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Dynamic development of landslide susceptibility based
on slope unit and deep neural networks

Abstract The Three Gorges Reservoir is one of the areas with the
most serious landslide hazards in China. Landslide susceptibility
indicates where landslides are prone to occur in the future under
the influences of certain geoenvironmental and triggering condi-
tions and is an important way for landslide prevention. This work
employs multi-source and three-temporal landslide monitoring
data (geology, terrain, hydrology, and remote sensing data) to
reveal the dynamic change of landslide susceptibility with time
in the Badong-Zigui section in the Three Gorges area. Nine influ-
ence factors for landslides (land use, aspect, engineering rock
group (ERG), slope, distance to river (DTR), relative relief, nor-
malized difference water index (NDWI), normalized difference
vegetation index (NDVI) and annual cumulative rainfall (ACR))
are generated from the monitoring data. The algorithms of slope
unit segmentation and deep neural networks are adopted to con-
duct landslide susceptibility evaluations in the 3 years of 2002,
2007, and 2017 and to investigate the dynamic change of landslide
susceptibility. Moreover, this work also reveals the dynamic re-
sponse of landslide susceptibility to the changing factors of rain-
fall, reservoir water fluctuation, soil moisture, and land use. Some
new viewpoints are suggested as follows. (1) The main factors
affecting landslide occurrence are DTR, NDWI, relative relief,
and ERG. Among them, DTR contributes most in all the 3 years;
thus, reservoir water fluctuation has the most important impact on
landslide occurrence in the study area. (2) From 2002 to 2007, the
new high-susceptibility areas mainly appeared along the Yangtze
River and also distributed around the roads. From 2007 to 2017,
more than half of the new high-susceptibility areas were distrib-
uted around the roads, and susceptibility increases also occurred
in the mountainous areas far from the Yangtze River. (3) The
development of landslide susceptibility from 2002 to 2007 was
mainly caused by the rising of reservoir water level as well as road
construction. The change of landslide susceptibility from 2007 to
2017 was mainly caused by rainfall and road construction. This
work may provide some clues on landslide prevention and control
according to the dynamic development of landslide susceptibility
and the causes of the susceptibility changes.
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networks . The Three Gorges Reservoir

Introduction
The Three Gorges Reservoir area, characterized by steep terrain,
impounded reservoir, and abundant rainfall (Zhe et al. 2013), has
long been a high-risk area for landslide disasters (Liang et al.
2016). According to the statistics from the Three Gorges Reservoir
Area Geological Disaster Prevention and Control Work Command
(TGWC), more than 4600 landslides and collapses have occurred
in the reservoir area. Thus, it is urgent and necessary to take
preventive measures for landslide disasters there. Landslide sus-
ceptibility evaluation (LSE) is an effective means to determine the

areas most prone to landslides and to discover the key regions for
landslide prevention and control (Brabb 1987; Guzzetti et al. 2006;
Fell et al. 2007); thus, it is an important technique and means to
prevent landslides (Fell et al. 2007; Guzzetti et al. 2012). The
objective of this work is to conduct LSE and to reveal the rules
and causes of the dynamic development of landslide susceptibility
in the Badong-Zigui section in the Three Gorges area.

For large areas lacking in proper and detailed geotechnical
information, statistical-based methods were commonly used to
conduct landslide susceptibility analysis (Cascini 2008; van
Westen et al. 2008; Guzzetti et al. 2012). The present researches
on LSE mainly employed the following methods. (1) Traditional
regression analysis methods, e.g., frequency ratio (e.g., Youssef
et al. 2014; Li et al. 2017; Mandal et al. 2018; Lee et al. 2015), index
of entropy models (e.g., Youssef et al. 2014; Wang et al. 2016b;
Mondal and Mandal 2019), landslide density (e.g., Barella et al.
2019; Sharir et al. 2017), logistical regression (LR) (e.g.,
Martinović et al. 2016; Tanyas et al. 2019; Nefeslioglu and Gorum
2020), weights of evidence (e.g., Pamela and Yukni 2017; Bacha
et al. 2018; Hong et al. 2017; Wang et al. 2016a), and fisher
discriminant analysis (FDA) (e.g., Gupta et al. 2018; Wang et al.
2020a; He et al. 2012; Binh and Prakash 2019). Tanyas et al. (2019)
investigated 64 earthquake-induced landslide (EQIL) inventories
and adopted logistical regression and slope unit to conduct LSEs
in 25 EQIL areas. The model reached the area under curve (AUC)
precision of 0.88 when applied in the Wenchuan event, one
example of the EQIL study areas. Nefeslioglu and Gorum (2020)
revealed the landslide hazards and suggested the use of landslide
hazard maps in determining mitigation priorities in the Melen
Dam reservoir and its protection area. Logistic regression
analysis was employed to conduct LSE and achieved a good
result of landslide spatial probability. Gupta et al. (2018) used
information value method to calculate the weights of various
influence factors and applied the weights into the methods of
FDA and binary LR to conduct LSEs. Moreover, the method of
Heidke-Skill-Score was employed to assess the prediction
accuracy, and the scores of FDA and LR are 0.89 and 0.90,
respectively. Barella et al. (2019) compared seven statistical
methods for LSE including landslide density, likelihood ratio,
information value, Bayesian model, weights of evidence, logistic
regression, and discriminant analysis, and the method weights of
evidence outperformed the other methods in the evaluation ac-
curacy. Traditional regression analysis methods generally employ
a landslide inventory as the predictive variable and establish
statistical regression models to predict the probability of land-
slide occurrence. However, there is a certain degree of subjectivity
in factor selection and weight (or other parameters) assignment,
so this kind of methods, to some degree, rely on expert experience
(Kanungo et al. 2011; Gupta et al. 2018). (2) Traditional machine
learning methods and the ensemble techniques, e.g., artificial
neural network (ANN) (e.g., Gorsevski et al. 2016; Wei et al.
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2017; Sevgen et al. 2019; Polykretis and Chalkias 2018), random
forest (RF) (e.g., Sevgen et al. 2019; Kim et al. 2018; Zhang et al.
2017; Shirvani 2020), support vector machine (SVM) (e.g., Dieu
et al. 2019; Wu et al. 2016; Pham et al. 2019; Yu et al. 2019; Kumar
et al. 2017), Classification and Regression Treebagger (ClaReT)
(e.g., Lagomarsino et al. 2017), and genetic algorithm (GA)-SVM
(e.g., Niu et al. 2017; Ramachandra et al. 2013). Binh et al. (2019)
utilized four different ensemble techniques for landslide suscep-
tibility assessment and prediction, including bagging-based re-
duced error pruning trees (BREPT), multiboost-based reduced
error pruning trees (MBREPT), rotation forest-based reduced
error pruning trees (RFREPT), and random subspace-based re-
duced error pruning trees (RSREPT). BREPT and RFREPT per-
formed better than the other two methods, and the four ensemble
methods all prevailed over the method of reduced error pruning
trees (REPT). Dou et al. (2020) implemented LSE by using the
four methods of SVM-Stacking, SVM, SVM-Bagging, and SVM-
Boosting. The SVM-boosting model outperformed the other three
models, while the SVM-Stacking model had the poorest perfor-
mance. Zhao and Chen (2020) utilized ensemble techniques for
landslide susceptibility modeling, including functional trees (FT),
bagging-functional trees (BFT), rotation forest-functional trees
(RFFT), and dagging-functional trees (DFT), and BFT surpasses
the other methods in the AUC precision of 0.804. Dieu et al.
(2019) employed a classifier of support vector machine (SVM),
and four meta/ensemble techniques including Adaboost (AB),
bagging (BA), rotation forest (RF), and random subspace (RS)
to construct new ensemble models and to implement LSEs.
RS_SVM is superior to the methods of SVM, RF_SVM, BA_SVM,
and AB_SVM in the prediction accuracy. Traditional machine
learning methods possess an important common on selection of
various critical influence factors, which can reduce the impact of
highly correlated factors on the generalization capability of the
models (Bui et al. 2016). Moreover, these methods can support the
comprehensive analysis of multiple influence factors and rela-
tively well depict the nonlinear correlation between the influence
factors and landslide susceptibility; thus, they can achieve rela-
tively high LSE precisions (Huang and Zhao 2018; Bui et al. 2016).
(3) Deep learning methods. There appear some, but still relatively
few, works implementing LSEs by deep learning. Fang et al.
(2020) integrated convolutional neural network (CNN) with three
traditional classifiers of support vector machine (SVM), random
forest (RF), and logistic regression (LR) to assess landslide sus-
ceptibility. The integration of CNN with SVM, RF, or LR can
effectively improve the performances of the three traditional
classifiers (Fang et al. 2020). Wang et al. (2020b) adopted recur-
rent neural networks (RNNs) to perform landslide susceptibility
mapping in Yongxin County, China, and proposed that the RNN
framework was useful for landslide susceptibility mapping to
mitigate and manage landslides. Wang et al. (2019a) utilized a
CNN framework for landslide susceptibility mapping in Yanshan
County, China, and indicated that CNN performed well for
landslide prevention and management. Dong et al. (2020) imple-
mented LSE by using a spatially explicit deep learning neural
network model, and several performance metrics showed that
the model performed well for landslide evaluation and prediction
both in training precisions (AUC = 0.90, accuracy = 82%, and
RMSE = 0.36) and in predicting future landslides (AUC = 0.89,
accuracy = 82%, and RMSE = 0.38). Compared with traditional

