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Bayesian back analysis of landslides considering slip
surface uncertainty

Abstract Previous studies about probabilistic back analysis for
shear strength parameters of landslides generally adopted a fixed
slip surface. This setting may lead to unreliable results due to the
uncertainty of slip surface location speculated by limited observa-
tions. Based on Bayes’ theorem, this paper proposes a probabilistic
framework for the back analysis of landslides considering slip
surface uncertainty. The posterior distributions of shear strength
parameters in Bayesian inference are solved by Markov chain
Monte Carlo simulation method. To improve computational effi-
ciency, a response surface function based on extreme learning
machine is constructed to approximate the relationship between
shear strength parameters and the corresponding factor of safety
and critical slip surface. A synthetic slope, for which the actual
shear strength parameters and slip surface are known, is used to
compare the proposed and traditional methods. The effects of
measurement error of slip surface and prior distribution of shear
strength parameters on probabilistic back analysis results are also
investigated. Results show that the shear strength parameters
obtained from traditional probabilistic back analyses neglecting
slip surface uncertainty significantly deviate from actual values,
and are greatly affected by prior mean of shear strength parame-
ters. The proposed method performs better than traditional meth-
od and is less affected by the prior distributions of shear strength
parameters, and the smaller the measurement error of slip surface,
the higher the Bayesian back analysis accuracy. A practical land-
slide is applied to further verify the effectiveness of the proposed
method.

Keywords Bayesian back analysis . Shear strength . Slip surface
uncertainty . Landslide . Extreme learningmachine

Introduction
Back analysis for shear strength parameters of a failed slope is a
practical and widely used strategy in remedial design or stability
evaluation of the analogous slopes (Duncan et al. 2014). The failed
slope can be regarded as a large-scale in situ experiment. When the
slope failed, the factor of safety (FS) equals unity at the time of
failure, and portions of actual slip surface can be obtained. The
back calculated parameters incorporate all the in situ information
are therefore more representative than the parameters obtained
from laboratory test.

Generally, back analysis methods can be divided into two cat-
egories, i.e., deterministic methods and probabilistic methods.
Deterministic methods try to find a set of certain values satisfying
the observed information. For example, Wesley and Leelaratnam
(2001) and Jiang and Yamagami (2006, 2008) and Gao (2016) imple-
mented deterministic back analysis of the shear strength parameters
by fully utilizing the information of FS and location of observed slip
surface. Deterministic back analysis methods are simple and easy to
implement. However, these methods can only provide a single set of
parameters and are limited in providing confidence intervals on

parameters. In contrast, probabilistic back analysis methods based
on Bayes’ theorem try to obtain the posterior distribution of shear
strength parameters by incorporating the uncertainty of obtained
information. They can derive both mean and variance of shear
strength parameters. Therefore, the information provided by
probabilistic methods is more fruitful than that of deterministic
methods. Due to the merit of probabilistic back analysis methods,
they are becoming popular in recent years. For example, Zhang et al.
(2009) developed an optimization method by spreadsheet and
analytically sensitivity analysis method for probabilistic back
analysis of Shek Kip Mei landslide in HongKong and Congress
Street Cut landslide in Chicago. Zhang et al. (2010) implemented
probabilistic back analysis of shear strength parameters of a hypo-
thetical landslide based on Bayes’ theorem and solved the results by
Markov chain Monte Carlo simulation method (MCMC). Zhao et al.
(2016) applied first-order reliability method and Monte Carlo
simulation to back calculate the shear strength parameters of
Zhuquedong landslide. Sun et al. (2019) adopted Bayesian methods
for back analysis of the geo-mechanical parameters of high rock
slopes using multi-type monitoring data.

However, in previous studies about probabilistic back analysis
of shear strength parameters of landslides (Zhang et al. 2009, 2010;
Wang et al. 2013; Zhao et al. 2016; Jahanfar et al. 2017), it is
assumed that the actual slip surface is fully known and fixed. Only
the information of FS being unity is used. This strategy may not be
always reasonable. Because when the back calculated values are
used to search for the critical slip surface, the obtained slip surface
may be very different from the observed actual slip surface. In this
case, the back calculated values are not reliable. More reliable back
calculated parameters should simultaneously satisfy two condi-
tions (Deschamps and Yankey 2006; Jiang and Yamagami 2006,
2008; Duncan et al. 2014): (1) the FS at the time of failure should be
close to unity; (2) the back calculated critical slip surface should be
consistent with the actual slip surface. Therefore, to obtain reliable
parameters, the probabilistic back analysis should incorporate the
observed slip surface information.

