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Temporal prediction modeling for rainfall-induced
shallow landslide hazards using extreme value
distribution

Abstract As the frequency and intensity of heavy rainfall increase,
the frequency of extreme rainfall-induced landslides also
increases. Thus, the importance of accurate assessment of extreme
rainfall-induced landslide hazard increases. Landslide hazard as-
sessment requires estimations of two components: spatial proba-
bility and temporal probability. While various approaches have
been successfully used to estimate spatial landslide susceptibility,
fewer studies have addressed temporal probability and, conse-
quently, a commonly accepted method does not exist. Prior
approaches have estimated temporal probability using frequency
analysis of past landslides or landslide triggering rainfall events.
Hence, a large amount of information was required: sufficiently
complete historical data on recurrent landslides and repetitive
rainfall events. However, in many cases, it is difficult to obtain
such complete historical data. Therefore, this study developed a
new approach that can be applied to an area where incomplete
data are available or where nonrepetitive landslide events have
occurred. To evaluate the temporal probability of landslide occur-
rence, the developed approach adopted extreme value analysis
using the Gumbel distribution. The exceedance probability of a
rainfall threshold was evaluated, using the Gumbel model, with 72-
h antecedent rainfall threshold. This probability was then consid-
ered to be the temporal probability of landslide occurrence. The
temporal probability of landslides was then integrated with land-
slide susceptibility results from a multi-layer perceptron model.
Consequently, the landslide hazards for different future time peri-
ods, from 1 to 200 years, were estimated.

Keywords Temporal probability . Gumbel distribution . Extreme
value distribution . Rainfall-induced landslides . Multi-layer
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Introduction
As the frequency and intensity of heavy rainfall increase with the
changing climate, extreme rainfall events, which are characterized
by short duration and high intensity, become one of the major
triggers of shallow landslides and debris flows, in Korea and other
countries (Chou et al. 2012; Wu et al. 2011; Dahal et al. 2009;
Pradhan and Kim 2015; Tsuchida et al. 2015; Vasu et al. 2016;

Kumar et al. 2017; Wu 2017). Extreme rainfall-induced landslides
are powerful and can cause enormous damage and catastrophic
fatalities. In Korea, shallow landslides induced by extreme rainfall
events have, in recent decades, caused severe damage to property,
economic losses, and casualties (National Institute for Disaster
Prevention 2009; Park et al. 2013; Oh and Park 2014). Therefore,
a process for recognizing landslide-prone areas and evaluating the
landslide hazard caused by extreme rainfall is badly needed.

Landslide hazard is defined as the probability of a potentially
damaging landslide occurrence in a specific period of time and in
a given area (Varnes 1984; van Westen et al. 2006). It means that in
the process of assessing landslide hazards, one has to predict
“where” a landslide may occur (spatial probability) and “when”
it may occur (temporal probability). Landslide susceptibility is the
likelihood of a landslide occurring in an area. It depends on local
terrain conditions and estimates “where” landslides are likely to
occur (Guzzetti et al. 2005; Reichenbach et al. 2018). Various
approaches have been developed, and extensively published, for
the spatial assessment of landslide susceptibility. Compared with
susceptibility analysis, only limited research has sought to estimate
the temporal probability of landslide occurrence (Guzzetti et al.
2005, 2006; Corominas and Moya 2008; Zêzere et al. 2008; Jaiswal
and van Westen 2009; Jaiswal et al. 2010, 2011; Das et al. 2011;
Martha et al. 2013; Tien Bui et al. 2013; Afungang and Bateira
2016; Vasu et al. 2016; Dikshit et al. 2020). Two main approaches
have been commonly used to assess the temporal probability of
the future occurrence of landslides: the physically based method
(or geomechanical approach) and statistical analysis of past land-
slide events (Corominas and Moya 2008; Corominas et al. 2014).
The physically based method considers the present slope condi-
tions and evaluates landslide potential using stability analysis and
numerical modeling. This approach may also couple the slope
stability analysis with hydrological models to estimate the effect
of rainfall on slope stability. It has been applied to regional-scale
analyses of rainfall-induced shallow landslide susceptibility with
simplified hydrological methods in a GIS platform (Crosta and
Frattini 2003; Godt et al. 2008; Park et al. 2013; Chen and Zhang
2014; Corominas et al. 2014; Lee and Park 2016; Salciarini et al.
2017; Gutiérrez-Martín 2020). In addition, a probabilistic approach
has been used to properly deal with uncertainties in the geotech-
nical and hydrological input parameters, caused by the limited and
incomplete information common in a regional study. However, the
deterministic approach does not easily accommodate such uncer-
tainties especially when large spatial datasets must be obtained
and processed (Park et al. 2013; Rossi et al. 2013; Raia et al. 2014;
Lee and Park 2016; Chae et al. 2017; Salciarini et al. 2017). In the
evaluation of temporal probability using a physically based model,
the computational demands increase significantly when applied in
a dynamic time-dependent modeling framework, especially in a
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broad study area where high-resolution DEM and time-variant
rainfall patterns are used in the modeling. These extremely high
computational requirements bring forth the reluctance to use the
physically based models for temporal probability estimation over
large areas (Rossi et al. 2013; Vasu et al. 2016; Canli et al. 2018a, b).