machine learning methods, deep learning possesses more com-
plicated structures (Ronoud and Asadi 2019) and thus is more
competitive in depicting a complex nonlinear problem (Cao et al.
2019a), such as a landslide system. Moreover, deep learning may
achieve better generalization abilities than traditional machine
learning due to the capable study strategy (Liu et al. 2019; Duo
et al. 2019). It still needs to be illuminated that the LSE precision
of a method is highly region-dependent, and the precision of a
method may vary largely when it is applied to different areas
(Lagomarsino et al. 2017).

Great progresses have been achieved in the LSE studies; how-
ever, there are still some limitations for the present researches on
LSE. (1) Present studies generally employed traditional regression
analysis or traditional machine learning methods to conduct LSE.
These methods tend to construct the prediction models with
relatively simple structures and to some degree possess the defects
in delineating the complicated nonlinear landslide systems and in
preventing the overfitting problem. Compared with these
methods, deep learning methods, e.g., deep neural networks
(DNNs), have prominent advantages to the above problems. Two
important features of DNNs are nonlinear and multi-layer struc-
tures, so they can well depict a complicated nonlinear landslide
system affected by various influence factors. Moreover, valid algo-
rithms such as “Dropout” or “Batch” are included in DNNs to
effectively prevent overfitting. Therefore, DNNs are hopeful to
improve the evaluation accuracy of landslide susceptibility. How-
ever, there are relatively few researches conducting LSE by deep
learning methods. (2) Present researches generally evaluated the
static landslide susceptibility under a single time point. However,
the influence factors for landslide occurrence and development,
e.g., water level, rainfall, and human activity, always change with
time; thus, landslide susceptibility also correspondingly dynami-
cally changes (Gorsevski et al. 2006; Torizin et al. 2018). Landslide
susceptibility changes with time and with the development of the
influence factors. Nefeslioglu and Gorum (2020) also proposed
that landslide susceptibility maps should be dynamic maps and
their regular updating is necessary based on new land-use policies.

Focusing on the above two limitations, this work makes two
improvements on landslide susceptibility analysis. (1) Deep neural
networks, combined with slope unit segmentation, are employed
to obtain a high-precision LSE; (2) Dynamic development of land-
slide susceptibility is revealed with the changing of the influence
factors such as rainfall, human activity, soil moisture, and reser-
voir water level. The causes of the dynamic change of landslide
susceptibility are disclosed including the relation between the
change of various influence factors and the development of land-
slide susceptibility, and the dynamic response of landslide occur-
rence probability to various changing influence factors.

Focusing on the study area of the Zigui-Badong section in the
Three Gorges area, this work employs multi-source and three-
temporal landslide monitoring data (geological, topographic, hy-
drological, and remote sensing data) to investigate landslide sus-
ceptibility and its dynamic development. Slope unit segmentation
and deep machine learning are adopted to improve the accuracy of
LSE. Some new viewpoints on the following three questions are
proposed: (1) Which key factors influence landslide susceptibility?
(2) What are the development characteristics of landslide suscep-
tibility in the study area? (3) What are the dynamic responses of
landslide occurrence probability to various changing factors?
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Study area
The study area is located along the Yangtze River from Badong to
Zigui Counties in the Three Gorges Reservoir area within 110° 18′ E
to 110° 49′ E longitude and 30° 54′N to 31° 5′N latitude. It covers an
area of about 400.77 km2 (Fig. 1) and is generally in the shape of a
basin. There are two main mountain ranges: Dabie Mountain
Range and Wushan Mountain Range, and the elevation varies
from ~ 80 to ~ 2000 m. According to the 1:50,000 geological
map, the exposed strata in the study area include Quaternary
(Q) slopes, metamorphic rocks, and sedimentary rocks. The sed-
imentary rocks primarily include dolomite, schist, marl, sand-
stone, and shale (Bai et al. 2010; Ling et al. 2014). The exposure
region of metamorphic rocks in the study area is relatively small,
and only a small amount of metamorphic rock formations are
exposed in the core of the Huangling anticline (MGMR, Ministry
of Geology and Mineral Resources 1988; Bai et al. 2009; Wu et al.
2014). Fractures and folds are the main geological structures
developed in the study area (MGMR, Ministry of Geology and
Mineral Resources 1988; Ehret et al. 2010; Ling et al. 2014). The
former mainly includes the Jiuwanxi fault, Xiannvshan fault,
Xiangluping fault, and Badong Niukou fault; the main folds were
formed in the Zigui syncline, Huangling anticline, Guandukou
syncline, and Baifuping anticline (MGMR, Ministry of Geology
and Mineral Resources 1988).

The reservoir water level has changed a lot. As the reservoir
water level rose from 66 to 135 m, to 156 m, and then to 175 m
(Table 1), it has experienced three water storage periods (TGWC,
Three Gorges Reservoir Area Geological Disaster Prevention and
Control Work Command 2010). In order to ensure the tasks of
flood control, water storage, and power generation, the reservoir
water level mainly periodically fluctuated between 145 m and 175 m
after the completion of the Three Gorges Reservoir in 2009 (ac-
cording to the statistical data of Three Gorges Geological Disaster
Monitoring and Early Warning Center).

The fluctuation has a negative impact on the stability of the
bank slopes on both sides of the reservoir area, and provides
favorable conditions for landslide occurrences along the Yangtze
River. In this work, distance to river (DTR) is adopted as an
environmental factor to measure the effect of reservoir water
fluctuation, because the change of reservoir water level mainly
affects the areas close to the reservoir water.