The determination of the slip surface of a failed slope is quite
challenging since the slip surface is buried in displaced materials.
The slip surface is usually speculated by curve fitting via a limited
number of observations such as the crown of landslide and por-
tions of slip surface exposed by drilling and trench. Obviously, the
speculated slip surface is uncertain because the existence of mea-
surement errors and blunders caused by empirical judgment of
engineers and the different curve fitting techniques. Different slip
surfaces will result in different back analysis results. Therefore, in
probabilistic back analyses of shear strength parameters, the un-
certainty of slip surface should also be considered.

This paper proposes a probabilistic framework for the back
analysis of shear strength parameters of landslides based on Bayes’
theorem. Unlike the traditional probabilistic back analysis
methods, the proposed method considered the uncertainty of slip
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surface. The MCMC method is used to solve the posterior distri-
bution of shear strength parameters. The slope stability analysis
model for calculating FS and critical slip surface suffers high
computation cost. To improve its computational efficiency, an
extreme learning machine (ELM)-based response function is ap-
plied. Given a set of shear strength parameters, the corresponding
FS and critical slip surface can be accurately predicted by the ELM-
based response surface function. The proposed and traditional
methods are first compared using a synthetic slope for which the
actual shear strength parameters and slip surface are known. Then,
the effects of prior distribution of shear strength parameters on
back analyzed results are studied. Finally, the effectiveness of the
proposed method is further verified by a practical landslide.

Methodology

Probabilistic back analysis by Bayesian updating
For a 2-dimension landslide composed of n layers of soil, it can be
assumed that its FS is unity at the time of failure, and the coordi-
nates of m scatters on the actual slip surface can also be observed
by landslide site survey. These observations are hereafter called
measurements. Let Y = {FS, x1, y1, …, xm, ym} represents a (2 m +
1)-vector of measurements, where the x and y are the horizontal
and vertical coordinate of scatters, respectively. The measurements
can be simulated by the following formulation:

Y ¼ f θð Þ þ E ð1Þ

where θ = {c1, ϕ1, …, cn, ϕn} is a 2n-vector representing the shear
strength parameters (cohesion c and internal friction angle ϕ) of n
layers of soil in Mohr–Coulomb failure criterion. The f(θ) is a
model for predicting FS and location of critical slip surface. The E
= {εFS, εx1, εy1, …, εxm, εym} is a (2 m + 1)-vector representing the
total error of measurements and predictive model.

The shear strength parameters θ of slope materials are usually
uncertain, and their probability distribution can be obtained by
regional statistics or multiple experiments. In Bayesian formalism,
this distribution is called prior distribution, and the back analysis
of θ refers to update the distribution of θ by calculating condi-
tional probability of θ given the measurements. The conditional
probability of θ is called posterior distribution and can be defined
by the following formulation (Vrugt 2016):

p θjYð Þ∝p θð ÞL θjYð Þ ð2Þ

where p(θ) and p(θ|Y) denote the prior and posterior probability
density function of θ, respectively. L(θ|Y) represents likelihood
function.

Assume that the total error E is normally distributed, i.e., E~N
(με, σε

2), where με and σε are mean and standard deviation of total
error. The likelihood function L(θ|Y) can be written as (Vrugt
2016):

L θjYð Þ ¼ ∏ 2mþ1ð Þ
i¼1

1ffiffiffiffiffi
2π

p
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1
2

yi− f θð Þ−μi
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For numerical stability and algebraic simplicity, it is recom-
mended to use log-likelihood (Vrugt 2016), i.e., the logarithm of
Eq. (3):

log L θjYð Þð Þ ¼ −
2mþ 1ð Þ

2
log 2πð Þ−∑ 2mþ1ð Þ

i¼1 log σið Þf g− 1
2
∑ 2mþ1ð Þ

i¼1
yi− f θð Þ−μi

σi

� �2

ð4Þ

Once the likelihood function L(θ|Y) and the prior distribution
p(θ) of shear strength parameters are defined, the posterior dis-
tribution of θ can be derived. Since the models for predicting FS
and critical slip surface are often nonlinear, the traditional analyt-
ical means or analytical approximation may not perform well in
deriving the posterior distribution of θ. In this case, the MCMC
sample method is more applicable and preferred. In this method,
the random samples of a Markov chain will be either accepted or
rejected by a random decision rule (Kelly and Huang 2015). After
the algorithm is stable, the posterior distribution of θ can be
obtained by counting the accepted samples along the Markov
chain.