Statistical analysis of historical landslide records covering a
long time span support estimation of the temporal probability of
landslide occurrence (Brabb 1985; Guzzetti et al. 2002, 2005, 2006;
Jaiswal et al. 2011; Das et al. 2011; Motamedi and Liang 2014). In this
approach, the return periods of landslide events are determined
from the historical landslide records, and then, the expected fre-
quency of future landslides is obtained. Using historical data such
as a multi-temporal landslide inventory, the annual probability of
landslide events and the exceedance probability, which is the
probability of occurrence of one or more landslides at any given
time, can be calculated. The statistics involved in the approach are
simple, and results are easy to implement (Jaiswal et al. 2010).
However, it is quite difficult to acquire sufficiently complete multi-
temporal landslide inventories for long time spans at a regional
scale. In addition, because this approach is based on the historical
recurrences of landslides, it is only valid for repetitive landslide
conditions and is not appropriate for the prediction of unique
events (Guzzetti et al. 1999; Cascini et al. 2005).

Therefore, an alternative indirect method, using the frequency
of landslide triggers (such as extreme rainfall), has been suggested
to estimate the temporal probability of landslides. In this ap-
proach, the temporal probability of a landslide triggering rainfall
event is considered to also be the temporal probability of landslide
occurrence. The advantage of this approach is that it does not
require a complete multi-temporal landslide inventory because the
return period of the landslides is assumed to be that of the rainfall,
which can be evaluated from historical rainfall records. In this
approach, a reliable relationship between rainfall and the occur-
rence of landslides, which is a rainfall threshold, needs to be
established (Jaiswal and van Westen 2009; Jaiswal et al. 2010).
The rainfall threshold is the minimum amount or duration of
rainfall required to trigger landslides. Determination of the rainfall
thresholds for landslide occurrence is a basic and prerequisite step
for the evaluation of exceedance probability. Various methods
have been proposed to determine rainfall thresholds; these tend
to be either process based (physical) or empirically based
(historical) (Corominas 2000; Crosta and Frattini 2001; Aleotti
2004; Wieczorek and Glade 2005; Guzzetti et al. 2007). Process-
based models use a physical slope model coupled with a hydro-
logical model to calculate the rainfall amount needed to trigger
slope failures, and hence the anticipated location and time of
landslides. On the other hand, empirical rainfall thresholds are
defined by analysis of past rainfall events that have resulted in
landslides. Recently, automated methods have been used to deter-
mine empirical rainfall thresholds for shallow landslide initiation
(Vessia et al. 2014, 2016; Melillo et al. 2015), while geostatistical
tools have been used to evalaute map-based empirical rainfall
thresholds (Vessia et al. 2020).

Once the rainfall threshold is determined, the probability that a
rainfall event will exceed the threshold can be obtained (Chleborad
et al. 2006). Subsequently, the exceedance probability of rainfall
events is evaluated using binomial or Poisson distribution models.
However, this approach also requires the assumption that recur-
rent rainfall events trigger landslides. Thus, the mean recurrence

interval, which is a required parameter for the evaluation of the
exceedance probability using either the binomial or Poisson dis-
tribution model, should be estimated using the historical rainfall
recurrence records for periods between landslide triggering events.
In addition, the threshold for landslide initiation can be estimated
using the correlation between rainfall events and recurrent land-
slide events. However, in areas where historical data are limited,
for example, where an initial landslide event or a nonrecurrent
landslide event has occurred under extreme rainfall, it is difficult
to estimate either the mean recurrence interval or the rainfall
threshold. Consequently, it is impossible to obtain the temporal
probability of future landslide occurrence in such an area.

The main objective of this study was to assess the temporal
probability of future landslide occurrence for a study area with
limited historic landslide records. The Jinbu area, the study area of
this research, experienced a large number of landslides, under
extreme rainfall, in 2006. However, there are no landslide records
from before or after the 2006 events. Therefore, a multi-temporal
landslide inventory is not available in this area, and there are no
records of recurrent landslide triggering rainfall events. Conse-
quently, the previously mentioned approach to temporal proba-
bility is not appropriate for this study area. This study, therefore,
developed a new approach to assessment of the temporal proba-
bility of future landslide occurrence using the limited rainfall
records and landslide inventory. In particular, extreme value the-
ory, which is commonly used for the analysis of extreme events,
was used to evaluate the temporal probability of the future land-
slide occurrence. Then, the spatial probability of landslide was
evaluated using a multi-layer perceptron; the temporal probability
was then integrated with this spatial probability in order to esti-
mate landslide hazard.

Study area and landslide inventory
To apply the proposed approach to a practical situation, a study
area in Jinbu, Gangwon-do, Korea, was selected (Fig. 1). This area
experienced a great number of landslides related to an extreme
rainfall event on July 14–16, 2006. The study area lies between 37°
34′ 42.93″ and 37° 39′ 16.01″ north latitude, and between 128° 29′
9.73″ and 128° 36′ 35.95″ east longitude. The total area is 64.74 km2,
and the extents are 10.81 km east–west and 8.6 km south–north.
The altitude of the study area is between 495 m and 1385 m above
sea level, and more than 78% of it is mountainous terrain.

Geologically, this area is based on Precambrian biotite gneiss,
which is exposed in the southwest and on which discontinuous
Jeongseon limestone and Nokan series sandstone are located.
There has been an extensive intrusion of Jurassic Imgye granite,
widely distributed in the study area, with deposits of quaternary
alluvium along the streams and in lowlands (Geological Society of
Korea 1962) (Fig. 2).