The rainfall in the study area is abundant. According to the
monitoring data from 2002 to 2017 (Fig. 2), the annual cumulative
rainfalls in Zigui and Badong were 1196.9 mm and 1082.1 mm,
respectively.

Data and methods

Data
Landslide investigation in the study area was conducted by both
field survey and Google and Sentinel-2A images. The landslide
inventories up to 2007 were obtained via field survey and provided
by TGWC. The new landslide inventory in 2017 was interpreted
from the Google images and the Sentinel-2A images (Fig. 3). There
were 15 newly occurred landslides from 2007 to 2017 with the total
increasing area of about 78,157 m2. There are two types of land-
slides in the study area: Quaternary deposit landslides and rock
landslides. Among the 238 landslides in the study area, there are
201 Quaternary deposit landslides and 37 rock landslides.

The multi-source monitoring data are listed in Table 2. Five sets
of monitoring data are employed to establish the influence factors
of landslides and then conduct LSE. (1) DEM data are adopted to
build the factors of aspect, slope, and relative relief; (2) Geological
map is used to acquire the distribution of engineering rock group
(ERG); (3) Hydrological monitoring data are employed to con-
struct the precipitation factor of annual cumulative rainfall (ACR);
(4) Remote sensing images are adopted to generate the factors of
land use, normalized difference vegetation index (NDVI), normal-
ized difference water index (NDWI), and DTR. In this work, the
three-temporal monitoring data include remote sensing images
and rainfall data in 2002, 2007, and 2017. Therefore, the dynamic
influence factors consist of DTR, land use, NDVI, NDWI, and
ACR, which results in the dynamic development of landslide
susceptibility. Note the rainfall data were collected from 25 rainfall
stations in or around the study area. According to the rainfall
values in the 25 stations, the inverse-distance-weighted (IDW)
interpolation method is employed to obtain the spatial distribu-
tion of rainfall. Moreover, the employed remote sensing images
(Landsat 4-5 TM and Landsat 8) are in the resolution of 30 m, so
the data of all the influence factors are unified to the same reso-
lution of 30 m. In addition, all the landslides are portrayed with
polygons on the 30-m-resolution grid.

There are two reasons why the three years (2002, 2007, and
2017) of monitoring data are selected. (1) In the Three Gorges
Reservoir area, the impoundment and fluctuation of reservoir
water have important impacts on landslide occurrence. The max-
imum impounding levels of reservoir water in the 3 years (2002,
2007, and 2017) were 66 m, 156 m, and 175 m, respectively. Thus, in
order to reflect the impact of reservoir water level on landslide
susceptibility, the 3 years of landslide monitoring data are selected
that correspond to the impoundment stages of reservoir water. (2)
In the study area, land use and road construction also have
important influences on landslide occurrence. However, in a short
period of time, land uses and roads have changed less, and rare
new landslides have occurred in the study area; thus, landslide
susceptibility has also less changed. Therefore, according to the
above two reasons, the 3 years of monitoring data are selected that
have long time intervals and correspond to the impounding stages
of reservoir water. Consequently, the dynamic development of
landslide susceptibility can be better revealed.

Methods
Figure 4 shows the flowchart of the dynamic LSE in this study. The
purpose is to reveal the dynamic development characteristic of
landslide susceptibility and its response to various changing fac-
tors. First, multi-source monitoring data are employed to extract
the monitoring information. Second, nine influence factors are
generated in total and include the geoenvironmental and trigger-
ing factors, covering almost unchanged and varying factors; Third,
LSE is conducted based on slope unit segmentation and DNNs.
The study area is segmented into slope units according to the
terrain features. Compared with the generally used grid unit, slope
unit can better reflect the topography constraints on landslide
occurrence and development. Thus, it is hopeful to improve the
accuracy of LSE and make LSE more accordant with the actual
situation. Then, the LSE model is constructed by DNN algorithm,
and LSEs in the 3 years (2002, 2007, and 2017) are conducted by a
combination of slope unit and DNN. Fourth, the dynamic
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development of landslide susceptibility and the causes of the
landslide susceptibility change are revealed. The importance
values and contributions of various control and triggering factors
to landslides are determined, and then the cause mechanism of
landslides in the study area is disclosed. Furthermore, the rule and
characteristic of the dynamic development of landslide

susceptibility are revealed. Then, the relation between the devel-
opment of landslide susceptibility and the change of various in-
fluence factors is analyzed to illuminate the dynamic response of
landslide occurrence probability to various influence factors.

Geological and environmental factors and triggering factors
Nine influence factors are established from the monitoring data,
which are closely related to the local landslide occurrence and
development (Fig. 5 and Fig. 6). The nine factors are land use,
aspect, ERG, slope, DTR, relative relief, NDWI, NDVI, and ACR.
These factors are composed of two types: geological and environ-
mental factors and triggering factors. Geological and environmen-
tal factors include slope, aspect, relative relief, ERG, DTR, NDWI,
and NDVI. Among these factors, DTR, NDWI, and NDVI have
dynamically changed, and the others have kept relatively static.
During different years, DTR has varied due to the rising of reser-
voir water level and the emergence of tributaries. NDWI has

Fig. 1 Location map of the study area and landslide distribution. (a) Location of the study area in China. The base map is sourced from https: //download.csdn.net/
download/yzj_xiaoyue/10612119. (b) Location of the study area in Hubei Province. The background map is sourced from https://download.csdn.net/download/
yzj_xiaoyue/10612119. (c) Landsat 8 image and landslide distribution in the study area. The image was shot in 2017, and the county boundary is sourced from https:
//download.csdn.net/download/yzj_xiaoyue/10612119

Table 1 Changes of reservoir water level over time (TGWC, Three Gorges Reservoir
Area Geological Disaster Prevention and Control Work Command 2010)

Time Maximum water level (m)

Before 2003.6 66

2003.6–2006.8 135

2006.9–2008.9 156

2009.1–present 175
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changed with rainfall and NDVI has varied with vegetation growth
and human activity. Triggering factors consist of rainfall and land
use that have dynamically changed with time, and land use actu-
ally reflects human activity.

The spatial or spatial-temporal distribution characteristics of
various influence factors are revealed. With regard to the static

geological and environmental factors, as shown in Fig. 5, the
areas with steeper slopes are mainly distributed in the north
and southeast of the study area. Hard rocks mainly appear in
the south of the Yangtze River in Badong County and in the
eastern part of Zigui County. Soft rocks and soft-hard lithologic
groups primarily spread over the remaining regions. Moreover,
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Fig. 2 Variation of the annual cumulative rainfall (ACR) in the study area from 2002 to 2017. The rainfall monitoring data before 2013 are from the Three Gorges Reservoir
Area Geological Disaster Prevention and Control Work Command (TGWC), and the rainfall monitoring data after 2013 are from Hubei Provincial Hydrology and Water
Resources Bureau (http: //113.57.190.228:8001/web/Report/CantonRainSta)

Fig. 3 Landslide investigation in the study area. The new landslides from 2007 to 2017 are interpreted from the Google images and Sentinel-2A images. The Google
images were shot on August 27, 2007, April 14, 2015, and October 9, 2017, respectively. The Sentinel-2A images were acquired on December 16, 2015, and July 10, 2017,
respectively
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the eastern part of Zigui County is characterized by relatively
high relief.