The MCMC method is widely used in parameter calibration. In
this paper, the differential evolution adaptive metropolis
(DREAM) algorithm (Vrugt 2016) is applied for implementing
MCMC simulation. The DREAM algorithm is a multi-chain
MCMC simulation algorithm which performs outstanding in sam-
pling efficiency on complex, high-dimensional and multi-modal
posterior distributions (Vrugt 2016). Generally, when the MCMC

simulation satisfies the convergence index bR which is less than or

equal to 1.2 (i.e., bR≤ 1.2) for each random variable, and the accep-
tance rate is greater than 15%, it indicates that the MCMC simula-
tion achieves convergence and acceptable performance. The
DREAM algorithm is implemented in MATLAB, and it can be
treated as a “black box.” Although a thorough understanding of
mathematical modeling algorithms is always advantageous, it is
not a prerequisite for engineers to use the “black box” (Li et al.
2016). Geotechnical practitioners only need to focus on slope
stability analysis. The DREAM will automatically obtain the pos-
terior distribution given the prior distribution, predictive model,
measurements, and errors distribution. This allows engineers to
use the DREAM without being compromised by the complicated
algorithms. A thorough explanation of DREAM appears in (Vrugt
2016), and interested readers are referred to this publication for
further details.

Predictive model
In this paper, the program Slide (version 6.007, © 1998–2010
Rocscience, Inc.) is selected as the predictive model to calculate
the FS and the critical slip surface on given shear strength param-
eters. An interface program for Slide using MATLAB (version
R2017a, © 1984–2017 The MathWorks, Inc.) is used to call Slide
as a module for automatically building and running the slope
stability analysis model and extracting the calculation results.
However, although the interface program is computationally effi-
cient, the calculation process of Slide is still time consuming when
the chain of MCMC is long. Thus, to further improve computa-
tional efficiency, a response surface function is constructed to
approximate the relationship between inputs (i.e., shear strength
parameters) and outputs (i.e., FS and critical slip surface). Since
the inputs are the 2n-vector θ, and the outputs are the (2 m + 1)-
vector Y, the response surface model must be multi-output. The
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artificial neural networks can address the multi-output problems
well. Among the artificial neural networks, the ELM is considered
to be a neural network that can always yield satisfactory perfor-
mance with an extremely high learning speed (Wang et al. 2019).
Therefore, the ELM model is selected as the response surface
function.

ELM is a new machine learning algorithm for single-hidden-
layer feedforward neural networks (SLFNs) proposed by Huang
et al. (2006). In ELM, the input weights and hidden biases are

randomly chosen, and the output weights are analytically deter-
mined. Compared to conventional neural networks, ELMs over-
come many limitations, such as overtraining, local minima, and
high computational burdens. For N arbitrary distinct samples (θi,
Yi), a standard SLFN with K hidden nodes (K ≤ N) and an activa-
tion function g(θ) can be expressed by the following equation
(Huang et al. 2006):

∑K
i¼1βig wi*θ j þ bi

� � ¼ o j; j ¼ 1; ⋯;N ð5Þ

Fig. 1 Flowchart of Bayesian back analysis for shear strength parameters of landslide

Fig. 2 Geometry of the homogeneous soil slope

Landslides 17 & (2020) 2127



where wi is the weight vector connecting the ith hidden neuron
and the input nodes, βi is the weight vector connecting the ith
hidden neuron and the output nodes, oj is the jth output vector of
the SLFN, and bi is the bias of the ith hidden neuron.

The above N equations can be compactly written as follows
(Huang et al. 2006):

Hβ ¼ O ð6Þ

where H and O are the hidden layer output matrix and the output
matrix of SLFNs, respectively. To minimize the cost function ||O-
Y||, the output weights β can be simply constructed by finding the
least squares solution to the linear system Hβ = Y, as expressed by
the following equation (Huang et al. 2006):

bβ ¼ HþY ð7Þ

where H+ is the Moore-Penrose generalized inverse of matrix H.

Steps of probabilistic back analysis
The whole process of Bayesian back analysis can be divided into
the following four steps: (1) parameter initialization; (2) sample
generation; (3) response surface construction; (4) Bayesian
updating. Fig. 1 shows the flowchart of Bayesian back analysis.
The details are described as follows:

1) Parameter initialization
Before the Bayesian back analysis, the prior distribution type,

mean, standard deviation (or coefficient of variation) and corre-
lation coefficient of the shear strength parameters, and the distri-
bution of total error need to be determined. Furthermore, in
DREAM algorithm, the number of shear strength parameters,

Markov chains, and generations of each chains should also be
determined.
2) Sample generation

Based on the prior distribution of shear strength parameters,
the range of each parameter can be determined. Then, the Latin
hypercube sampling (LHS) method is applied to uniformly gener-
ate N pairs of shear strength parameter samples within their
ranges. These samples will be transferred to the MATLAB interface
program of Slide to calculate their corresponding FS and critical
slip surface. After all the samples are calculated, an inputs-outputs
dataset containing N pairs {θ, Y} can be obtained.
3) Response surface construction

Step (2) will be repeated twice to obtain two inputs-outputs
datasets, one for the training set for ELM training and the other for
the testing set to test the performance of trained ELM. The coef-
ficient of determination (R2) between actual and predicted values
is used for evaluating the performance of ELM. When the ELM
performs well in testing set, the trained ELM can be used as a
predictive model instead of the program Slide.
4) Likelihood function construction

When Steps 1–3 are finished, given the measurements, the log-
likelihood function can be built based on Eq. (4).
5) Bayesian updating

The DREAM algorithm will sample the posterior distribution of
shear strength parameters based on the prior distribution and log-
likelihood function. When the DREAM algorithm reaches conver-
gence, the posterior distribution of shear strength parameters can
be obtained.