In this study, landslide inventory data were obtained and
used for the spatial landslide susceptibility analysis. Because
the study area is too large for a complete field survey, land-
slide locations were determined using aerial photographs with
0.5-m resolution, taken before and after the landslides. Relat-
ed information is available in the authors’ prior research
(Park et al. 2013). Based on these photographs, a point vector
layer was constructed by digitizing the landslide locations. A
total of 1035 landslide locations were digitized, and a landslide
inventory map was compiled (Fig. 1).
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To evaluate the temporal probability of landslide occurrence
using rainfall event records, hourly rainfall data, from 1986 to 2018,
were obtained from the Sangjinburi rainfall station, which is lo-
cated at 37° 39′ 32″ north and 128° 34′ 41″ east (Fig. 1). This is the
closest and most representative station in the area where the
rainfall-induced landslides occurred. The hourly rainfall data are

available via the Water Resources Management Information Sys-
tem of South Korea (http://wamis.go.kr/wkw/rf_dubrfobs.aspx). In
addition to gauge-based rainfall data, satellite-derived rainfall data
can also be used to analyze rainfall triggered landslides (Guzzetti
et al. 2008; Posner and Georgakakos 2015; Robbins 2016; Segoni
et al. 2018). To compare the gauge-based rainfall data with the

Fig. 1 The study area
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satellite-derived rainfall data, we obtained the Tropical Rainfall
Measurement Mission (TRMM) Multi-satellite Precipitation Anal-
ysis (TMPA, Huffman et al. 2007) 3B42 version 7 rainfall product
with fine temporal and spatial scales (3-hourly and 0.25°×0.25°)
from 1998 to 2018. TRMM data are available from the Goddard
Earth Sciences Data and Information Services Center (GES DISC)
(https://disc.gsfc.nasa.gov/datasets/ TRMM_3B42 _7/summary).

Temporal probability of landslide occurrence

Determination of rainfall threshold
The most commonly used empirical threshold in previous tempo-
ral probability evaluations is the rainfall intensity–duration
threshold (Zêzere et al. 2004; Chleborad et al. 2006; Corominas
and Moya 2008; Brunetti et al. 2010; Segoni et al. 2014, 2018;
Afungang and Bateira 2016; Bogaard and Greco 2018). However,
the intensity–duration threshold requires extensive rainfall
records and landslide occurrence data with high-quality and tem-
poral resolution, which were not available in this study area, or
many other areas. Therefore, an antecedent threshold has been
adopted for evaluation of temporal probability in several studies
(Jaiswal and van Westen 2009; Jaiswal et al. 2010; Tien Bui et al.

2013; Afungang and Bateira 2016; Dikshit et al. 2020). An anteced-
ent threshold is based on the amount of antecedent rainfall, which
is relatively simple to measure over a large area. This approach was
employed here because the study area has experienced only one
landslide occurrence by an extreme rainfall event, in 2006, and
consequently, sufficient rainfall and landslide data are not avail-
able. However, it is difficult to determine the number of days that
should be used when using an antecedent rainfall threshold
(Guzzetti et al. 2007). Because landslides have different types and
geological conditions, the number of antecedent days for the
rainfall threshold may appropriately range from 3 days for shallow
landslides to 30 days for deep landslides (Kim et al. 1992; Aleotti
2004; Zêzere et al. 2004; Chleborad et al. 2006; Jaiswal and van
Westen 2009; Tien Bui et al. 2013). Based on previous landslide
studies in Korea (Kim et al. 1992; Yoo et al. 2012; Lee et al. 2015), as
well as in other countries (Dahal and Hasegawa 2008; Jaiswal and
van Westen 2009; Shou and Yang 2015), and because the landslides
in the study area were mostly shallow, a 3-day (72-h) antecedent
rainfall threshold was used in this study.

In the Jinbu area, landslides occurred sporadically during the
heavy rainstorm of July 14–16, 2006, resulting in seven deaths
(National Institute for Disaster Prevention 2006). Figure 3 shows

Fig. 2 Geological map of the study area

Fig. 3 Hourly rainfall records in the study area in the period July 12–17, 2006
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the hourly rainfall time series for July 12–16, 2006 from Sangjinburi
rainfall station in the study area. A rainfall event of 90 mm/h,
which is the maximum rainfall intensity during the overall obser-
vation period, occurred on 15 July at the time when the most
casualties were incurred. Therefore, a rainfall event of 90 mm/
h is considered a key trigger of initial landslide occurrence. In
addition, based on the government report on the landslide
events in 2006 (National Institute for Disaster Prevention
2006), the 72-h rainfall event preceding the landslides totaled
430 mm (blue line in Fig. 3).

Estimation of the temporal probability of rainfall-induced landslides
Estimation of exceedance probability, using the Poisson distribu-
tion model, is one of the most commonly used methods to calcu-
late the temporal probability of landslide occurrence (Coe et al.
2000; Crovelli 2000; Guzzetti et al. 2005; Romeo et al. 2006; Jaiswal
and van Westen 2009; Jaiswal et al. 2010; Tien Bui et al. 2013;
Afungang and Bateira 2016). The exceedance probability, using
the Poisson distribution, was evaluated using

P N tð Þ≥1f g ¼ 1−e−λt ¼ 1−e−t=μ; ð1Þ

where N(t) is the number of landslides, in t years, whose proba-
bility is being estimated; λt is the expected number of landslide
occurrences over t years, and μ (=1/λ) is the anticipated mean
recurrence interval.

However, if landslides have only occurred once so far in an area
or there are insufficient historical rainfall records, it is difficult to
apply this approach. In these circumstances, it is not feasible to
determine the mean recurrence interval of landslide triggering
rainfall events (or threshold exceedance). Therefore, a new ap-
proach is necessary to estimate the temporal probability of future
landslide occurrence in an area where no recurrent landslide
triggering rainfall event has ever been recorded.

