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of samples on regional landslide susceptibility
modelling

Abstract Assessment of the spatial probability of future land-
slide occurrences for disaster risk reduction is done through
landslide susceptibility modelling. In this study, we investigated
the effect of time and space partitioning strategies of samples on
the performance of regional landslide susceptibility models on
macro-scale mapping in the state of Mizoram, India, covering
21,087 km2 area. We used landslide inventory data of 2014 and
2017 periods consisting of 1205 and 2265 landslides, respectively,
to train and test the models with four sampling strategies such
as spatial, temporal, temporal (size constrained) and temporal
(geographic constrained). We used five commonly inherited
models such as multiclass weighted overlay (MCWO), informa-
tion value (IV), weights of evidence (WoE), logistic regression
(LR) and artificial neural network (ANN) to evaluate the effect
of sampling strategies on the model performance for regional
landslide susceptibility mapping. Validation of model perfor-
mance was done using receiver operating characteristic (ROC)
curve. Traditional spatial sampling strategy applied to land-
slides in 2014 with a random split in 70:30 proportion provided
a high performance of all the five models but failed to predict
landslides in 2017. The landslide incidences in 2017, when used
for model validation either entirely or in different split condi-
tions (both size and geographic constrained), provided consis-
tent performance, even though the testing sample size is large or
have a different spatial disposition, if the training was carried
out with non-linear susceptibility models such as LR and ANN
using landslide incidences in 2014. Results show the importance
of sample selection during validation of landslide susceptibility
models on a regional scale.
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Introduction
Landslides are frequent natural disasters that have impacted peo-
ple and economy worldwide. According to the EM-DAT, 275 people
died (cases > 10) and 54,908 people were affected (cases > 100) due
to landslides with an economic loss of 0.9 billion US$ in the year
2018 (EMDAT 2019). The Himalayan belt is the hotbed for land-
slide disaster in the world (Froude and Petley 2018). One of the
primary management and mitigation measures to reduce landslide
disaster risk is to create landslide susceptibility maps (LSM). These
maps give a spatial probability of an area to future occurrence of
landslides (Reichenbach et al. 2018), thus help planners to decide
on prioritisation of localities in a region for land development
activities (Sepe et al. 2019). It also helps in regional landslide early
warning through incorporation of rainfall threshold models
(Mathew et al. 2014).

Landslide susceptibility modelling is a constantly evolving area
of research, and a comprehensive review of susceptibility models
was recently provided by Reichenbach et al. (2018) and Lombardo
et al. (2020). The reliability of LSMs depends mostly on the
amount and quality of available data, the working scale and the
selection of the appropriate methodology of analysis (Ayalew and
Yamagishi 2005; Lombardo et al. 2020). Over the years, LSMs have
been prepared in different parts of the world using heuristic,
statistical and deterministic approaches (Van Westen 1993;
Aleotti and Chowdhury 1999; Reichenbach et al. 2018). Determin-
istic approach for landslide susceptibility modelling on a regional
scale was found to be effective for landslide early warning
(Montrasio et al. 2014). But, data-driven statistical methods are
commonly used in susceptibility modelling, and they include bi-
variate analysis, multivariate analysis, neural network, fuzzy logic
and genetic algorithms (van Westen et al. 1997; Aleotti and
Chowdhury 1999; Guzzetti et al. 2005; Kanungo et al. 2006). Other
landslide susceptibility analyses include probabilistic methods and
machine learning techniques wherein the weights are assigned
according to the probability of landslide and non-landslide occur-
rences (Bonham-Carter 1994; Vahidnia et al. 2010; Di Napoli et al.
2020). Selection of predisposing parameters which is also impor-
tant for the success of a susceptibility model has been investigated
by Guzzetti et al. (2006), Ghosh et al. (2011) and Cevasco et al.
(2014).