Method verification
A synthetic homogeneous slope is used to verify the proposed
method. In this slope, the actual shear strength parameters, FS,
and slip surface location are known. The traditional probabilistic
back analysis and the proposed method are compared with test
whether the two methods can obtain the actual shear strength
values.

Slope setting
Figure 2 shows the slope geometry. The height and slope angle are
12.25 m and 26.56°, respectively. The actual shear strength param-
eters are set to c = 12 kPa and ϕ=12°. The shear strength

Table 1 Assumed actual shear strength parameters and their prior distributions

Type Cohesion c (kPa) Friction angel ϕ (°)

Actual 12 12

Mean 14 10

COV 0.2 0.15

Standard deviation 2.8 1.5

Table 2 Information of measurements

Measurements Actual value

FS 1.0

Measurements Coordinates

x (m) y (m)

Entry (A) 72.31 40

Exit (B) 43 27.75

Slip point (C) 57.75 28.52

Table 3 Case conditions for Bayesian back analysis

Case number Case condition

1 FS + Fixed slip surface

2 FS

3 Entry

4 Entry + exit

5 Entry + exit + drilling

6 FS + entry

7 FS + entry + exit

8 FS + entry + exit + drilling
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parameters, i.e., θ = {c, ϕ}, are considered as uncertain variables.
Although the c and ϕ are typically lognormal distributions, in
some cases, the distributions of c and ϕ are suggested to follow
the normal distribution (Zhang et al. 2009; Zhao et al. 2016;
Jahanfar et al. 2017). For briefness and practicality, the prior
distributions of c and ϕ are assumed to follow the normal distribu-
tion. It is first assumed that c andϕ are statistically independent, and
then different negative correlation coefficients between c and ϕ are
applied to study the effect of the correlation on the results. The prior
mean of c and ϕ is set to 14 kPa and 12°, respectively. The coefficient
of variation (COV) of c and ϕ is set to 0.20 and 0.15, respectively

according to Zhang et al. (2010). The unit weight of slope material is
set to 18 kN/m3. Table 1 lists the assumed actual shear strength
parameters and their prior distributions.

In practical, the rigorous simplified method of Morgenstern-
Price, which satisfies all three equilibrium conditions, is a com-
monly used slope stability analysis method in engineering and
Zhang et al. (2010) also used this method for probability back
analysis. Therefore, the Morgenstern-Price method is selected as
the slope stability method. The actual FS calculated by this method
is 1.0. This paper focuses on the effect of slip surface uncertainty
on probabilistic back analysis. During the back analysis, the

Fig. 3 Critical slip surface samples calculated by Slide in training set and testing set (the color of slip surface represents its FS)

Fig. 4 Comparison between calculated values and predicted values. a FS. b x-coordinate. c y-coordinate
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stability analysis method is fixed. Therefore, others rigorous
methods, such as Spencer and Janbu method, can also be used
for back analysis with no harm to the performance of the proposed
framework and to the aim of the work. However, it should be
noted that the method selected for back analysis should be con-
sistent with the method used for remedial design or stability
evaluation of the analogous slopes. This is to prevent an additional
source of uncertainty arising from the inconsistency in the slope
stability methods, because Spencer, Janbu, and Morgenstern-Price
will provide different answers for FS although their results are very
close.

The red dashed line in Fig. 2 denotes the actual slip surface
corresponding to the actual shear strength parameter in Table 1. It
is located by the auto refine search option for non-circular surfaces
embedded in the program Slide. The work process of auto refine
searchmethod can be found in the web-help file of the program Slide
(Rocscience 2010). The points A, B, and C in Fig. 2 represent the
measurements of actual slip surface location, i.e., entry, exit, and slip
point uncovered by drilling, respectively. All measurements are
summarized in Table 2. These measurements will be used for
updating the distributions of shear strength parameters.

Case setting
To study the effect of slip surface uncertainty on the results of
Bayesian back analysis, eight cases listing in Table 3 are investi-
gated. The traditional method adopting fixed slip surface is firstly
studied. Then, by gradually adding the number of measurements,
the effect of slip surface uncertainty on the back analyzed param-
eters is studied.