Extreme value analysis enables inferences about future proba-
bilities of extreme event occurrences based on past observations
(El Adlouni et al. 2007). Therefore, it has been widely used for
engineering design and risk management related to hydrological
extreme events such as heavy rainfall and flooding. The block
maxima approach, one of the techniques used for extreme value

analysis, consists of modeling a sequence of maximum values
obtained from blocks (periods) of equal length. If the period is a
year, the annual maximum (AM) event data are used. Under the
assumption that the maximum values are stationary, independent,
and identically distributed, they follow a generalized extreme
value (GEV) distribution (see Coles et al. (2001) for more details).
The GEV distribution is classified into three types: extreme value
type I (Gumbel distribution), extreme value type II (Fréchet dis-
tribution), and extreme value type III (Weibull distribution). The
cumulative density function (CDF) for the GEV is

FGEV xð Þ ¼ exp − 1−k
x−u
α

� � 1
k

� �
; ð2Þ

where u, α, and k are the location, scale, and shape parameters,
respectively. The three cases are (1) for k = 0, the extreme value
type I distribution, (2) for k < 0, extreme value type II distribution,
and (3) for k > 0, extreme value type III distribution (Chow et al.
1988). In all three cases, α is greater than zero.

The Gumbel (extreme value type I) distribution has been used
for extreme value analysis of heavy rainfall events to estimate the
temporal probability of rainfall-induced landslides (Finlay et al.
1997; Zêzere et al. 2008; Frattini et al. 2010; Jaiswal et al. 2011;
Nefeslioglu et al. 2011; Martha et al. 2013; Lee et al. 2015;
Afungang and Bateira 2016). In addition, the Gumbel distribution
is recommended for estimation of the occurrence frequency and
magnitude of extreme rainfall events in Korea (ME 2019). Howev-
er, while previous studies have used the Gumbel distribution to
evaluate rainfall return periods or probabilities of maximum daily
rainfall events, the Gumbel distribution has not been used to
evaluate the temporal probability of landslide occurrence. This
study used the Gumbel distribution to evaluate the temporal
probability that one or more rainfall events, which exceed the
rainfall threshold, will occur during a specified time. Unlike the
Poisson distribution, the Gumbel distribution does not require the
mean recurrence interval, normally obtained from historical rain-
fall records. This is an advantage when the exceedance probability
must be evaluated in an area with limited data on rainfall and
landslides. The CDF of the Gumbel distribution is given by

FGUM xð Þ ¼ exp −exp −
x−u
α

� �n o
−∞ < x < ∞; ð3Þ

Fig. 4 72-h annual maximum rainfall events at Sangjinburi rainfall station (1986–2018)
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where u and α (>0) are location and scale parameters, respec-
tively. Then, the exceedance probability (p) of a certain rainfall
event in a given year can be calculated by

p ¼ 1−FGUM xð Þ ¼ 1−exp −exp −
x−u
α

� �n o
: ð4Þ

To determine the exceedance probability using the Gumbel
distribution, the location and scale parameters must be estimated.

Table 1 72-h annual maximum rainfall series and its sample PWMs at Sangjinburi rainfall station (n = 33)

Observations Probability-weighted moments
Year 72-h AM rainfall (mm) Order (j) Ordered samples (xj : n) j−1ð Þ n−1ð Þxj:n

1986 126 1 77 0.000

1987 182 2 77 2.406

1988 124 3 99 6.188

1989 258 4 100 9.375

1990 426 5 116 14.500

1991 117 6 117 18.281

1992 100 7 120 22.500

1993 144 8 124 27.125

1994 154 9 124 31.000

1995 286 10 126 35.438

1996 99 11 136 42.500

1997 116 12 144 49.500

1998 210 13 154 57.750

1999 198 14 157 63.781

2000 136 15 182 79.625

2001 157 16 188 88.125

2002 314 17 198 99.000

2003 120 18 198 105.188

2004 277 19 202 113.625

2005 230 20 202 119.938

2006 495 21 207 129.375

2007 198 22 210 137.813

2008 296 23 230 158.125

2009 260 24 234 168.188

2010 202 25 258 193.500

2011 207 26 260 203.125

2012 124 27 277 225.063

2013 306 28 286 241.313

2014 77 29 296 259.000

2015 77 30 306 277.313

2016 202 31 314 294.375

2017 234 32 426 412.688

2018 188 33 495 495.000

Sample PWMs bb0 ¼ n−1 ∑
n

j¼1
xj:n

=201.212

bb1 ¼ n−1 ∑
n

j¼1

j−1ð Þ
n−1ð Þ xj:n

= 126.689
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Several methods estimate the statistical parameters of a probability
distribution, including the method of moments (Wallis et al. 1974;
Jaiswal et al. 2011; Martha et al. 2013), the method of maximum
likelihood, and the method of probability-weighted moments
(PWM) (or L-moments). The PWM method (Greenwood et al.
1979), in particular, provides efficient and computationally conve-
nient estimates, even for small samples (Hosking 1990). In addi-
tion, the L-moments method, which is defined as linear
combinations of PWMs, is widely used to estimate the parameters
of various probability distributions, including the GEV and Gum-
bel distributions because parameter estimates based on L-
moments are unbiased and less sensitive to outliers and observa-
tional errors than other conventional methods (Hosking and
Wallis 1997; Rao and Hameed 2000; Gubareva and Gartsman
2010; Drissia et al. 2019). Therefore, the L-moments method was
employed to estimate the parameters of the Gumbel distribution.

