 16a). It
covers around 1.5 × 106 m3 of postglacial sediments affecting an
area of 0.8 km2 from the main scar to the mass flow deposits
(Fig. 16a, Schnellmann et al. 2005). It was dated back to 2420 cal yr
BP and triggered by a major northern alpine earthquake of Mw >
6.5 (Strasser et al. 2007). The travel distance of the failed mass
(from the main scar to the mass transport deposit limit) is up to
1500 m and the width of main scar is about 1200 m (Schnellmann
et al. 2002, 2005). Such scale of subaqueous failure event was
considered to trigger a tsunami hazard with the run-up height
up to 4 m, and thus has received considerable attention
(Schnellmann et al. 2002, 2005; Stegmann et al. 2007; Strasser
2007, 2011), including a comprehensive large deformation numer-
ical analysis using the Coupled Eulerian-Lagrangian (CEL) method
(Stoecklin et al. 2020). The post-failure morphology of the event
has been documented using a high-resolution seismic system
(Schnellmann et al. 2005) and the soil properties of the intact
and failed mass have been investigated through both in situ and
lab geotechnical testings (Strasser et al. 2007). The wealth of
available information allows for the St. Niklausen slide to be used
as a case study for illustrating the application of the proposed
numerical framework considering the SBP mechanism.

The focus is on a two-dimensional section with the furthest
travel distance as shown in Fig. 16a. Figure 16 b provides the
initial geometry of the sectional model used in the numerical
analysis, where the pre-failure lake bottom was reconstructed
assuming the initial surface was parallel to the identified slide
surface (Strasser et al. 2011; Stoecklin et al. 2020). The peak
undrained strength profile of the site near the scar was obtained
by Strasser et al. (2007) as replotted in Fig. 17, with the averaged
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Fig. 17 Peak undrained shear strength profile of St. Niklausen slide mass (after
Strasser et al. 2007)

Table 3 Parameters for the numerical analysis of the St. Niklausen slide

Parameter Value Unit

Length of slope (horizontal) 1200 m

Depth of weak layer, h 6.5 m

Saturated density, ρ 1400 kg/m3

Averaged peak undrained shear strength in sliding layer, τp, s 6.1 kPa

Peak undrained shear strength in weak layer, τp, w 6.0 kPa

Soil sensitivity, St 2.0

Residual plastic shear displacement, δpr 0.15 m

Young’s modulus for plane strain conditions in sliding layer, Eps 600 τp, s kPa

Shear stiffness in weak layer, G 150 τp, w kPa

At rest earth pressure coefficient, K0 0.6

Gravity acceleration, g 9.81 m/s2

Horizontal pseudostatic acceleration, αh 0.2 m/s2

Friction drag coefficient, Cf 0.005
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value in the sliding layer and weak layer being 6.1 kPa and 6.0
kPa, respectively. Soil sensitivity, which is the ratio between the
peak and residual undrained shear strengths, is between 1.9 and
2.1 (Stoecklin et al. 2020) with the averaged value 2.0 used in
present study. The shear displacement required for the sensitive
soils fall to the steady state typically ranges between 0.1 and 0.5
m (Skempton 1985) and was set to 0.15 m in this analysis. Elastic
deformation of soils is considered with the shear modulus in the
slide plane adopted as 150 times the undrained shear strength
(= 900 kPa) and the plane strain Young’s modulus in the sliding
layer as 600 times the undrained shear strength (= 3660 kPa).
The pre-failure lateral earth pressure coefficient was set to 0.6,
considering normally consolidated conditions. The initial fail-
ure was assumed to be triggered by an earthquake of horizontal
pseudostatic acceleration of 0.2 m/s2 lasting for 2 s, which is
consistent with the setting in Stoecklin et al. (2020). Consider-
ing the sliding mass length of ~ 500 m and its surface roughness
of 0.01–0.1 m, the skin friction drag coefficient is averaged at
around 0.005 according to Eq. (9). Other parameters are listed
in Table 3 in accordance with Stoecklin et al. (2020).