For a real-world case, Christian et al. (1994) reported that the
model uncertainty of the simplified method of Bishop follows a
normal distribution with a mean of 0.05 and a standard deviation

of 0.07. The results of the Morgenstern-Price method are usually
similar to those of the Bishop simplified method. Therefore, it is
assumed that the model uncertainty of the Morgenstern-Price
method follows the same distribution as the Bishop method. Since
this is a synthetic slope, the known actual FS and slip surface are
obtained by the simplified method of Morgenstern-Price, which is
consistent with the predictive model in back analysis. Therefore,
the predictive model is assumed to be unbiased. The standard
deviation of predictive model error for FS is assumed to be 0.07.

For the proposed method, the measurement errors must be
input by the analyst. In literatures on the probabilistic back anal-
ysis (Kelly and Huang 2015; Huang et al. 2016; Sun et al. 2019), the
measurement errors are commonly assumed to be normally dis-
tributed, unbiased, independent, and homogeneous. Therefore, in
this paper, the measurement errors of the slip surface also follow
this common assumption. There is little guidance in the literature
about what magnitude of measurement errors of slip surface to
specify. However, it should be noted that the measured capacities
are of little value if the analyst has not assessed the measurements
accuracy. The selection of measurement errors requires a degree of
subjectivity because they depend on factors such as the skill of the
measurer and interpretation of measurement results (Huang et al.
2016). It is physically plausible to assume that the measurement
accuracy of the slip surface location does not exceed 1 m. There-
fore, five different standard deviations of measurement errors are
applied, i.e., 0.9 m, 0.7 m, 0.5 m, 0.3 m, and 0.1 m, to study the
influence of measurement error of slip surface on back analyzed
parameters.

Calculation process
The number of Markov chains and generations of each chains is
set to 3 and 3000, respectively. The range of c and ϕ is set to [2, 45]
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Fig. 5 Evolution of convergence estimator bR and acceptance rate in the eight cases
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and [2, 25], respectively. The LHS method is used to generate two
data sets within parameters range for ELM training and testing.
The training set contains 1000 samples, and the testing set con-
tains 100 samples. Figure 3 shows the calculated critical slip surface
samples and FS in training set and testing set. Each slip surface is
represented by a polyline with 26 scatters, and any point on the
slip surface can be obtained by one-dimensional linear interpola-
tion. Thus, one pair of shear strength parameters {c, ϕ} corre-
sponding to 53 (53 = 1 + 2 × 26) outputs. The ELM is used to
construct the response surface function between the 2 inputs and
53 outputs.

Based on the training data set, the number of hidden nodes of
ELM is determined to 42 by 100-fold cross-validation. Then, the
trained ELM is tested on the testing set. Figure 4 shows the
predicted results in testing set. As shown in Fig. 4, the predicted
and calculated values are almost coincident. The R2 is 0.99998 for
FS prediction, and the mean R2 is 0.9977 and 0.9976 for x-coordi-
nates and y-coordinates of slip surface prediction, respectively. It
indicates that the ELM model exhibits excellent prediction accu-
racy and can be used as a response surface function to replace the

time-consuming program Slide. There may be other ANNs that
can achieve the same or higher accuracy as the ELM model.
However, the ELM model has fully met the research needs of this
paper. Therefore, other ANN-based response surface models are
not applied. The DREAM algorithm is implemented for each case
to solve the posterior distribution of c and ϕ. Figure 5 shows the

evolution of convergence estimator bR and acceptance rate in the
considered eight cases. As shown in Fig. 5, after about 2000
function evaluations, each DREAM run satisfies the convergence

estimator threshold of bR≤ 1.2, and the acceptance rate is greater
than 15%, indicating that the chosen number of Markov chains is
reasonable and each DREAM run achieves convergence and ac-
ceptable performance.

Numerical results
Figure 6 shows the solved posterior distribution of each case under
different measurement errors. Hereafter, the word “accuracy” de-
notes the proximity of the posterior mean of shear strength pa-
rameters to the actual value. The closer the posterior mean is to
the actual value, the higher the accuracy. As shown in Fig. 6, in
cases 1 and 2, the accuracy of posterior mean is the lowest. The
posterior mean is far from the actual value (i.e., c = 12 kPa, ϕ=12°),
and the posterior COVof c and ϕ is only slightly smaller than that
of their prior. It indicates that Bayesian back analysis with fixed
slip surface or using only FS information is unreliable. In cases 3–
5, although the posterior mean is closer to the actual value com-
pared with cases 1 and 2, the posterior COVs are high, indicating
that using only the slip surface information in the Bayesian back
analysis cannot obtain reliable results neither.