The first and second population L-moments are defined by the
first and second population PWMs (b0 and b1) of the Gumbel

distribution as follows (Hosking and Wallis 1997):

λ1 ¼ b0 ¼ uþ γα; ð5Þ
λ2 ¼ 2b1−b0 ¼ α � ln2; ð6Þ

where γ is Euler’s constant (=0.577215 …). Then, the L-moment
estimators, bα and bu, of the Gumbel distribution can be derived
from Eqs. (5) and (6).

bα ¼ 2bb1−bb0
� �

=ln2; ð7Þ

bu ¼ bb0−γbα; ð8Þ

where the r-th sample PWM, bbr , can be obtained by (Hosking et al.
1985)
bbr ¼ n−1∑n

j¼rþ1
j−1ð Þ j−2ð Þ⋯ j−rð Þ
n−1ð Þ n−2ð Þ⋯ n−rð Þ xj:n for r > 0; ð9Þ

and x1 : n ≤ x2 : n ≤ ⋯xn : n are the ordered AM rainfall series xi (i =

1, 2, ⋯, n) where n is the sample size. Note that bb0 is the sample
mean (1n∑

n
i¼1xi).

The value of AM (annual maximum) rainfall event for the i-th
year (xi) is given by the largest rainfall event, within a specific
duration that occurred in that year. Since the duration of the
rainfall threshold was determined as 72-h in “Determination of
rainfall threshold” section, Gumbel distribution modeling was
performed using the 72-h AM rainfall series. To determine the
72-h AM rainfall event value, a moving window procedure was
used with hourly rainfall observations. For each year, all 72-
h rainfall event values were extracted by moving the 72-
h window on an hourly basis. The AM rainfall event for that year

Fig. 5 Temporal landslide probabilities for different time periods (1 year 0.027, 2 years 0.052, 5 years 0.126, 10 years 0.236, 20 years 0.416, 50 years 0.739, 100 years
0.932, 150 years 0.982, and 200 years 0.995)

Table 2 Temporal probabilities, in the study area, of rainfall-induced landslide
occurrences over period N

Period N (year) Temporal probability of rainfall-induced
landslide occurrences (PrGUM(xTh,N))

1 0.0265 (2.65%)

2 0.0523 (5.23%)

5 0.1257 (12.57%)

10 0.2355 (23.55%)

20 0.4156 (41.56%)

50 0.7389 (73.89%)

100 0.9318 (93.18%)

150 0.9822 (98.22%)

200 0.9954 (99.54%)
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was set to the largest extracted value. Figure 4 presents the 72-
h AM rainfall series obtained both from hourly observations at
Sangjinburi rainfall station (n = 33 years) and from the 3-hourly
TRMM gridded data (n = 21 years). The 72-h AM rainfall series
from the station (black solid line) and from TRMM data (blue
dotted line) show a similar pattern. In particular, the gauged and
TRMM AM values in 2006, the year of the first landslide occur-
rence in the study area, are almost the same and have the largest
value over the entire observation period. However, since the rain-
fall data from the rainfall station have a longer time span and a
higher sampling rate, the temporal probability analysis was carried
out using these gauge-based rainfall data. Using these data, sample
PWMs were calculated as shown in Table 1. Based on Eqs. (7) and
(8), the location and scale parameters were estimated as bμ = 157.772
and bσ = 75.258, respectively. The exceedance probability of the
determined rainfall threshold (xTh = 430 mm) was calculated as
p = 0.0265.

From this, the probability of experiencing at least one extreme
event, greater than the threshold, over N years, Pr(N), can be
calculated as follows:

Pr Nð Þ ¼ ∑N
t¼1 1−pð Þt−1p ¼ 1− 1−pð ÞN : ð10Þ

The concept of the Pr(N) is referred to as “risk of failure”
defined by Yen (1970). It is described in most introductory text-
books and recommended as an essential metric for assessing the
actual probability of an extreme event during a given period
(Serinaldi 2015; Serinaldi and Kilsby 2015). In this study, we as-
sumed that extreme rainfall events over the rainfall threshold xTh
lead to landslide occurrences. Then, the concept of the Pr(N) was
employed to calculate the temporal probability of landslide occur-
rences. The probability of experiencing at least one extreme rain-
fall event greater than xTh in N years, PrGUM(xTh, N), can be
defined by substituting Eq. (4) into Eq. (10):

PrGUM xTh;Nð Þ ¼ 1− FGUM xThð Þf gN : ð11Þ

Figure 5 illustrates the temporal probability of landslide occur-
rences for N = 1, 2, 5, 10, 20, 50, 100, 150, 200 years in the study area.
Because the graph of PrGUM(xTh,N) moves rightward as N increases,
for a certain rainfall threshold, the temporal probability of landslide
occurrences increases withN. The temporal probabilities of landslide
occurrences for the determined rainfall threshold (xTh = 430 mm)
are presented in Table 2. As an example, the temporal probability of

landslide occurrences during any 1 year is equal to the exceedance
probability of the rainfall threshold (p = 0.0265).