As for the dynamically changing geological and environmental
factors, Fig. 6 (a)–(c) show that tributaries emerged due to the
changing of the water level in the Three Gorges reservoir. There
was almost one main river in 2002, whereas there had appeared
many tributaries till 2017. In 2002, there was nearly no tributary
along the Yangtze River in the study area, while by 2007, there
had appeared several tributaries. As the reservoir water level
continued to rise from 2007 to 2017, the Yangtze River and its
tributaries became wider and wider. The area may have been
eroded by the cyclical change of the water level, and the erosion
degree may have been increased with the appearance of more
tributaries. Thus, DTR is a good indicator to describing the im-
pacts of river erosion and reservoir water fluctuation on land-
slides. As shown in Fig. 6 (d)–(f), the NDVI values in 2002 and 2017
were clearly lower than that in 2007. Besides, in 2017, the NDVI
value was slightly higher than in 2002. As depicted in Fig. 6 (g)–(i),
the NDWI value in 2017 was significantly higher than in 2002 and
2007, while the NDWI value in 2007 was the lowest. However, in
2007, due to the widening of the river channel, the area where the
NDWI values over 0 was more than that in 2002. In addition, the
relatively high NDWI values in 2002 and 2007 were mainly con-
centrated near the bank of the Yangtze River; while in 2017, the

NDWI values of the entire study area were relatively high, except
for some mountainous areas.

With respect to the triggering factors, land use associated with
human activity is shown in Fig. 6 (j)–(l). From 2002 to 2017,
agricultural lands had declined in the central region, and vegeta-
tion had gradually grown, because some agricultural lands had
transited to vegetation. Figure 6 (m)–(o) show that the rainfall
trends were similar in 2002 and 2007 that the ACR in Zigui County
was more abundant than in Badong County, and the area with the
most rainfall was in the southern part of Zigui County. However, in
2017, the maximum ACR transferred to Badong County.

Segmentation of slope units
LSE is conducted based on the evaluation units; thus, rational
units have a direct influence on the accuracy of LSE. Grid unit is
generally used in the present researches (Guzzetti et al. 1999;
Hassani and Ghazanfari 2008; Cama et al. 2016; Zêzere et al.
2017; Ba et al. 2018); however, as indicated in some previous
studies (Rowbotham and Dudycha 1998; Drăguţ and Blaschke
2006; Blaschke and Strobl 2015), there are two main disadvantages
for grid unit: (1) Grid unit does not make use of the spatial context
and the terrain characteristic. However, landslide susceptibility is
the spatial probability of landslide occurrence (Guzzetti et al. 2006;
Blaschke and Strobl 2015), and is to a large extent constrained by
the terrain conditions; therefore, spatial context and topography
feature are very important for the accuracy of LSE; (2) LSE results
based on grid unit often appear broken and discontinuous, and
the susceptibility values of these small broken regions are usually
not consistent with the actual situation.

In order to take the spatial context and terrain features into
account, slope unit is employed in this work. Slope unit has two
advantages: (1) Among various controlling or triggering factors, the
developments of rivers and valleys have obvious inducing or control-
ling effects on the formation of landslides and collapses (Yang 2017).
Since slope units are based on drainage and divide lines, they can
comprehensively reflect the effects of drainage and terrain and thus
tend to generate a more rational LSE result; (2) Compared with grid
unit, slope unit can achieve a much more continuous LSE result and
significantly reduce the number of evaluation units (a fewmillion grid
units were merged into 22,000 slope units in this work); thus, the
evaluation efficiency is obviously increased.

By far, the most common segmentation method of slope unit is
to delineate local catchments by use of flow modeling (Giles and
Franklin 1998; Romstad and Etzelmüller 2009). This method gen-
erally adopts DEM and reversed DEM data to obtain the divide
and drainage lines. After combining the watershed polygons re-
spectively obtained from the DEM and reversed DEM data, each
original polygon is divided into the left and right parts, and these
two parts represent two slope units (Giles and Franklin 1998; Xie
et al. 2003; Dymond et al. 1995; Yang 2017). Nevertheless, the
disadvantages of this method are also obvious. Most of the param-
eters used in this method are determined by experience. Even if
the values of these parameters are rationally set, a lot of cumber-
some manual operations are still necessary in the later stage to get
a reasonable division result.

Therefore, a method named mean-curvature watersheds was
put up (Romstad and Etzelmüller 2009; Romstad and Etzelmüller
2012). Its specific segmentation process is shown in Fig. 7. In the
mean-curvature map, the closed depression is commonly

Table 2 Multi-source and three-temporal landslide monitoring data and the
corresponding influence factors. The meanings of the abbreviations are as follows.
DEM: digital elevation model; ERG: engineering rock group; ACR: annual
cumulative rainfall; NDVI: normalized difference vegetation index; NDWI: nor-
malized difference water index; DTR: distance to river

Data type Year/date Influence
factors

Source

DEM (10 m) 2012 Aspect,
slope,
relative
relief

China and Brazil
Earth
Resource
Satellite
(CBERS)

Geologic map
(1:50000)

2012 ERG Three Gorges
Reservoir
Area
Geological
Disaster
Prevention
and Control
Work
Command
(TGWC)

Hydrological
monitoring
data

2002,
2007,
2017

ACR TGWC
Hubei Provincial
H yd r o l o g y a nd
Water Resources
Bureau (HPHWRB)

Landslide
investiga-
tion

2002,
2007,
2017

TGWC, Google
images,
Sentinel-2A
images

Remote
sensing
images
(30 m)

2002.3,
2007.8,
2017.3

Land use,
NDVI,
NDWI,
DTR

Landsat 4-5 TM,
Landsat 8
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interpreted as a topographic concave unit, and the convex unit can
be generated in the same way by DEM inversion (Subtracting the
DEM value from the DEM maximum of the full map), so the slope
unit can be produced by their combination (Romstad and
Etzelmüller 2009; Romstad and Etzelmüller 2012). However, this
method is found more suitable for small-area regions; when used
in a large-area region, it is apt to over-segmentation and generat-
ing broken and meaningless units. To improve it, an elimination
method is used in this research. Different from the predecessor
method (Romstad and Etzelmüller 2009; Romstad and Etzelmüller
2012), the smoothing procedure of the original DEM data is aban-
doned. The final result of the reasonable slope units is generated
by eliminating the slope units smaller than the set threshold and
by combining the small units with their surrounding larger slope
units. Figure 8 shows the effect of the elimination method that
many broken and meaningless units are deleted and more rational

slope units are acquired. Moreover, the mean filtering operation is
not conducted in this research, because we found the smooth
filtering would erase some important topographical features. Thus,
in this work, the segmented slope units without smoothing the
DEM data are hopeful to be more consistent with the actual
terrain.

Deep neural networks
With the advent of the big data era, deep learning technology has
become a research hotspot in the field of artificial intelligence. The
learning ability of deep neural networks is superior to the tradi-
tional machine learning techniques and has been proved in many
fields (Cui et al. 2014; He et al. 2015; Xing et al. 2016; He et al. 2018;
Jo et al. 2018).

A deep neural network (DNN) is a multi-layer perceptron
(MLP) with more than one layer of hidden units between its inputs
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CBERS DEM 10 m Landsat images Geologic map(1:50000) Hydrological monitoring data

(1) Extraction of Landslide monitoring information 

(3) Landslide susceptibility evaluation based on slope unit segmentation and DNN
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(4) Analysis on the dynamic development of landslide susceptibility
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Fig. 4 Overall flowchart of dynamic evaluation of landslide susceptibility
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and outputs, and the network is optionally initialized by using the
Dynamic Bayesian Network (DBN) pre-training algorithm
(Malsburg 1986; Hinton et al. 2012; Seide et al. 2012). DNNs are
also called full connected networks, and each node of the fully
connected layer is connected to all the nodes of the previous layer
to combine the features extracted from the front layer (Xu
et al. 2015) (Fig. 9).