Landslide susceptibility assessment is generally based on the
concept that ‘the present and the past are key to the future’
(Varnes 1984; Carrara et al. 1991; Hutchinson 1995; Guzzetti et al.
1999; Aleotti and Chowdhury 1999), which implies that slope
failure in the future will occur under same conditions which led
to past instability (Guzzetti et al. 1999). This is why most hazard
analysts take into account updated landslide inventory that repre-
sents the fundamental data for identifying the hill-slope instability
factors in triggering landslides (Lee and Sambath 2006). Therefore,
the use of future or time partitioned inventory is desirable for
validation of landslide susceptibility models (Chung and Fabbri
2003; Remondo et al. 2003). Landslide inventory maps, which
portray spatial and temporal patterns of landslide distribution,
type of movement, rate of movement and kind of material
displaced (earth, debris or rock), are used to train and test sus-
ceptibility models (Pardeshi et al. 2013). A common practice for
acceptance of susceptibility models is validation by the division of
the dependent variable in time or space. The space partitioned
method splits samples randomly in a particular ratio (commonly
70:30). This method is useful in the absence of time-dependent
variables and offers a non-time assessment of results derived from
prediction models (Chung and Fabbri 2003). The performance of
the prediction result of susceptibility models is estimated using
receiver operating characteristic (ROC) curve (Fawcett 2006; Lee
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et al. 2004; Blahut et al. 2010). However, statistical methods used
by them (e.g. Kavzoglu et al. 2014; Pellicani et al. 2017; Xiao et al.
2020), though predicted higher performance using ROC, are ap-
plied to a limited area and could not conclusively justify the usage
of one GIS model over the other for regional landslide suscepti-
bility mapping.

The objective of this study is to evaluate performance of data-
driven models for regional landslide susceptibility with temporally
and spatially split landslide inventory data. We investigated land-
slide susceptibility over a large area covering 21,087 km2 of the
Mizoram state, India, using training and testing data prepared
with four sampling strategies from a bi-temporal (2014 and 2017)
landslide inventory dataset. These are shallow landslides induced
by rainfall during the monsoon season. Five susceptibility models,
viz. multiclass weighted overlay (MCWO), information value (IV),
weights of evidence (WoE), logistic regression (LR) and artificial
neural network (ANN), were used to find the effect of the sampling
strategies on regional landslide susceptibility mapping. Major
landslide predisposing factors in the Himalayas used by previous
researchers (e.g. Kanungo et al. 2006; Ghosh et al. 2011) such as
slope, aspect, landform, lithology, distance to lineaments, soil and
land use were used in the susceptibility models.

Study area
The state of Mizoram in India, covering an area of 21,087 km2, was
considered for regional landslide susceptibility modelling on
macro-scale (Fig. 1). This state generally witnesses a large number
of landslides during the monsoon season. The minimum and
maximum elevations of the study area are approximately 550 m
and 2100 m, respectively. The state has a highly rugged terrain with
narrow, deep valleys and steep slopes (Fig. 1). Landslide inventory
for both the years mapped using satellite data is also shown in
Fig. 1.

The rainfall pattern for both the years (2014 and 2017) is shown
in Fig. 2. The graph indicates that the amount of total rainfall
during June 2017 is almost twice the amount of total rainfall during
June 2014. Excess rainfall in 2017 during the monsoon season (June
to September) has resulted in occurrence of more landslides in
2017 in comparison to 2014.

The geology of Mizoram is controlled by the eastern
syntaxial bend of the Himalayan orogeny (Valdiya 2016). The
Neogene sedimentary rocks of Tipam and Surma groups are the
primary litho units that constitute the region. The Surma group
is unconformably overlain on the Barail group, which is made
up of shale and siltstones. The Surma group is divided into
lower, middle and upper Bhuban formations, which transition-
ally changes to Bokabil formation. Shales, siltstones and sand-
stones are the main rock units occurring as interbedded or
massive layers (Valdiya 2016). The Tipam group lies conform-
ably over the Surma group and is mainly comprised of thickly
bedded sandstones. The sedimentary rocks are folded into
asymmetrical anticlines and synclines along N-S axes. The
folded and friable arenaceous rocks constituting the topography
make the region highly vulnerable to landslides.

Materials and methods
The occurrence of landslides is controlled by predisposing factors
such as lithology, landform, soil and geological structure (Carrara
et al. 1991; Guzzetti et al. 1999). These layers were prepared and

integrated in GIS using weightages derived through five modelling
techniques. The flowchart of the methodology is shown in Fig. 3.

Landslide predisposing factors
We have used Cartosat-1 DEM (30 m) for generating topographic
factors such as slope angle and slope aspect. The slope angle
ranges from 0° to 87° and was classified into ten classes using
the natural break method. Aspect is categorised into eight direc-
tional classes ranging from 0° to 360° w.r.t. the North. The classes
for the slope and aspect are shown in Fig. 4a and b.