Landslide susceptibility analysis
Landslide susceptibility analysis (or spatial probability analysis)
estimates the potential for a landslide by considering landslide
inducing factors (or conditioning factors) and analyzing the spa-
tial distribution of these factors (Chae et al. 2017). However,
landslide susceptibility assessment is not straightforward because
the occurrence of landslide is controlled by diverse spatial condi-
tioning factors, including geology, topography, and vegetation.
Several assessment approaches have been suggested. Among them,
data-driven landslide susceptibility analysis has been widely used
and evaluates the statistical relationships between the locations of
landslides and the landslide inducing factors. However, because
the relationship between the independent variables (landslide af-
fecting factors) and a dependent variable (landslide occurrence) is
often complex and nonlinear, it is not easy to determine the
relationship through simple statistical analysis. Therefore, various
machine learning approaches, such as neurofuzzy methods, sup-
port vector machines, evidential belief functions, and artificial
neural networks, have been developed to evaluate the susceptibil-
ity of landslide occurrence. Multi-layer perceptron (MLP) neural
networks, a type of artificial neural network (ANN), have been
applied successfully and efficiently in landslide prediction (Gomez
and Kavzoglu 2005; Zare et al. 2013; Pham et al. 2017). MLP is a
feedforward back error propagation neural network with one or
more hidden layers between the input layers and output layers. It
has several advantages including that the distribution of training
dataset is not dependent on pre-assumptions, no decision is re-
quired about the relative importance of input factors, and most
input factors are selected based on weightings adjustment during
the training process (Gardner and Dorling 1998). In addition, ANN
can process input data with different measurement scales and
units, such as continuous, categorical, and binary data, a signifi-
cant advantage for landslide susceptibility analysis (Garrett 1994).

Spatial database construction
For the susceptibility analysis, various digital maps were used to
construct a spatial database including the following landslide
conditioning factors (Table 3): elevation, slope angle, slope aspect,
planform curvature, profile curvature, standard curvature, stream
power index (SPI), topographic wetness index (TWI), specific
catchment area (SCA), geology, forest type, forest density, timber

Table 3 The landslide conditioning factors used in this study

Source maps (scale) Conditioning factors Source maps (scale) Conditioning factors

Topographic map (1:5000) Elevation
Slope
Aspect
Standard curvature
Profile curvature
Planform curvature
SCA
TWI
SPI

Forest map (1:25,000) Forest type
Timber diameter
Timber age
Forest density

Soil map (1:25,000) Soil series
Soil texture
Soil sub-texture
Soil drainage
Soil thickness

Geological map (1:50,000) Geology Land use map (1:5000) Land use
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age, timber diameter, soil series, soil texture, soil sub-texture, soil
drainage, soil thickness, and land use. In total, 20 factors were
used in the analysis. The relevant digital maps are listed in Table 3,
and they are available at different scales and formats in the Korean
archives. After acquisition from several governmental institutes,

the digital maps were converted into grid-based raster layers with
10-m resolution to create thematic maps for analysis.

The geomorphological database of the study area was based on
a 1:5000 scale digital topographic map, provided by the National
Geographic Information Institute. The contour polyline vector

Fig. 6 Thematic maps of landslide conditioning factors: a slope, b elevation, c aspect, d standard curvature, e profile curvature, f planform curvature, g specific
catchment area, h topographic wetness index, i stream power index, j forest type, k timber diameter, l timber age, m forest density, n soil series, o soil texture, p soil
sub-texture, q soil drainage, r soil thickness, and s land use
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layer, including elevation attributes, was extracted from the digital
map. A TIN (triangulated irregular network) was generated from
the contour layer and converted into a grid-based raster layer as a
digital elevation model (DEM). The DEM was used to compute the
geomorphological factors (Fig. 6a–i): elevation, slope angle, slope
aspect, standard curvature, profile curvature, planform curvature,

SCA, TWI, and SPI. SCA, defined as the area of land upslope of
a width of the contour, is commonly used to describe com-
plex terrain when analyzing water flow on hill slopes (Tretkoff
2011). The TWI is a runoff-based model that describes the
relationship between the water inclination that accumulates in
any location and the gravitational force inclination in the

Fig. 6 (continued)
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Fig. 6 (continued)
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stream that accumulates down the slope (Althuwaynee et al.
2014). The SPI is the erosive power of the water flow based
on an assumption that the discharge is proportional to the
SCA. This factor predicts erosion along the slope of the
profile’s convexity and deposition in the profile’s concavity.
Among the other factors, curvature refers to the curvature of

a line formed by intersecting the ground surface and a plane
(horizontal or vertical). Profile curvature is parallel to the
direction of the slope angle and indicates the direction of
the slope. It affects the acceleration and deceleration of flow
through the surface, and associates with erosion and deposi-
tion of slope material. Planform curvature is perpendicular to

Fig. 7 Landslide susceptibility map obtained using MLP

Fig. 8 ROC (receiver operating characteristics) graph. (AUC: area under the curve)

Original Paper

Landslides 18 & (2021)332



the slope and affects the convergence and divergence of flow
on the surface. Standard curvature is a combination of profile
and planform curvature. Using these factors, it is possible to
understand the flow from the surface when rainfall occurs
(Yilmaz et al. 2012; Chen et al. 2017).

The geological data (Fig. 2) were derived from a 1:50,000 scale
digital geological map provided by the Korea Institute of Geoscience
andMineral Resources. Forest-related data drew on the Korea Forest
Service’s 1:25,000 digital forest map. Forest type, timber diameter,
timber age, and forest density were isolated as thematic maps (Fig.
6j–m). Based on the 1:25,000 digital soil map provided by the Na-
tional Institute of Agricultural Sciences, the soil series maps—tex-
ture, sub-texture, drainage, and thickness—were derived (Fig. 6n–r).
Finally, the land use map (Fig. 6s) was based on the 1:5000 digital
land cover map provided by the Ministry of Environment.