In cases 6–8, both FS information and slip surface information
are considered in Bayesian back analysis. Compared with cases 1–
5, the accuracy of posterior mean in cases 6–8 is significantly
higher, and the posterior COVs are significantly less. It indicates
that Bayesian back analysis comprehensively considering the in-
formation of FS and slip surface can yield satisfactory results. By
gradually adding the information of slip surface, the posterior
mean tends to close to the actual value, and the posterior COVs
decrease. However, the change of posterior mean and COVs is
small. For example, the posterior distribution of case 6 is basically
same to that of case 8. It indicates that although the more the slip
surface location information, the better the back analysis result,
for this homogeneous slope, only using the information of slip
surface entry and FS can still obtain satisfactory results. With the
measurement errors of slip surface increase, the accuracy of pos-
terior mean decreases and the posterior COVs increase, indicating
that the measurement errors of slip surface have large effect on the
results of Bayesian back analysis, and the smaller the measure-
ment error, the higher the back calculated results accuracy.

From the previous analysis, it can be acknowledged that the
traditional Bayesian back analysis with fixed slip surface may be
unreliable. There are multiple combinations of shear strength
parameters satisfy the condition of FS = 1. Traditional method
does not consider the prior information of slip surface, which may
cause the back calculated results fail to satisfy the condition that
the back calculated critical slip surface should be consistent with
the actual slip surface. In this condition, the back calculated
parameters are inaccurate. In contrast, Bayesian back analysis
considering both FS and slip surface location information can

1 2 3 4 5 6 7 8
9.5

10.0

10.5

11.0

11.5

12.0

12.5

1 2 3 4 5 6 7 8

0.06

0.09

0.12

0.15

1 2 3 4 5 6 7 8
10

11

12

13

14

15

1 2 3 4 5 6 7 8
0.04

0.08

0.12

0.16

0.20

1 2 3 4 5 6 7 8

-1

0

1

Po
st

er
io

r 
  (

°)
Case number

Measurement error
 of slip surface

0.1 m
0.3 m
0.5 m
0.7 m
0.9 m
 Actual c and 
Prior distribution

Po
st

er
io

r 
C

O
V

 o
f

Case number

Case 1: FS+fixed slip surface
Case 2: FS

roiretso
P

c
)a

Pk(

Case number

fo
V

O
C

roiret so
P

c

Case number

(e)

(c) (d)

(a)
roiretso

P
c,

Case number

(b)

Fig. 6 Posterior distribution of the eight cases. a Posterior μc. b Posterior μϕ. c
Posterior COV of c. d Posterior COV of ϕ. e Posterior ρc,ϕ

Landslides 17 & (2020) 2131



yield good results. Therefore, the slip surface uncertainty should
be considered in Bayesian back analysis.

Effect of prior distribution
The prior distribution of parameters such as prior mean, COV, and
correlation coefficient may affect the back analyzed results. In this
section, the effect of prior distribution of parameters on Bayesian
back analysis with fixed slip surface (case 1) and Bayesian back
analysis considering slip surface uncertainty (case 6) are studied.
In case 6, the measurement error of slip surface is set to 0.1 m. The
reason for choosing case 6 as the base case is because it is more
applicable, which can obtain satisfactory results by using only
simple information of FS and slip surface entry. Table 4 shows
the parameters setting of prior distribution.

Fixed slip surface
Figure 7 shows the change of posterior distributions of parameters
with varying prior distributions of parameters in the case of
Bayesian back analysis with fixed slip surface. As shown in Fig.
7, all the posterior ρc,ϕ lie between − 0.5 and − 0.8 indicating that
the posterior c and ϕ are highly negatively correlated when the slip
surface is fixed in Bayesian back analysis.

Figure 7a, b shows that the posterior μc and μϕ basically in-
crease linearly with the linear increase of the corresponding prior
μc and μϕ. The average rate of change is defined as the slope of the
secant line between the start point and the last point of curves in
Fig. 7a, b, and it is used to quantify the sensitivity of posterior
mean to prior mean. In Fig. 7a, the average rate of change of
posterior μc and μϕ is 0.68 and − 0.26 (°/kPa), respectively. In
Fig. 7b, the average rate of change of posterior μc and μϕ is − 0.60
(kPa/°) and 0.65, respectively. It indicates that the prior μc and μϕ
have significant effects on posterior μc and μϕ. The posterior ρc,ϕ
and COVof c and ϕ do not change much with the change of prior
μc and μϕ, indicating prior μc and μϕ have small effects on poste-
rior ρc,ϕ and posterior COVof c and ϕ.

In Fig. 7c–e, the posterior parameters basically remain stable
when varying the prior COV and correlation coefficient. Changes
in prior coefficient ρc,ϕ and COVof c and ϕ only slightly affect the
changes in the corresponding posterior parameters. It indicates
that the effects of prior COV and ρc,ϕ on posterior parameters are
small.

The previous analysis indicates that in the case of Bayesian
back analysis with fixed slip surface, the prior mean of c and ϕ
have significant effects on back analyzed results, and the prior
COV and ρc,ϕ have small effect on back analyzed results.