Other factors used in the study are lithology, landform, linea-
ments, soil and land use. Geological map (i.e. lithology and line-
ament) on 1:50,000 scale published (www.bhukosh.gsi.gov.in) by
Geological Survey of India (GSI) was used in the study (GSI 2020).
Shale and sandstone of the upper/middle Bhuban formation of the
Surma group form the major litho types in the area (Fig. 4c).
Euclidean distance, in the case of lineaments, was calculated
through the identification of the nearest landslide location
(Fig. 4d). Land Use and Land Cover (LULC) map prepared by
NRSC (NRSC 2014) on 1:50,000 scale using satellite data was used
in this study. Majority of the area is covered with the deciduous
forest with evergreen/semi-evergreen and scrub forest being the
less dominant types (Fig. 4e). The soil texture map prepared on
1:50,000 scale by Mizoram Remote Sensing Applications Centre
(MIRSAC) using satellite data and field survey was used in this
study. The soil is formed by the erosion of the Surma and Tipam
group of rocks and is classified mainly as loamy and clayey
(Fig. 4f). Landform map prepared on 1:50,000 scale jointly by
GSI and National Remote Sensing Centre (NRSC 2012) using
satellite data and digital elevation model was used in the study
to calculate the weightages of landform classes for landslide oc-
currence. Highly and moderately dissected hills and valleys ori-
ented north-south are mostly found in the area (Fig. 4g). These
predisposing factors were converted to 30 m × 30 m grid size and
ingested to the susceptibility models.

Landslide inventory
High-resolution multi-spectral images of LISS-IV acquired from
the Resourcesat-2 satellite were used for mapping landslides using
the object-based change detection method (Martha et al. 2010,
2011, 2016). Image characteristics such as reduced NDVI in land-
slide affected areas and increase in brightness due to exposure of
new rock and soil are mainly used for detection and mapping of
landslides. Landslides in Mizoram are mostly rainfall-induced
shallow landslides and are small in size. Therefore, we have
mapped the entire body of landslides as single polygon since it is
difficult to differentiate scarp from remaining parts of the land-
slide body. Figure 5 shows pre- and post-landslide satellite images
of Mizoram used in landslide inventory mapping. As shown in Fig.
1, landslide occurrences in the east-central part of the study area
are less in both the periods. However, landslides in the 2014 period
have occurred in the entire study area, although prevalent in the
northern part of the area. On contrary, majority of landslides in
2017 occurred in the Lunglei district (western part of the study area
(Fig. 1)) due to cyclone-induced rainfall, thus offered an ideal
opportunity to validate the models using time partitioned samples.
Table 1 shows the summary statistics of landslides mapped in 2014
and 2017 periods.
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GIS models for susceptibility mapping
Five models such as information value (IV), multiclass weighted
overlay (MCWO), weights of evidence (WoE), logistic regression
(LR) and artificial neural network (ANN) were used for generation
of landslide susceptibility map using time and space partitioned
samples. These models are briefly described below.

Information value (IV) method
This method provides information about the relative influence of
predisposing factors on the landslide occurrence. The information
value Ji for each disposing factor Xi concerning landslides is given
in Eq. (1) (Yin and Yan 1988).

Fig. 1 Shaded relief map of Mizoram, India, showing the distribution of landslides in 2014 and 2017 periods
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Fig. 2 Monthly rainfall in Mizoram for 2014 and 2017 (Source: Envis Centre: Mizoram)

Fig. 3 Methodology flowchart of landslide susceptibility modelling and validation
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Ji ¼ ln
Si=N i

S=N
ð1Þ

where Si is the area of landslides within the ith class of causative
factor X, Ni is the area of the ith class of the predisposing factor X,
S is the total area of the landslides in the study area, and N is the
total area of the study area. The final susceptibility index map was
generated by integrating all factors as shown in Eq. (2).

LSI ¼ ∑
n

i¼1
J ð2Þ

where LSI is the landslide susceptibility index and i varies from 1 to
n.

Multiclass weighted overlay (MCWO) method
The MCWO method weighs predisposing factors using landslide
inventory data and calculates the spatial association of landslides
with categorical variables using Yule’s coefficient (YC) (Eq. (3))
(Ghosh et al. 2011).