Evaluation of landslide susceptibility using a multi-layer perceptron
Machine learning is related to pattern recognition and computa-
tional learning techniques in artificial intelligence, a subfield of
computer science. Neural networks, one of the machine learning
approaches, have been used successfully for classification and
prediction in various problem domains (Paliwal and Kumar
2009), and MLP is the most widely used neural network architec-
ture for classification or regression problems (Yilmaz and Kaynar
2011). MLP uses a neural network of at least three node layers:
input, hidden, and output. Input layers are the landslide inducing
factors, regarded as independent variables, and the output layer
has a result classified as either a landslide or nonlandslide class.
The hidden layers are the classifying layers that transform inputs
into outputs (Pham et al. 2017). The hidden layer computes the
expected output through nonlinear activation functions and deter-
mines the difference from the actual output in the training dataset
(feedforward propagation). Using the differences, the number of
layers and nodes in hidden layer is adjusted. Each node is a
neuron that uses its nonlinear activation function to distinguish
data that are not linearly separable, or separable by a hyperplane
(Cybenko 1989; Khalil Alsmadi et al. 2009). In the MLP, the con-
nection weights between the input neuron and the hidden neurons
as well as between the hidden neurons and the outputs are initial-
ized and then trained using a backpropagation algorithm. There
are two steps in the training, i.e., feedforward and backpropaga-
tion (Tien Bui et al. 2016): (i) in the feedforward, the input is
propagated forward through the layers resulting in a response at
the output layer. The output response values are compared with
actual values, and the differences are assessed; (ii) in the back-
propagation, the connection weights are updated to minimize the
differences. In this study, the weights were calculated using recti-
fied linear unit (ReLU) activation functions, the most commonly
used activation function in neural networks. The goal of MLP is to
derive a model that minimizes the difference between the actual
and estimated values. In this study, we set the number of times the
model repeats the learning (epoch) as 1000 and the rate at which to
approach the minimum target error (learning rate) as 0.005.

First, it was necessary to preprocess the data for machine
learning. The database of the study area, including landslide loca-
tions and landslide conditioning factors, was reconstructed to a
landslide inventory map and thematic maps of conditioning fac-
tors using ArcGIS and Python. The grid pixels in the landslide
inventory map were divided into two classes: landslide pixels andTa
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nonlandslide pixels (Tien Bui et al. 2016). A grid cell where a
landslide has occurred is assigned “1,” and a cell without the
landslide is assigned “0.” The landslide dataset was combined with
the attribute data of the conditioning factors and used in training
the MLP model and then to calculate the probability of landslide
occurrence. The landslide susceptibility analysis results are
expressed in terms of the probability of occurrence, which ranged
from “0” (landslide less likely to occur) to “100%” (landslide more
likely to occur). In general, because the number of landslide pixels
is very small compared with the total number of pixels in the study
area, the amount of landslide occurrence data is smaller than the
amount of nonlandslide data. This study had 647,433 pixels, but
the number of landslide pixels was only 1035. Consequently, the
data were significantly unbalanced. This data unbalance can cause
serious errors in the analysis. Specifically, the evaluated probability
values in all pixels of the study area can converge to “0,” which
meant that the entire study area would be classified as stable.
Therefore, nonlandslide data representing just one or two times
the number of landslide pixels should be selected to overcome the
data unbalance problem described in previous studies (Pradhan
2013; Pham et al. 2016; Chen et al. 2018). In this case, we trained the
model using the same number of the nonlandslide and landslide

pixels selected randomly. The randomly selected dataset was
partitioned into two subsets as training and test datasets. Train-
ing data were used to build the model while test data were used
to validate the model and evaluate its accuracy. In this process,
the test data should be different from those that trained the
model (Chung and Fabbri 2008; Pradhan and Lee 2010). How-
ever, no mathematical rule to determine the relative partitioning
of these subsets exists (Pham et al. 2017). In this study, 70% of
the data were used for training the network, and the rest were
used to test the final MLP model, as previous studies have
suggested (Tien Bui et al. 2016; Chen et al. 2017). A confusion
matrix was used to evaluate the performance of the prediction
model using the test data. Finally, the remaining data, which
were not used for training or testing of the prediction model,
were used to evaluate the spatial probability of landslide sus-
ceptibility throughout the study area. Figure 7 shows the result-
ing landslide susceptibility map. A receiver operating
characteristics (ROC) graph and its area under the graph
(AUC) were used to verify the accuracy of the susceptibility
map by comparing actual landslide locations with the analysis
results (Fig. 8). The AUC value of the landslide susceptibility
map in this study was 79.33%.

Fig. 9 Examples of landslide hazard maps for four different periods: a 20 years, b 50 years, c 100 years, and d 200 years
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Landslide hazard assessment
The landslide hazard in the study area was then computed by
multiplying the temporal probability of landslide occurrence, de-
rived using the Gumbel distribution, with the landslide suscepti-
bility obtained using MLP. To compare landslide hazards for
different time periods, nine future time periods (1, 2, 5, 10, 20, 50,
100, 150, 200 years) were used, as described in “Estimation of the
temporal probability of rainfall-induced landslides” section. The
hazard assessments for the different periods are given in Table 4,
which shows that the calculated hazard values for most pixels of
the study area for 1, 2, and 5-year periods were less than 0.3 (30%).
In each of the relatively short periods (1, 2, 5, 10, and 20 years), the
hazard values of all pixels were less than 0.5 (50%). This is because
the mean AM rainfall value is much smaller than the landslide
rainfall trigger threshold. Statistical analysis of the time-series
rainfall data for 33 years (from 1986 to 2018) showed that the mean
AM rainfall amount was 201.2 mm/72 h. However, the landslide
trigger rainfall in 2006 was 430 mm/72 h, and this was used as the
threshold for the temporal probability analysis. Consequently, the
temporal probabilities for the five periods (1, 2, 5, 10, 20 years)
were very small, and so, the hazard values were also generally
small for these periods. In contrast, the evaluated hazard values
in the area were much higher for time periods greater than
50 years. That is, the proportion of hazard values greater than
0.5 (50%) in the study area increased from 23.22% over 50 years to
45.8% over 200 years, which means that the landslide hazard is
greater when longer periods are considered, as is evident in the
landslide hazard maps for 20, 50, 100, 200-year periods (Fig. 9).
For presentation purpose, only four landslide hazard maps for 20,
50, 100, 200-year periods are shown in Fig. 9.