In the fully connected neural network suggested in this work,
the activation function of “ReLU” is employed to introduce the
nonlinear features into the network, so that the network can
approach nonlinear functions (Hinton et al. 2012). The “ReLU”
function is used to activate the function after linear combination
to complete a nonlinear transformation (Eq. 1 and Eq. 2) (Hongyo
et al. 2019; Shi et al. 2019).

z ¼ ∑
n

i¼1
wixi þ b ð1Þ

where z represents the result of linear combination, wi repre-
sents the weight of each neuron, xi represents each neuron, and b
represents a random value (bias).

Re LU xð Þ ¼ x i f x > 0
0 i f x < 0

�
ð2Þ

where x represents the input value of the function, and in most
cases, x is the result of a linear combination (i.e., z in Eq. 1). When x
< 0, “ReLU” function determines it has no value, so the output value
is equal to 0. When x> 0, “ReLU” function will output its value.

Three 9 × 10 × 15 × 6 × 2 (one input layer (9 nodes), three hid-
den layers (10 × 15 × 6 nodes) and one output layer (2 nodes)) deep
neural networks are established for landslide susceptibility analy-
sis. Each DNN corresponds to the LSE in one year (2002, 2007, or

2017). Thus, the three DNNs have the same structure of 9 × 10 ×
15 × 6 × 2, but possess different model parameters (e.g., input
database, model weights, and output database). With regard to
each DNN, the 9 input nodes represent the 9 landslide influence
factors (land use, aspect, ERG, slope, DTR, relative relief, NDWI,
NDVI, and ACR) of a certain year (2002, 2007, or 2017). The
output of DNN is the landslide susceptibility in the corresponding
year. The numbers of nodes in the three hidden layers are 10, 15,
and 6, respectively. After each layer of neurons is calculated, the
activation function of “ReLU” is used to complete a nonlinear
transformation from the values of the nine influence factors to
the output variables. Then, the “Sigmoid” function (Shi et al. 2019;
Oysal 2005) is used to map the output variables to the values of 0
(no landslide) and 1 (landslide). However, LSE reveals the proba-
bility of slope failure, so the prediction result of the DNN should
be the values between 0 and 1. Thus, an error function (Eq. 3 and
Eq. 4) (He et al. 2019) is constructed in this study to guarantee the
output values varying from 0 to 1, rather than 0 or 1. The principle
of the error function is that the power of (y -y) is 4, so the
predicted value between 0 and 1 will have a smaller loss. For
example, the value of a loss function that predicts the value 0 as
1 is much larger than the value of a loss function that predicts the
value 0 as 0.2 (i.e., (0.2–0)4 < <(1–0)4). Deep learning is mainly
learned by lowering the loss function value (Xing et al. 2016), so
the value by using 0.2 instead of 1 will be chosen as the prediction
result. Thus, in the effect of the error function, the final result can
be transformed into the probability value of landslide occurrence.
Furthermore, many DNNs use the power of 2 (e.g., Hinton et al.
2012; Meier and Masci 2012; Toshev and Szegedy 2013; Xu et al.
2015; Havaei et al. 2017), whereas this work employs 4 as the power
value because the larger power value can further reduce the value
of the loss function. The output layer contains two values, one is

Fig. 5 Geological and environmental static factors for landslides. The background map is the shaded relief map produced from the DEM data. (a) Slope; (b) engineering
rock group (ERG); (c) aspect; (d) relative relief
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Fig. 6 Dynamically changing influence factors in the study area. These factors include geological and environmental dynamic factors and triggering factors. The factor
maps are superimposed on the shaded relief map produced from the DEM data. (a) Distance to river (DTR) in 2002; (b) DTR in 2007; (c) DTR in 2017; (d) normalized
difference vegetation index (NDVI) in 2002; (e) NDVI in 2007; (f) NDVI in 2017; (g) normalized difference water index (NDWI) in 2002; (h) NDWI in 2007; (i) NDWI in 2017;
(j) land use in 2002; (k) Land use in 2007; (l) land use in 2017; (m) annual cumulative rainfall (ACR) in 2002; (n) ACR in 2007; (o) ACR in 2017
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the probability that a landslide will occur, and the other is the
probability that no landslide will occur. The two values add up to 1.

e ¼ y−y
� �4

ð3Þ

where y represents the calculated value, y represents the actual
value, and e represents the error of a single calculated value.

E ¼ 1
n

e 1ð Þ þ e 2ð Þ þ e 3ð Þ þ…þ e nð Þ
� �

¼ 1
n

∑
n

i¼1
e ið Þ

¼ 1
n

∑
n

i¼1
y ið Þ−y

ið Þ� �4

ð4Þ
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Fig. 7 Procedures of slope unit segmentation (Romstad and Etzelmüller 2009; Romstad and Etzelmüller 2012). The segmentation maps are all superimposed on the
shaded relief map produced from the DEM data
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where ei represents the error of each calculated value (Eq. 3), n
represents the number of the calculated values, and E represents
the loss function value while deep learning is mainly learned by
lowering the E value.

Therefore, for each year, the values of the nine influence
factors in each slope unit are input into the constructed DNN,
and then the landslide susceptibility in each slope unit is output
to obtain the landslide susceptibility in the whole region. Thus,

Fig. 8 Segmentation of slope units before and after elimination of small units. The segmentation maps are all superimposed on the shaded relief map produced from the
DEM data. (a) Segmentation of slope units before elimination of the small units. (b) Segmentation of slope units after eliminating the small units. (c) Partial enlarged
details of the segmentation map (a). (d) Partial enlargement of the segmentation map (b)

...

Input Layer
(9 influence 

factors)

Output Layer
(2 outputs, the 
probabilityof 

landslide and the
probabilityof no

landslide)

... ... ... ...

Hidden Layers
(10×15×6)

Fig. 9 Structure of deep neural networks in this study
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the landslide susceptibility maps of the study area in 2002, 2007,
and 2017 are generated based on slope unit and DNN.

Results

Landslide susceptibility evaluation
The maps of LSE in 2002, 2007, and 2017 are shown in Fig. 10. The
landslides are mainly distributed in the high-susceptibility and
very high-susceptibility areas, which proves the rationality of the
landslide susceptibility results. The number of the landslide units
falling in each susceptibility level is counted and shown in Table 3.

Table 3 shows that in the 3 years, the numbers of landslide slope
units falling in the “very low” and “low” regions are 13, 11, and 16,
accounting for only 0.59%, 0.50%, and 0.71% of the total landslide
units, respectively. Moreover, most of the landslide slope units are
located in the “high” and “very high” regions, accounting for
73.37%, 83.45%, and 82.57% of all landslide units, respectively.

As shown in Table 4, from 2002 to 2007 then to 2017, the
proportion of high and very high susceptibilities showed an in-
creasing trend. However, the “very high” area in 2007 was signif-
icantly higher than in 2002 and 2017, and the fluctuation of
reservoir water level may have played an important role in the
dynamic change of landslide susceptibility. The specific cause of

the landslide susceptibility change and its relation to reservoir
water level are analyzed in the “Discussions” section.