Yc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mcl=Mcl

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mcl=Mcl

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mcl=Mcl

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mcl=Mcl

q ð3Þ

where Mcl is the area of ‘positive match’ where a factor class and
landslides are both present, Mcl is the area of ‘mismatch’ where a
factor class is absent, but landslides are present, Mcl is the area of
‘mismatch’ where a factor class is present, but landslides are
absent, and Mc l is the area of ‘negative match’ where both factor
class and landslide are absent. The value of YC ranges between −1
and +1. A negative YC means less spatial association, whereas a
positive YC means high spatial association (Ghosh et al. 2011).
Based on the YC, the landslide favourability score for each factor
class is generated using Eq. (4).

LOFS ¼
0 for YC ≤0
Yc

Ycmax
for YC > 0

8
<

:
ð4Þ

Fig. 4 (a) Slope, (b) aspect, (c) lithology (Source: Geological Survey of India), (d) structure (Source: GSI), (e) land use (Source: NRSC), (f) soil (Source: MIRSAC) and (g)
landform (Source: NRSC). Insets (e1, f1 and g1) show enlarged views
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where LOFS stands for landslide observed favourability score and
YCmax is the highest value among all YC values of the predisposing
factor class.

The LOFS values can determine the predictor sub-class weight,
but the absolute value of the landslide predisposing factor, on the
whole, can be determined by the ratio of difference of spatial
association (YC) as shown in Eq. (5).

PR ¼ SAmax−SAmin½ �= SAmax−SAminð Þmin

� � ð5Þ

where PR stands predictor rating and SA stands for spatial asso-
ciation between factor classes with respect to landslides.

Weight of evidence (WoE) method
Weights of evidence (WoE) was primarily developed for mineral
exploration applications (Bonham-Carter 1994). But due to its
broad applicability and scope, it has also been used in the field
of landslide susceptibility zonation (Mathew et al. 2007). WoE is
based on the concept of prior and posterior probability, assuming
that input layers are independent of one another (Neuhäuser and
Terhorst 2007).

An open-source geospatial tool in ArcGIS (Arc-SDM-10.5,
Sawatzky et al. 2009) was used to calculate weights (W+ and W-)
depending on the association between landslides and the layers for
each class. Also, other parameters like contrast (c) and studentised
contrast (Sc) are estimated to provide a spatial relationship be-
tween landslides and predisposing factors. The WoE method is
discussed in detail by Neuhäuser and Terhorst (2007), Mathew
et al. (2007), Blahut et al. (2010) and Pudi et al. (2018).

Logistic regression (LR) method
Logistic regression is one of the multivariate techniques which
models the relationship between a dependent (dichotomous) and
independent variables. The landslide distribution in the study area
comprises of training data and randomly selected equal number of
non-landslide data (Lee et al. 2002). The status of each cell in the
landslide database is represented as ‘1’ indicating presence of
landslides and as ‘0’ indicating the absence of landslides
(Yesilnacar and Topal 2005). The model was executed in Statistical
Package for Social Sciences ©(SPSS 2017). It is based on the logistic
function f (z) which is defined in Eq. (6).

Fig. 5 Pre- and post-landslide Resourcesat-2 LISS-IV Mx image used in the preparation of landslide inventory (yellow polygons) after the monsoon seasons in 2014 and
2017

Table 1 Summary statistics of landslides mapped in Mizoram for the years 2014
and 2017

Parameter 2014 2017

Total number 1205 2265

Minimum area 62 m2 43 m2

Mean area 909 m2 893 m2

Maximum area 31,242 m2 65,755 m2

Total area 1,095,362 m2 2,019,147 m2

Technical Note

Landslides 18 & (2021)2286



f zð Þ ¼ 1= 1þ e−zð Þ ð6Þ

where z varies from − ∞ to +∞. To obtain the logistic model from
the logistic function, z is written as a linear combination of some
constant value, which is the intercept of the model and products of
independent variables and their respective coefficients (Eq. (7)).

Z ¼ βo þ ∑
n

i¼1
βiXi ð7Þ

where βo is the intercept of the model, βi is the corresponding
coefficients for each independent factor, Xi is the independent
factor, and i varies from 1 to n.