Further analysis of Fig. 7a, b shows that when the ratio of prior
μc to μϕ is equal to or close to the ratio of actual c to ϕ, the
posterior μc and μϕ are close to the actual values. For example, in
Fig. 7a, when the prior μc equals 10 kPa, i.e., the ratio of prior μc to
μϕ equals 10 kPa/10° = 1 (kPa/°), the posteriorμc and μϕ at this time
are closest to the actual values. The same phenomenon can be
observed when the prior μϕ equals 14° in Fig. 7b. It indicates that
when the slip surface is fixed, the back calculated results are
reliable only when the prior μc/μϕ ratio is close to or equal to the
actual c/ϕ ratio. The reasons may be explained in the followings.

Jiang and Yamagami (2006, 2008) and Duncan et al. (2014)
noted that for a simple homogeneous slope with a certain
geometry, unit weight and pore water pressure distribution,
the location of critical slip surface is related only to c/tanϕ,
i.e., the closer the ratio c/tanϕ of two pairs c and ϕ, the
closer their corresponding critical slip surface positions are.
In this paper, the ratio of actual c to tanϕ is 12/tan12 ≈56.46.
The corresponding ratio are 56.71 and 56.15 when the prior μc
and μϕ are equal to 10 kPa and 14° in Fig. 7a, b, respectively.
At this time, the ratio of prior μc to tan(μϕ) is very close to
the ratio of actual c to tanϕ, indicating that the fixed slip
surface is very close to the back calculated critical slip sur-
face. In other words, the back analysis model innately satisfies
the condition that the fixed slip surface is consistent with the
back calculated critical slip surface. In this condition, a

Table 4 Parameters setting of prior distributions

Study set number Prior μc (kPa) Prior μϕ (°) Prior COV of c Prior COV of ϕ Prior correlation coefficient ρc,ϕ

1 8
10
12
14
16

2
66664

3
77775

10 0.2 0.15 0

2 14 8
10
12
14
16

2
66664

3
77775

0.2 0.15 0

3 14 10 0:2
0:3
0:4
0:5
0:6

2
66664

3
77775

0.15 0

4 14 10 0.2 0:15
0:25
0:35
0:45
0:55

2
66664

3
77775

0

5 14 10 0.2 0.15 0
−0:2
−0:4
−0:6
−0:8

2
66664

3
77775
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reliable back analysis result can be obtained by using only the
information of FS = 1.

Considering slip surface uncertainty
Figure 8 shows the change in posterior parameters over the
change of prior parameters in the case of Bayesian back anal-
ysis considering slip surface uncertainty. In Fig. 8a, b, the
posterior μc and μϕ slightly increase with the increase of the
corresponding prior μc and μϕ. In Fig. 8a, the average rate of
change of posterior μc and μϕ is 0.12 and − 0.10 (°/kPa),
respectively. In Fig. 8b, the average rate of change of posterior
μc and μϕ is − 0.22 (kPa/°) and 0.21, respectively. These values
are obviously less than that of Fig. 7a, b, indicating that the
effects of prior μc and μϕ on posterior μc and μϕ are small. The
posterior ρc,ϕ and COVs of c and ϕ basically remain stable
when varying the prior μc and μϕ, indicating the effects of
prior μc and μϕ on posterior ρc,ϕ and COVs of c and ϕ are
also small.

Figure 8c–e shows that the posterior parameters basically
remain stable and are not sensitive to the change in the prior

COVs and the correlation coefficient. It indicates that the
prior COVs and ρc ,ϕ have small effect on posterior
parameters.

The previous analysis indicates that in the case of Bayesian
back analysis considering slip surface uncertainty, the prior distri-
butions of shear strength parameters have small effect on back
analyzed results.

Case study
The Northolt landslide in Londay clay (Skempton 1964) is used to
validate the effectiveness of the proposed method in actual land-
slides. This landslide occurred in 1955, 19 years after the excavation
was made. The geometry, piezometric line, and portions of the slip
surface exposed in trenches are shown in Fig. 9, which are
reproduced from (Skempton 1964). The unit weight of London
clay is 18.8 kN/m3. The peak strengths are c = 15.3 kPa and ϕ=20°,
respectively, and the residual strengths are c = 0.0 kPa and ϕ=16°,
respectively.