Precision evaluations
The known samples are segmented to 70% training samples and
30% validation samples. Both the training and validation samples
are sourced from landslide and non-landslide samples with the
proportion 1:1. Both landslide and non-landslide samples are ran-
domly selected in the study area, and the buffer technique is
employed to keep the non-landslide samples at least 1 km away
from the landslide areas. Zhu et al. (2019) suggested a new and
attractive sampling strategy based on the dissimilarity in the en-
vironmental conditions between the non-landslide and landslide
samples. This new sampling method improves the reliability of the
generated non-landslide samples and may possess a better perfor-
mance for LSE than the buffer-controlled sampling. Thus, the new
strategy may be incorporated in our future work to further im-
prove the accuracy of LSE.

The validation samples are not used to construct the LSE DNN
model, so they are employed to verify the accuracies of the LSE
results. As Fig. 11 shows, the ROC curves for the 3 years are
generally similar, and the AUC values are 0.983, 0.984, and 0.977,
respectively. In addition, statistical analysis is also conducted to

Fig. 10 Landslide susceptibility maps. The back map is the shaded relief map produced from the DEM data. (a) Landslide susceptibility in 2002; (b) landslide susceptibility
in 2007; (c) landslide susceptibility in 2017

Table 3 The number of the landslide slope units falling in each susceptibility level. PLHVH means the proportions of the landslide units in the high and very high
susceptibility areas to all landslide units

Very low Low Medium High Very high Total PLHVH (%)

2002 0 13 576 1496 127 2212 73.37

2007 1 10 355 1050 796 2212 83.45

2017 3 13 374 1611 237 2238 82.57
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evaluate the precisions of the LSE results in this work, and the
statistical indexes include Accuracy ACC, F measure, root mean
squared error (RMSE), Kappa, area under curve (AUC), and true
positive rate (TPR) (Table 5).

Therefore, the generated landslide susceptibility maps may
have a high credibility according to the relatively high values of
various accuracy indexes, the majority of landslides distributed in
the high and very high susceptibility regions, as well as the areas of
the high and very high susceptibility regions.

Effect of the DNN parameters
Regarding the establishment of the DNN-based LSE model, there
are primarily two parameters: one is the ratio of the training and
validation samples, and the other is the batch size. Batch size is
used in batch normalization to avoid overfitting by normalizing
inputs of each layer (Kim et al. 2017).

To explore the effects of the two parameters on the LSE results,
two charts (Figs. 12 and 13) are used to highlight the best parameter
values. As Fig.12 shows, although the ratio of 70%:30% possesses a
lower training accuracy of 2007 than the ratio 50%:50%, it has the
highest training and validation precisions for all the other years.
Based on the integration performance and the validation accura-
cies, the ratio 70%:30% is employed in this work. As Fig. 13 shows,
e.g., the accuracies of 2017, the training accuracy achieves the
highest two values (0.945 and 0.946) when the batch size equals
to 600 and 1000, respectively. However, the validation precision
attains the highest value when the batch size is 600, and the
validation accuracy when the batch size is 600 is significantly
higher than the one when the batch size is 1000. The precisions

of 2002 and 2007 have a similar trend that the validation preci-
sions reach the highest values when the batch size equals to 600.
Therefore, the batch size of 600 is selected in this work.

Model comparison
As suggested by some researches (Cao et al. 2019b; Chen et al. 2014; Hu
et al. 2019; Stumpf and Kerle 2011; Wang et al. 2019b), random forest
(RF), support vector machine (SVM), and logistic regression (LR) are
excellent machine learning algorithms. Thus, in this work the DNN
LSE model is compared with the above three models of RF (Breiman
2001), SVM (Chapelle et al. 1999), and LR (Young et al. 1993). Figure 14
shows the comparison of the LSE accuracies by using the training
samples, and Fig.15 presents the comparison of the LSE precisions by
using the validation samples. Thus, Figs. 14 and 15 show the training
accuracies and the verification accuracies, respectively. The validation
samples are not adopted to construct the LSE models, so compared
with the training samples, they can better reflect the generalization
ability and the prediction accuracy of a LSE model. Moreover, the LSE
maps of the above three models are shown in Fig.S1 and Fig.S2 in the
supplementary file.

As shown in Figs. 14 and 15, although RF possesses slightly
higher training accuracies than DNN, DNN has higher verification
accuracies than RF. Therefore, DNN has a better performance to
overcome the overfitting problem and possesses a better general-
ization ability and higher evaluation accuracies of landslide sus-
ceptibility. DNN performs better than the other three models in the
study area. Nevertheless, RF is also an outstanding machine learn-
ing algorithm and achieves higher evaluation precisions than SVM
and LR in the study area.

Table 4 Areas and proportions of high and very high susceptibilities and the reservoir water level in each year

Very high
susceptibility
(km2)

High and very high
susceptibilities (km2)

Total area of five
susceptibility levels (km2)

Reservoir
water level
(m)

Proportion of high and very
high susceptibilities (%)

2002 3.43 75.32 400.77 66 18.79

2007 31.51 89.07 400.77 156 22.22

2017 7.25 95.02 400.77 175 23.71

Fig. 11 Receiver operating characteristic (ROC) curves of landslide susceptibility evaluations for the 3 years of (a) 2002, (b) 2007, and (c) 2017. AUC is the abbreviation of
the area under the ROC curve. The ROC plots are drawn with the SPSS statistics software (Version 20.0)
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Discussions

Which key factors influence landslide susceptibility?
Significance and contribution of various influence factors are
analyzed (Fig. 16). The main factors affecting landslide occur-
rence are DTR, NDWI, relative relief, and ERG (Fig. 16). Among
them, DTR ranks first for all the 3 years; thus, the change of
reservoir water level has a crucial impact on landslide occur-
rence. As mentioned above, in 2002, 2007, and 2017, the maxi-
mum water levels were 66 m, 156 m, and 175 m, respectively
(Table 1). The change of the reservoir water level is unfavorable
to the stability of the local slopes, especially when large rising or
falling of the water level in a short period (TGWC, Three Gorges
Reservoir Area Geological Disaster Prevention and Control
Work Command 2010). When the water level rises, the shearing
strength of the slope is reduced due to the immersion (Miao
et al. 2014). When the water level drops, the pore water in the
slope cannot rapidly drain, so that the water level in the slope is
higher than the reservoir water level, which reduces the anti-
sliding ability of the potential sliding surface (Paolo et al. 2013;

Zhou et al. 2014). Therefore, in the Three Gorges Reservoir area,
the change of reservoir water level has the greatest impact on
landslides.

Figure 16 (b) shows the total significance values in the 3 years.
DTR still contributes most to landslide occurrence and develop-
ment in the study area. With regard to the significant
geoenvironmental factor of NDWI, it reflects soil moisture. Soil
water content affects soil cohesion and thus changes soil shear
strength (Gaudio et al. 2013; Ruette et al. 2013). With regard to the
factor of ERG, a crucial control factor for landslides, it indicates
the structural property of rocks. The rock mass on the slope often
undergoes plastic deformation and damage under the setting of
soft rock and soft layer (Wu et al. 2013; 2014), which may result in
landslides. Thus, the landslides in the study area are mainly dis-
tributed in the region with the lithology of soft rock or soft-hard
interbedded rock (Fig. 5 (b)). As for the factor of relative relief, it
to some degree delineates the type of landform. When the local
type is cutting hills or loess and the gullys are extremely devel-
oped, it provides convenient conditions for the development of
landslides (Saha et al. 2005; Chauhan et al. 2010).