Artificial neural network (ANN) method
Artificial neural network (ANN) is one of the widely used tech-
niques in landslide susceptibility modelling (Gόmez and Kavzoglu
2005). The purpose of an ANN is to build a model of the data
generating process so that the network can predict outputs from
inputs through a learning process (Lee 2005). A feed forward network
using multi-layer perceptron (MLP) technique comprising of input,
hidden and output layers (three layers architecture) was utilised in the
study (Fig. 6). The detailed description of MLP can be found in
Basheer and Hajmeer (2000). Input data are transformed into output
classes through interconnected neurons through weights which are
summed up subsequently (Kanungo et al. 2006). The number of
neurons during the processing of input and output layers depends
on the number of data sources and often determined by trial and error
method. These networks are generally non-linear and could process
and analyse intricate data patterns (Kanungo et al. 2009). The network
learns by adjusting the weights between the neurons in response to the
errors between the actual output values and the target output values
based on specific algorithms (Lee et al. 2004).

Two stages that are generally involved in using neural networks
for multisource classification are (i) the training stage wherein inter-
nal weights are adjusted and (ii) the classifying stage (Lee et al. 2004).
Weights physically represent connections between processing units
or neurons, and each neuron has a rule for summing the input
weights and a rule for calculating an output value (Ermini et al.
2005). The rules can be formed from different algorithms which are
implemented until the desired threshold is reached. The back-
propagation algorithm, which is generally used and also applied in
the present study, trains the network until some minimal targeted
error is achieved between the desired and actual output values
(Bishop 1995; Pradhan et al. 2010). Formally, the input that a single
node receives is weighted according to Eq. (8).

netb ¼ ∑
i¼1

wab*oa ð8Þ

where wab represents the weights between nodes a and b and oa is
the output from node a. Output from node c is given by Eq. (9).

oc ¼ f netbð Þ ð9Þ

The function f is usually a non-linear sigmoid function that is
applied to the weighted sum of inputs before the signal propagates
to the next layer. The error, E, for an input training pattern, I, is a
function of the desired output vector, d, and the actual output
vector, o, given by Eq. (10).

E ¼ 1
2
∑
c

dc−ocð Þ2 ð10Þ

The error is propagated back through the neural network and is
minimised by adjusting the weights between layers (Paola and
Schowengerdt 1995).

The training phase was executed with seven predisposing fac-
tors (e.g. slope, aspect, lithology landform, LULC, soil and struc-
ture) and landslide and non-landslide data. The values are
normalised and fed into the ANN architecture. The ANN network
produced hidden layer weights and an importance matrix through
12 non-linearly connected neurons.

Model training and validation

Sample preparation
The landslide database of 2014 and 2017 was created as polygons in
the form of ESRI shape files. These shape files form the base for
training and testing of susceptibility models. Both training and
testing of models were carried out in a raster environment. Hence,
the polygon shape files were converted to a raster file of 30 m × 30
m grid size. However, in instances where the landslide area is less
than 900 m2, the polygons were first converted to points (centroids
of the polygons) and then rasterised as 30 m × 30 m grid. Thus, all
landslides were converted to 30 m × 30 m grid. WoE, LR and ANN
models require the dependent variable to be ingested as points
during model execution. Hence, the 30 m × 30 m grids corre-
sponding to training data were further converted to points and
ingested to these three models to calculate weights of independent
variables.

Data training and validation
Any prediction model aims to find the probability of future oc-
currence of landslides using the historical landslide data. This
means prediction done using historical landslide inventory data
needs to be validated using succeeding landslide data. Generally,
in the absence of subsequent (i.e. future) inventory, the standard
approach adopted is by selecting the landslide inventory of a
particular year and randomly splitting it into 70:30 ratio
(Pellicani et al. 2017; Taalab et al. 2018; Vakhshoori et al. 2019;
Xiao et al. 2020) or by taking equal numbers of training and
testing datasets (Kavzoglu et al. 2014; Segoni et al. 2020). In
another study, Guzzetti et al. (2006) have shown that the perfor-
mance of susceptibility models generated using a large number of
landslides is better in comparison to model performance when less
number of landslides are used as training population. This indi-
cates that training sample size also influences the performance of
susceptibility models. In this study, the landslide inventory data-
base of 2014 and 2017 was used to design four strategies of training
and testing samples to validate the disparity of sample population
(both spatial and temporal) on model performance. The random
splitting of samples to training and testing data was iterated ten
times to rule out that the accuracy obtained for susceptibility
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models is not result of chance (Kanungo et al. 2006; Lombardo
et al. 2020). The landslide polygons were split randomly as training
and testing data using the geostatistical analyst tool of ArcGIS 10.5
software and subsequently rasterised as explained in the previous
section.