In Bayesian back analysis, the prior mean of c and ϕ is set to
equals peak strengths since the peak strengths are easier to obtain
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Fig. 7 Effect of prior distribution on Bayesian back analysis with fixed slip surface. a Effect of prior μc. b Effect of prior μϕ. c Effect of prior COV of c. d Effect of prior COV
of ϕ. e Effect of prior ρc,ϕ
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than residual strengths in practical. The variability and correlation
coefficient of these variables were not reported in (Skempton
1964). According to the previous analysis, the prior COVs and
ρc,ϕ have small effect on posterior parameters. Thus, the prior

COVs and ρc,ϕ of Northolt landslide are set to equals that of the
synthetic homogeneous slope, i.e., the COVs of c and ϕ are 0.2 and
0.15, respectively, and the ρc,ϕ equals 0. For briefness and practi-
cality, the normal distribution is adopted. The Morgenstern-Price
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Fig. 8 Effect of prior parameters on Bayesian back analysis considering slip surface uncertainty. a Effect of prior μc. b Effect of prior μϕ. c Effect of prior COV of c. d Effect
of prior COV of ϕ. e Effect of prior ρc,ϕ

Fig. 9 Geometry of Northolt landslide (reproduced from (Skempton 1964))
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method is used to calculate the FS. Since the Northolt landslide is a
real case, the Morgenstern-Price method uncertainty for FS in-
cluding model bias and variance should be considered. According
to Zhang et al. (2010), the model uncertainty of Morgenstern and
Price method is assumed to follow normal distribution, and the
model bias and variance are 0.05 and 0.07, respectively. Eight
points (represented by small green circles in Fig. 9) are selected
as the measurements of observed slip surface. In Fig. 9, the max-
imum vertical distance between the circular slip surface made by
(Skempton 1964) and the observed slip surface is about 0.5 m.
Therefore, the standard deviation of measurement error of the slip
surface is assumed to be 0.5 m.

The sampling range of c and ϕ is [0, 20] and [10, 25], respec-
tively. There are 1000 training sets, and 100 test sets are generated
to train and test the ELM response surface function. The number
of hidden nodes of ELM is determined to 38. The test results show
that the R2 is 0.99988 for FS prediction, and the mean R2 is 0.9973
and 0.9965 for x-coordinates and y-coordinates of the slip surface
prediction, respectively. The results of Bayesian back analysis are
shown in Fig. 10. The posterior mean μc and μϕ are 2.75 kPa and
19.69°, respectively. The posterior standard deviation of c and ϕ is
0.65 and 1.56, respectively, and the posterior ρc,ϕ is − 0.26. The
posterior mean lies between the peak strength and the residual
strength, which verifies the feasibility and effectiveness of the
proposed method.

Discussion
In previous studies about Bayesian back analysis of shear strength
parameters of landslides, the slip surface uncertainty was always
ignored. Researchers assumed that the actual slip surface is
completely known and only used FS = 1 as the target in back
analysis. The reliability of back calculated results is questionable.
Because for a fixed slip surface, there are multiple combinations of
shear strength parameters satisfy FS = 1, and the back calculated

results may be only a local optimal solution. The results in this
paper show that the traditional Bayesian back analysis generates
results significantly deviating from the actual values and is sensi-
tive to the prior mean of shear strength parameters. The results are
reliable only when the prior μc/tan (μϕ) ratio is close to or equal to
the ratio of actual values. In practical, however, the actual ratio of
shear strength parameters is not known, so it is difficult to ensure
if the ratio of the prior μc to μϕ is consistent with the ratio of actual
values.

The limitations of this study are as follows: (1) the slope is a
single-layer homogeneous slope, and the spatial variability of
shear strength parameters is ignored. Further research considering
the multi-layer soil and the spatial variability of shear strength
parameters in Bayesian back analysis of landslides is currently
undertaken. (2) The slip surface is basically circular. The landslide
with non-circular slip surface is not fully investigated. The mea-
surement error of slip surface is not available in the literature, and
it is assumed to be normally distributed, independent, and homo-
geneous. Further research is needed to address this issue. (3) The
case when the prior distributions of c and ϕ follow the lognormal
distribution is not considered. (4) The calculation process is com-
plicated, which may not facilitate practical application. Future
research is needed to simplify the calculation process.

Conclusion
Back analysis is an effective technique to obtain the shear strength
parameters of landslide. At present, most studies about Bayesian
back analysis of shear strength parameters neglect the slip surface
uncertainty. To fill this gap, this paper proposes a Bayesian back
analysis method of landslides considering slip surface uncertainty.
A hypothetic simple homogeneous slope case and a practical
landslide are used to test the proposed method. Results show that
the traditional Bayesian back analysis neglecting slip surface un-
certainty is sensitive to the prior mean of shear strength

Fig. 10 Posterior density of c and ϕ
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parameters. By considering the slip surface uncertainty in Bayes-
ian back analysis, the results are reliable and close to the actual
values, whilst less affected by the prior distributions of shear
strength parameters. The measurement error of slip surface has a
certain influence on the results of the proposed method and
should be minimized in practical engineering applications. This
study highlights the importance of slip surface uncertainty on the
reliability of Bayesian back analysis.
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