Figure 18 shows the numerical modelling of the St. Niklausen
slide post-failure evolution using the proposed method, with the
red solid line and the black solid line and representing the shear
band in the weak layer and the apparent seabed surface, respec-
tively. The dash lines denote the initial configurations of the lake
bottom and the weak layer. With the seismic shaking (< 2 s), the
shear band first initiates within the steepest part of the slope, i.e.

near the toe. The shear band then continues to propagate along
the weak layer, also after the seismic action is terminated,
reaching the slope toe downslope and the sufficiently flat area
upslope. Thereafter, the sliding layer experiences active failure
upslope and passive failure downslope resulting in the global
slab failure. The failed mass moves downwards thrusting the
basin sediments and triggering further shear band propagation
downslope with a main headwall formed upslope. No retrogres-
sive failure is observed in the numerical modelling of the St.
Niklausen slide. Figure 19 compares the final post-failure config-
uration using the proposed method with the CEL numerical
result (Stoecklin et al. 2020) and the measured seismic reflection
profile. Those results agree well with each other in terms of
configuration of the stacked mass transport deposits, main scar
and global failure length.

Conclusions
The study has proposed a numerical method that can simu-
late the whole evolution of submarine landslides, including
the failure initiation, shear band propagation, slab failure and
post-failure dynamics. Diverse post-failure mechanisms, such
as retrogression upslope and ploughing and run-out down-
slope, can also be recorded through the proposed numerical
scheme. Conventional debris flow numerical methods solve
flow dynamics using the depth-integrated method, which how-
ever needs input information such as the volume and initial
velocity of the failed mass. They might be roughly estimated
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s: m

s: m

(m)100 200 300 400 500 600 700 800
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Fig. 18 Numerical modelling of the St. Niklausen slide evolution
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in back analyses of historical events but can be hardly deter-
mined for carrying out failure prediction and recurrence. The
proposed numerical scheme has combined the shear band
propagation theory and the depth-integrated method with
the former able to naturally reflect failure initiation and
propagation. The governing equations have been established
based on the conservation of mass and the conservation of
momentum and solved using an explicit finite difference
scheme. The drag force from the ambient water is simplified
and formulated into the governing equations. Shear band
propagation in the weak layer and slab failure in the sliding
layer are controlled by the strain softening and rate depen-
dency of the corresponding undrained strength parameters.
The soil parameters and flow dynamics in the sliding layer
are averaged over the depth.

The results obtained through the proposed numerical
scheme are in good agreement with the analytical solutions
and large deformation finite element analyses, in terms of the
critical conditions for failure initiation as well as the post-
failure dynamics. Upon failure initiation, the failure extends
further into the downslope segment of the slope than into the
upslope one. The shear band length increases while the global
length of the seafloor affected by the slope failure (global
failure length) decreases with the increase of the shear
strength in the sliding layer. Meanwhile, the shear band length
and global failure length dramatically increase with the de-
crease of the maximum slope angle, implying upon shear

band propagation the failure in less inclined slope can be
more dangerous. This explains the enormous volumes of
some submarine landslides observed in very gentle slopes.

The St. Niklausen slide at the floor of the perialpine Lake
Lucerne in Central Switzerland has been simulated using the
proposed DAM framework considering the shear band propaga-
tion mechanism. The numerical results from the current numeri-
cal method agree well with the large deformation finite element
analysis and the measured seismic reflection profile in terms of the
shape of the stacked mass transport deposits, the position of the
main scar and the global failure length.

The main shortcomings of the numerical method are (a) it
is neither able to simulate the formation of horsts and gra-
bens in the sliding layer, (b) nor to reflect the lubrication and
hydroplaning caused by water entrainment and entrapment.
Nevertheless, the simplicity and time efficiency of the pro-
posed numerical scheme seem promising for assessing the
main features of submarine landslides, such as the travel
distance, flow dynamics and configuration of sliding mass
deposit.
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Appendix

Exponential geometry
An exponential function of geometry is given by

F Xð Þ ¼
−H 1−exp −

X
H
tanθc

� �� 	
; X > 0

H 1−exp
X
H
tanθc

� �� 	
; X≤0

8>><>>: ð30Þ

Hyperbolic geometry
A hyperbolic function of geometry is given by

F Xð Þ ¼
−HX tan θc
H þ X tan θc

;X > 0

−HX tan θc
H−X tan θc

;X ≤ 0

8><>: ð31Þ

Logarithmic geometry
A logarithmic function of geometry is given by

F Xð Þ ¼

H; X < −Xu

−X tan θc þ αX tan θc ln 1þ X
H
tan θc

� �� 	n
;−Xu≤X < 0

−X tan θc þ αX tan θc ln 1−
X
H
tan θc

� �� 	n
; 0≤X < Xu

−H; X≥Xu

8>>>>>><>>>>>>:
ð32Þ

where:

n ¼
1þ eXu

� �
ln 1þ eXu

� �
eXu eXu−1
� � ;α ¼

eXu−1
� �

eXu ln 1þ eXu

� �h in and eXu

¼ Xu tan θc
H
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