I. Strategy 1: Spatial sampling - The landslide inventory of 2014
was considered for the model generation and validation where-
in the dataset was randomly divided into 70% (training) and
30% (testing) landslides (Fig. 7a). This is the most common
approach followed in landslide susceptibility modelling
(Aleotti and Chowdhury 1999; Guzzetti et al. 1999; Ghosh
et al. 2011).

II. Strategy 2: Temporal sampling - The inventory of 2014 (100%)
was considered to train the models, and the inventory of 2017
(100%) was used to test the models (Fig. 7b). This is the ideal
approach to validate the performance of landslide prediction
models (Chung and Fabbri 2003).

III. Strategy 3: Temporal sampling (size constrained testing) -
The inventory of 2014 (100%) was considered to train the
models, and the inventory of 2017 (50%) was used to test the
models. This was done to remove the bias of oversampled
testing data by approximately equalising the testing and
training sample population (Fig. 7c).

IV. Strategy 4: Temporal sampling (geographic constrained test-
ing) - The inventory of 2014 (100%) was considered to train
the models, and the inventory of 2017 (50%) was constrained
geographically to test the models. There is one cluster of

landslides in the western part of Lunglei district (Fig. 1). This
cluster boundary was considered to geographically constrain
the selection of testing samples. Herein, 20% of the landslides
within the cluster and 80% of the landslides for remaining
area outside the cluster corresponding to the year 2017 were
selected as testing sample population (Fig. 7d). This helped us
to validate spatial biasness of testing sample population on
the performance of models.

The landslide susceptibility models were validated for their
predictive performance using receiver operating characteristic
(ROC) curve (Blahut et al. 2010; Frattini et al. 2010; Ghosh et al.
2011). False positives and true positives were calculated as a con-
tingency table by applying a range of different cut-offs (Frattini
et al. 2010). ROC as a two-dimensional graph was created between
true positive rate (y-axis) and false-positive rate (x-axis). The area
under curve (AUC) of ROC is the quantitative measure of the
susceptibility model performance (Sarkar et al. 2013). ROC provid-
ed relative trade-offs between benefits (true positives) and costs
(true negatives) (Fawcett 2006).

Results and discussion

Model training
The four sampling strategies based on two training cases, i.e. 70%
and 100% of landslides of 2014, resulting in a total of 844 and 1205
landslides, respectively, were used for training the five models. The

Fig. 6 The architecture of the ANN model used in landslide susceptibility mapping
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two training cases, due to their uniformity in spatial disposition,
preserve the effective control of predisposing factors on the pre-
diction of landslides by the five models. The control of the pre-
disposing factors for the 70% dataset training case is summarised
in Table 2 and that of the 100% dataset training case is summarised
in Table 3.

As shown in Tables 2 and 3, the training sample population
influence the relative weight of predisposing factors. Lithology,
land use and aspect have the highest control on the occurrence
of landslides in all five methods. However, interestingly, when

trained with 100% of 2014 landslides, the role of the slope is
diminished in comparison to training of models with 70% of the
2014 landslides. This corroborates our understanding that land-
slides in the Northeast Himalayas in India occur in all kinds of
slope conditions provided right kind of lithology (e.g. sandstone-
shale-siltstone alternative bands) exists.

Model validation
Landslide susceptibility maps generated using 70% and 100% of
2014 landslides as training datasets were validated with spatial and

Fig. 7 Number and distribution of training and testing landslides in four sampling strategies. a Strategy 1, Spatial sampling; b Strategy 2, Temporal sampling; c Strategy
3, Temporal sampling (size constrained testing) and d Strategy 4, Temporal sampling (geographic constrained testing). The biasness of testing sample population has been
reduced in Strategy 4 (less samples in d1 in comparison to c1).
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temporal testing landslide data as per the strategies described in
the “Data training and validation” section. The accuracy as AUC
(%) estimated using the ROC curve provided a direct comparison
of the model performance among the four types of space and time
partitioned landslide inventory testing datasets. Table 4 shows
AUC (%) obtained using ten iterations of training/testing sam-
pling strategies (1, 3 and 4). Strategy 2 involves only one iteration
since entire temporal data were used for training and testing of
models. The standard deviation of AUC estimated with ten ran-
dom splitting iterations is quite low (Table 4), which indicates that
model performance is not a result of chance. The accuracy of
models reported in this study corresponds to the maximum AUC
value.