Table 5 Accuracies of the LSE results for the 3 years. TP, FP, TN, and FN mean true positive, false positive, true negative, and false negative, respectively. Accuracy ACC
(%), F measure, Kappa are the statistical indexes for precision evaluation. RMSE, AUC, and TPR mean root mean squared error, area under curve, and true positive rate,
respectively

DNN(2002) DNN(2007) DNN(2017)

Binary prediction results TP 653 651 658

FP 17 19 18

TN 305 308 303

FN 34 31 30

Accuracy indexes Accuracy ACC (%) 94.95 95.04 95.24

F measure 0.962 0.963 0.965

RMSE 0.225 0.223 0.218

Kappa 0.885 0.888 0.891

AUC 0.983 0.984 0.977

TPR (%) 95.05 95.45 95.64
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What are the development characteristics of landslide susceptibility in
the study area?
As shown in Fig. 17, from 2002 to 2007, the newly added high-
landslide-susceptibility (HLS) areas were mainly distributed along
the Yangtze River and its tributaries. From 2007 to 2017, the
distribution of new HLS areas became different, and the moun-
tainous areas far from the Yangtze River also presented an increase
in landslide occurrence probability.

The slope units with the susceptibility changing level equal to
or larger than 2 and the constructed road networks are extracted
to analyze the distribution features of the newly added HLS areas
(Fig. 18). From 2002 to 2007, most of the new HLS areas were

distributed along the Yangtze River, some else were distributed
around the roads, and few were situated on the mountains far
from the roads. From 2007 to 2017, more than half of the new HLS
areas were distributed nearby the road networks, some else were
located in the mountainous areas far away from the roads in Zigui
County, and few of them lay along the Yangtze River. The moun-
tainous regions associated with the new HLS areas were generally
characterized by the increase of the soil moisture content, and the
soil water content is closely related to rainfall.

Figure 19 shows the changing trend of landslide susceptibility.
The susceptibility evolutional trends appear generally consistent
from 2002 to 2007 and from 2007 to 2017. The susceptibility kept
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RMSE 0.21 0.162 0.266 0.319 0.238 0.205 0.282 0.317 0.235 0.233 0.285 0.339

Kappa 0.901 0.941 0.842 0.773 0.873 0.907 0.822 0.777 0.875 0.879 0.817 0.742
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Fig. 14 Comparison of four models in training accuracies. RMSE, AUC, and TPR mean root mean squared error, area under curve and true positive rate, respectively. RF,
SVM, LR mean random forest, support vector machine, and logistic regression, respectively
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unchanged in about 46.61% and 45.85% areas from 2002 to 2007
and from 2007 to 2017, respectively. The regions with minor
susceptibility changes (the changing level equals to ±1) occupy
approximately 48.37% and 46.78% of the study area from 2002 to
2007 and from 2007 to 2017, respectively. Only in rare regions,
about 5.02% from 2002 to 2007 and 7.37% from 2007 to 2017, the
susceptibility obviously decreased or increased (with the absolute
values of the changing level equal to or larger than 2).

To better reflect the relation between reservoir water fluctua-
tion and landslide susceptibility variation, Fig. 20 shows the
changing trend of landslide susceptibility within the reservoir
water fluctuation area (DTR < 100 m). From 2002 to 2007, the
susceptibility increased in 39.04% of the fluctuation area (the
susceptibility rising level equals to 1 or 2); thus, the change of
reservoir water level had a significant impact on the landslide
occurrence probability along the reservoir bank. The rising of the
reservoir water level from 66 to 156 m led to the increase of
landslide occurrence probability along the reservoir bank. From
2007 to 2017, the area with decreasing landslide occurrence

probability was larger than the one with increasing landslide
occurrence probability, and the two types of areas occupied
27.03% and 17.94% of the reservoir water fluctuation region, re-
spectively. Thus, under the attention and disaster control of the
government, especially under the control of the landslides on both
sides of the reservoir bank, the rising of water level from 156 m to
175 m and the later periodic fluctuation had less influence on the
rise of the landslide occurrence probability along the reservoir
bank.

As shown in Fig. 21, from 2002 to 2007, the increase in NDWI
values mainly occurred in the area along the Yangtze River, as a result
of the rise of water level and the emergence of tributaries (Fig. 6
(a)–(c)). The red in Figure 21 (a) indicates the area with obviously
increasing NDWI values (the changing level equals to 2), and the area
also corresponds to the region where the ground was flooded and the
new tributaries appeared after the rise of reservoir water level. Accord-
ing to the change of landslide susceptibility, from 2002 to 2007, the
increase of landslide occurrence probability along the Yangtze River
resulted from the increase of NDWI. Therefore, from 2002 to 2007,
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Fig. 15 Comparison of four models in verification accuracies. RMSE, AUC, and TPR mean root mean squared error, area under curve and true positive rate, respectively. RF,
SVM, LR mean random forest, support vector machine, and logistic regression, respectively

Fig. 16 Significances and contributions of various influence factors. (a) Significance values of various influence factors in each year. (b) Total significance values of various
influence factors in the 3 years. The significance analysis is conducted by the sensitive analysis method of SPSS Modeler software (Version 18.0)
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landslide occurrence probability along the Yangtze River increased
due to the rise of the reservoir water level. The red and orange area
in Fig. 21 (b) occupies almost the entire study area, which illuminates
that the soil water content in almost all the study area increased.
According to the meteorology monitoring data from Hubei Provincial
Hydrology and Water Resources Bureau (http: //113.57.190.228:8001/
web/Report/CantonRainSta), rainfall occurred in the study area on
February 20 to 25, 2017. Since the remote sensing image was shot on
March 2, 2017, the increase in NDWI values in the region may have
been caused by rainfall. Thus, the increase of landslide occurrence
probability in the mountainous areas far from the Yangtze River
resulted from rainfall.

In conclusion, from 2002 to 2007, the new HLS areas mainly
appeared along the Yangtze River and also distributed around the
roads. From 2007 to 2017, more than half of the new HLS areas
were situated around the roads, and the increase of landslide
susceptibility also occurred in the mountainous areas far from
the Yangtze River. Therefore, from 2002 to 2007, the change in
landslide occurrence probability was mainly caused by the com-
bined effect of reservoir water level fluctuation and road construc-
tion. From 2007 to 2017, the variation in landslide occurrence
probability was mainly caused by the combined impact of rainfall
and road construction.

What are the dynamic responses of landslide occurrence probability to
various changing factors?
The dynamic responses of landslide occurrence probability to
various changing factors actually refer to the relation between
the development of landslide susceptibility and the variation of
various changing factors. How does landslide susceptibility devel-
op with the changing of various influence factors?

There are five changing factors of DTR, NDWI, NDVI, ACR,
and land use. As revealed in “What are the development charac-
teristics of landslide susceptibility in the study area?” the main
factors influencing development of landslide occurrence probabil-
ity are DTR, road construction, and NDWI.