Discussion and conclusions
In this study, we developed an approach that can be applied in an
area where the landslide inventory and landslide triggering rainfall
events data are incomplete or where a nonrepetitive landslide
event has occurred. This approach allowed us to estimate the
temporal probability of landslide occurrence in an area where a
multi-temporal landslide inventory and historical rainfall records
for repetitive landslides were incomplete. The study area had
experienced landslide occurrence just once, in 2006, which means
that the recurrent rates of landslide or triggering rainfall events
could not be determined. Instead, this study evaluated temporal
probability using the extreme value analysis. Extreme value anal-
ysis has been widely used for hydrological extreme events such as
heavy rainfall. To evaluate the future probability of extreme event
occurrence (e.g., extreme rainfall) based on extreme value theory,
the Gumbel (extreme value type I) distribution was applied to the
available time series rainfall data to estimate the probability of
extreme events over several future time periods. This probability
was then, indirectly, considered as the temporal probability of
extreme rainfall-induced landslides.

The described approach was applied to the study area,
which had experienced a large number of landslides following
extreme rainfall in 2006. Based on previous landslide studies
and rainfall records in the study area, a 3-day (72-h) anteced-
ent rainfall threshold was adopted and estimated as 430 mm.
AM values, for each 72-h period, were calculated using a
moving window and hourly rainfall records from 1986 to
2018. Then, using the AM data, the location and scale

parameters of the Gumbel distribution were found to be
157.77 and 75.25, respectively. Subsequently, the rainfall thresh-
old’s exceedance probability for any year was calculated as
0.0265. From this, the probabilities of at least one extreme
event, greater than the threshold, over 1, 2, 5, 10, 100, 150, and
200 years were 0.0265, 0.0523, 0.1257, 0.2355, 0.4156, 0.7389,
0.9318, 0.9822, and 0.9954, respectively.

The temporal probability of landslide occurrence was then
combined with the spatial probability of landslides to determine
landslide hazard. The landslide susceptibility map was constructed
after MLP modeling in which 20 conditioning factors and the
landslide inventory were used to analyze the relationship between
landslide locations and conditioning factors. The MLP was trained
through backpropagation, the most frequently used neural net-
work method. Validation showed a prediction accuracy of 79.3%.
Landslide hazard maps were then obtained by integrating the
temporal probability of landslides with the landslide susceptibility
maps.

The proposed approach improves on previous studies. Deter-
mination of the exceedance probability of a rainfall threshold has
previously depended on frequency analysis of past repetitive
events, with a Poisson distribution. However, when the historical
data for repetitive events are limited or there is only one landslide
event, as in our study area, temporal probability cannot be esti-
mated using the previous approach. In this case, the Gumbel
distribution can be used for temporal probability evaluation pro-
vided continuous time-series rainfall data are available in the area.
Thus, the proposed approach can be used even if a Poisson model
cannot be adopted. Several previous studies have adopted the
Gumbel model, but they did not use it to evaluate the temporal
probability of a landslide. The previous studies utilized the Gum-
bel distribution to calculate the return period of extreme rainfall
events or to evaluate the probability of daily rainfall occurrence.
The developed approach, on the other hand, was able to estimate
the temporal probability of landslide occurrence using the Gumbel
model by adopting extreme value theory.

Our approach also has some limitations. The importance of
the spatial variability of rainfall is well recognized in landslide
studies. However, precise prediction of rainfall across an area is
difficult when there are few available rainfall gauges. Therefore,
the simplified approach to determining the rainfall amount for
a certain region was utilized with single rain gauge near a
specified landslide site or the selected rain gauge as representa-
tive locations for a predefined region (Chiang and Chang 2009;
Canli et al. 2018a; b). In this study, we used rainfall records
obtained from only one rainfall station (Sangjinburi) to evaluate
the temporal probability of landslide triggering rainfall. Sang-
jinburi is the station closest to the landslide locations, and best
represents rainfall conditions in the study area. Consequently,
we could not consider spatial variation of rainfall. If there is no
representative rainfall station, or the rainfall record is too short
to conduct the extreme value analysis, satellite-based rainfall
data, such as TRMM, can be used to estimate the temporal
probability of landslide occurrences. In fact, gauged data and
TRMM data produced differences in the temporal probabilities
of rainfall-induced landslide occurrences of less than 3% for all
the analysis period. Therefore, when the gauge-based rainfall
data are not available, TRMM rainfall data can be a viable
alternative.
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In addition, this approach considered stationary rainfall data,
which means that the conditions of rainfall and its essential sta-
tistical characteristics (e.g., mean and variance of the probability
distribution) are invariant with respect to time. Consequently, the
Gumbel distribution used in this analysis is also based on the
stationary condition. However, as IPCC (2014) pointed out, global
warming is expected to lead to a greater frequency and magnitude
of heavy precipitation. This means that the stationary rainfall
assumption will not be valid. Recently, in the field of hydrology,
nonstationary approaches have been suggested for most hydrolog-
ical processes including rainfall. Because the probability distribu-
tion parameters will change with the time due to climate change,
we need a different approach that can analyze nonstationary
rainfall time series data.
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