In the sampling strategy 1, the maximum AUC (84%) was
obtained for IV and ANN followed by WoE (80%), LR (78%) and
MCWA (77%) models (Table 4). The AUC obtained using sampling
strategy 2 is MCWO (66%), IV (66%), WoE (65%), LR (73%) and
ANN (74%). This indicates that IV, ANN and WoE are the best
performing models for landslide susceptibility mapping of a large
area in comparison to MCWO and LR models, when the spatial
sampling method is used. However, there is substantial decrease in
the performance of IV and WoE models when temporal sampling
strategy (strategy 2) is adopted. This is mainly due to an increase
in testing sample size (664%), while the training size has increased

only by 30% (Figure 7b). The result shown in Table 4 indicates that
the ANN method, which produced maximum AUC (74%) with the
temporal sampling strategy, is effective in training predisposing
factors with a higher training population (from 844 to 1205).

The landslide occurrence in the 2017 period has been pervasive
due to the high intensity of rainfall. The peak rainfall recorded in
June 2017 is ~700 mm, which is an order of magnitude higher than
that of 2014 (Fig. 2). This factor has been taken into account while
devising the temporal sampling strategies. Further, the influence of
size (no. of landslide occurrences) of the training dataset is also
analysed while validating the model. Therefore, in strategy 3, i.e.
size constrained testing, we have considered 50% of the landslides
in 2017 as testing samples (1133 landslides), which is validated
against the models trained using 100% of landslides in 2014. The
results (Table 4) are similar to strategy 2, which indicates that
testing sample population has less influence on the performance
of susceptibility models, and the models trained with 1205 land-
slide samples are adequate to predict a future large landslide event.
It is seen that a large cluster (approx. 50% of total) of landslides in
2017 is present in the Lunglei region (Fig. 1). This was due to
intense cyclonic rainfall in the Lunglei region, an anomalous
scenario occurring during the regular seasonal monsoon. Even in
a random selection of testing data, more samples are selected from
that area, creating a possible spatial biasness on the modelling

Table 2 Relative control of predisposing factors on susceptibility models estimated with 70% training data

Layers Models
MCWO
(main layer
weight)

IV (maximum sublayer
weight)

WOE (maximum sublayer
weight)

LR (maximum
sublayer/layer weight)

ANN (main
layer
weight)

Slope 0.43 1.40 (45.5–87.2 degrees) 1.45 (45.5–87.2 degrees) 0.15 0.14

Aspect 0.95 0.93 (South East) 0.92 (South) 225 (South) 0.24

Lithology 0.98 1.4 (thinly bedded shale
intercalated with
sandstone, siltst)

1.28 (sandstone, shale,
siltstone and
conglomerate)

0.22 (sandstone, shale,
siltstone with
conglomerate)

0.29

Lineaments 0.03 1.98 (0–2000m) 0.01 (0–2000m) −0.1 0.01

LULC 1 1.40 (forest plantation) 1.43 (scrub forest) 2.09 (scrub forest) 0.17

Soil 0.85 039 (loamy skeleton) 0.31 (loamy skeleton) 0.17 (coarse loamy) 0.04

Landform 0.78 0.39 (antiformal hill) 0.39 (ridgel) 0.37 (antiformal hill) 0.11

Table 3 Relative control of predisposing factors on susceptibility models estimated with 100% training data

Layers Models
MCWO (main
layer weight)

IV (maximum sublayer
weight)

WOE (maximum sublayer
weight)

LR (maximum
sublayer/layer weight)

ANN (main
layer
weight)

Slope 0.13 1.48 (45.5–872 degrees) 1.48 (45.5–872 degrees) 0.16 0.01

Aspect 0.91 0.97 (South East) 0.95 (South East) 235 (South East) 0.29

Lithology 0.94 1.35 (sandstone, shale,
siltstone and
conglomerate)