As for DTR, it reflects the effect of reservoir water fluctuation.
When the water level rises, the strength of the rock mass below the
water level will decrease rapidly under the softening effect of water
(Paolo et al. 2013). Also, the submerged part will be affected by the
floating force, and the active weight of the soil will decrease (Zhou
et al. 2014). Thus, the anti-sliding force of the slope body will reduce
and the probability of landslide occurrence will correspondingly
increase (Paolo et al. 2013; Miao et al. 2014). When the water level
drops sharply, the reservoir water level decreases faster than the
groundwater level in the slope, and then the groundwater level and
the reservoir water level form a positive drop (Paolo et al. 2013; Miao

Fig. 17 Dynamic change of landslide susceptibility (a) from 2002 to 2007 and (b) from 2007 to 2017. The value indicates the varying degree of landslide susceptibility. For
example, 2 denotes the susceptibility level changing from low to high levels or from very low to medium levels or from medium to very high levels, and − 3 represents the
susceptibility level changing from very high to low levels or from high to very low levels

Fig. 18 Distribution of slope units with the susceptibility changing level equal to or larger than 2 and the constructed road networks in the study area. The road networks
are extracted from the Google images (images.google.com.hk) and the Landsat images (http: //www.gscloud.cn/). The Google images were shot on August 27, 2007, April
14, 2015, and October 9, 2017, respectively. The Landsat images were acquired on March 9, 2002, August 17, 2007, and March 2, 2017, respectively. The back map is the
shaded relief map produced from the DEM data
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et al. 2014; Zhou et al. 2014). The hydrodynamic pressure increases
and points to the outside of the slope, causing the augment of
landslide susceptibility (Miao et al. 2014). As mentioned above, in
order to ensure the smooth running of the Three Gorges Dam, the
reservoir water level has periodically fluctuated after the completion
of the Three Gorges Reservoir. Therefore, as the reservoir water level
increased during the period from 2002 to 2007, the influence range
of reservoir water fluctuation also increased, thus enhancing the
landslide susceptibility along the reservoir bank. From 2007 to
2017, under the control and cure measures of the government to
the landslides along the reservoir bank, the rise and fluctuation of
the reservoir water level did not result in the distinct increase of
landslide susceptibility along the bank.

As for road construction especially from 2007 to 2017, the soil at
the slope foot was excavated downwards; thus, it may have in-
creased the slope height and weakened the counterpressure of the
slope foot (Anno 1993; Kamp et al. 2008). Therefore, the stress in
the slope was redistributed and adversely affected the slope stabil-
ity (Anno 1993; Kamp et al. 2008). Moreover, the stress redistribu-
tion of the slope soil caused the protogenous closed cracks to open

in silty clay. The serious cut of the soil masses provided conve-
nience for water penetration via the cracks and for the formation
of underwater seepage channels (Kamp et al. 2008; Owen et al.
2008). As shown in Fig. 18, the increases of landslide susceptibility,
especially from 2007 to 2017, were evidently partly caused by the
road construction. There is an obvious special coherence between
the areas with increasing susceptibility and the ones with the
constructed road networks. The regions with significantly increas-
ing susceptibility caused by road construction are highlighted in
Fig. 22.

With regard to NDWI, the enhancement of landslide occur-
rence probability in 2017 was partly resulted from the augment of
the soil water content. Soil water content affects the distributions
of water infiltration and groundwater runoff during precipitation
and further influences landslide occurrence probability (Gaudio
et al. 2013; Ruette et al. 2013). The rise of soil water content reduces
the soil moisture absorption; in addition, under the long-term wet
state, the soil particles expand and swell, which reduces the gap
between particles (Montrasio et al. 2015; Thomas et al. 2018). When
the soil moisture absorption exceeds its water-holding capacity,
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the excess water continues infiltrating and thus forms under-
ground runoff at the interface between the bottom soil and the
rock surface (Ruette et al. 2013; Montrasio et al. 2015; Thomas et al.
2018). In this case, the anti-sliding ability of the slope body will
sharply drop, and the landslide occurrence probability will in-
crease (Montrasio et al. 2015; Thomas et al. 2018). As mentioned
in “What are the development characteristics of landslide suscep-
tibility in the study area?” rainfall occurred in the study area from
February 20 to 25, 2017. According to the meteorological monitor-
ing by Zhouping Station, even moderate rain (according to the
standard of China Meteorological Administration) happened on
February 21 with the daily cumulative rainfall of 18.5 mm. As a
result, the soil moisture in almost all the study area increased
(Fig. 21 (b)); thus, in 2017 the mountainous areas far from the
Yangtze River presented an increase in landslide susceptibility. The
areas with obviously rising susceptibility caused by the increase of
the soil water content are illuminated in Fig. 22.

Conclusions
This work focuses on the dynamic change of landslide suscepti-
bility and the dynamic response of landslide occurrence probabil-
ity to various changing influence factors. Multi-source and three-
temporal landslide monitoring data are employed to conduct LSE
based on slope unit segmentation and DNNs. Four conclusions are
drawn in this work.

1. The main factors affecting landslide occurrence are DTR,
NDWI, relative relief, and ERG. Among them, DTR ranks first
in all the three years; thus, the change of reservoir water level
has the most crucial impact on landslide occurrence. NDWI
manifests soil moisture, and soil water content affects soil
cohesion and thus affects soil shear strength (Gaudio et al.
2013; Ruette et al. 2013). The relative relief to some extent
depicts the type of landform. When the local type is cutting
hills or loess and the gullys are extremely developed, it

Fig. 21 Variations of normalized difference water index (NDWI) (a) from 2002 to 2007 and (b) from 2007 to 2017. The NDWI values are divided into three grades of 1, 2,
and 3 representing the value ranges of < − 0.4, − 0.4~0, and > 0, respectively. The values in the figures represent the varying levels of NDWI. For example, 2 represents
the NDWI grade changing from 1 to 3, and − 1 represents the NDWI grade varying from 3 to 2 or from 2 to 1

Fig. 22 Relations among the increase of landslide susceptibility, soil moisture and road networks. The regions with distinctly increasing susceptibility caused by road
construction and soil moisture are highlighted by the colors of red and black, respectively. The white regions, excluding the Yangze River, are characterized by decreasing
NDWI values
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provides convenient conditions for the development of land-
slides (Saha et al. 2005; Chauhan et al. 2010). ERG portrays the
structural property of rocks. The rock mass on the slope often
undergoes plastic deformation and damage under the setting
of soft rock and soft layer, which may result in slope instability
(Wu et al. 2013; 2014).

2. From 2002 to 2007, the new high-susceptibility areas mainly
appeared along the Yangtze River and also distributed around
the roads in the study area. From 2007 to 2017, more than half
of the new high-susceptibility areas were situated around the
roads, and the increase of susceptibility also occurred in the
mountainous areas far from the Yangtze River. Therefore, from
2002 to 2007, the change in susceptibility was mainly caused
by the combined effect of reservoir water level fluctuation and
road construction. From 2007 to 2017, the variation in suscep-
tibility was mainly caused by the combined impact of rainfall
and road construction.

3. There are five changing factors of DTR, NDWI, NDVI, ACR,
and land use. In the study area, the main factors influencing
development of landslide occurrence probability are DTR,
road construction, and NDWI. As for DTR, it reflects the effect
of reservoir water fluctuation. As the reservoir water level
increased from 2002 to 2007, the influence range of reservoir
water fluctuation also correspondingly increased, which
caused the rise of landslide susceptibility along the reservoir
bank. As for road construction, especially from 2007 to 2017,
the development of many road networks changed the stress in
the slope, destroyed the original balance condition of the slope,
and generated a large number of cracks, thus further increas-
ing the probability of landslide occurrence. NDWI reflects the
soil water content, and the rising of NDWI in 2017 resulted
from the antecedent precipitation. Thus, the increase of land-
slide susceptibility in 2017 was partly caused by rainfall.

4. A combination of slope unit segmentation and DNNs can
achieve a good performance in LSE. The methods suggested
in this work can be generalized to other hardest hits of
landslides.>
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