1.37 (sandstone, shale,
siltstone and
conglomerate)

0.59 (shale-siltstone
sequence with
sandstone)

0.32

Lineaments 0.03 1.64 (0–2000m) 0. 02 (0–2000m) −0.04 0.02

LULC 1 1.38 (forest plantation) 1.78 (forest plantation) 1.54 (cropland) 0.17

Soil 0.81 0.31 (loamy skeleton) 0.33 (loamy skeleton) 0.14 (coarse loamy) 0.1

Landform 0.81 0.40 (antiformal hill) 0.41 (antiformal hill) 1. 81 (scarp) 0.09
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results (Fig. 7c1). In order to evaluate the geographic biasness of
the testing sample population on model performance, a stratified
systematic sampling strategy, i.e. strategy 4, was considered where-
in 20% from the total landslides are randomly picked up from
Lunglei cluster (227 landslides), while remaining 80% are random-
ly picked up from the rest of the state (906 landslides). This
resulted in the reduction of testing samples in the Lunglei cluster
(Fig. 7d1) and better geographic distribution of testing sample
population in the remaining area outside the cluster while
retaining the 50% total sample population (1133) of landslides in
2017. Results show an increase in AUC (Table 4) of WoE and IV
susceptibility models for strategy 4 in comparison to strategies 2
and 3, indicating that testing sample population distribution has
an influence on model performance. However, strategy 4 has no
effect on the AUC of the ANN model (Table 4) in comparison to
strategies 2 and 3, indicating that testing sample population dis-
tribution has no influence on the performance of ANN model.

Results from the four sampling strategies have shown that
number and distribution of landslides have a role in the perfor-
mance of susceptibility models covering a large area (Table 4).
Non-linear methods (e.g. LR and ANN) of susceptibility modelling
are adaptable to a large area. The ANN method provided highest
accuracy (84%) estimated by strategy 1 and consistently high
accuracy (74%) estimated by strategies 2, 3 and 4. The performance
of ANN model is also better than other four models in case of

strategy 2 wherein the testing population (2265) is quite large in
comparison to training population (1205). This indicates that ANN
model is suitable for predicting large no. of future landslides in
macro-scale landslide susceptibility modelling over a large area.
Figure 8 shows the susceptibility map of Mizoram state generated
using strategies 1 and 2 by the five models. The susceptibility maps
were classified into five categories, and area of testing landslides
within each category is also shown in Fig. 8. Strategies 3 and 4 used
the same susceptibility map which was generated using strategy 2,
hence were not shown separately.

Conclusion
The effect of four sampling strategies prepared using the time and
space partitioning approach was investigated for regional macro-
scale landslide susceptibility mapping of Mizoram state in India
covering 21,087 km2 area. The traditional spatial sampling strategy
(i.e. 70:30) has shown the highest performance of susceptibility
models but failed to retain similar performance in spatially
predicting subsequent (future) occurrence of landslides.

Training landslide data, which is further catalysed with an
increase in testing sample population from a different boundary
condition such as the heavy rainfall of 2017, influence the perfor-
mance of regional landslide susceptibility models. The prediction
performance remains consistently high in the case of ANN model,
irrespective of size, distribution and temporal variation of testing

Fig. 8 Susceptibility map of Mizoram generated by five models using strategies 1 and 2. Area of landslides (%) not used in model generation (i.e. testing data) is shown
adjacent to each susceptibility class
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data. This implies that the ANN is able to effectively train the
predisposing factors for spatially predicting future landslides irre-
spective of no. of incidences. The removal of geographic bias
(Lunglei district cluster) is evident on performance of MCWO,
IV and WoE models. Nevertheless, ANN is the best model when
creating a long-term susceptibility models, followed by the LR
model.

The outcome of any landslide susceptibility model largely de-
pends on the experience of experts utilising the method, well-
distributed information of past landslides and terrain-specific
information. However, when the process needs to be applied over
a large area for macro-scale landslide susceptibility mapping with
significant variability in terrain conditions, a priori knowledge on
specific method may be challenging to comprehend; hence, ANN
method which produced consistently high performance in the
predicting spatial probability of future landslide occurrences is
recommended irrespective of the area of investigation.
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