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Machine learning ensemble modelling as a tool
to improve landslide susceptibility mapping reliability

Abstract Statistical landslide susceptibility mapping is a topic in
complete and constant evolution, especially since the introduction
of machine learning (ML) methods. A new methodological ap-
proach is here presented, based on the ensemble of artificial neural
network, generalized boosting model and maximum entropy ML
algorithms. Such approach has been tested in the Monterosso al
Mare area, Cinque Terre National Park (Northern Italy), severely
hit by landslides in October 2011, following an extraordinary pre-
cipitation event, which caused extensive damage at this World
Heritage site. Thirteen predisposing factors were selected and
assessed according to the main characteristics of the territory
and through variance inflation factor, whilst a database made of
260 landslides was adopted. Four different Ensemble techniques
were applied, after the averaging of 300 stand-alone methods, each
one providing validation scores such as ROC (receiver operating
characteristics)/AUC (area under curve) and true skill statistics
(TSS). A further model performance evaluation was achieved by
assessing the uncertainty through the computation of the coeffi-
cient of variation (CV). Ensemble modelling thus showed im-
proved reliability, testified by the higher scores, by the low values
of CV and finally by a general consistency between the four
Ensemble models adopted. Therefore, the improved reliability of
Ensemble modelling confirms the efficacy and suitability of the
proposed approach for decision-makers in land management at
local and regional scales.

Keywords Landslide susceptibility mapping . Machine
learning . EnsembleModelling . Cinque Terre . GIS . World
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Introduction
Landslides are one of the major natural hazards, having large and
spread impact all over the world and are responsible for human
and socio-economic losses (Froude and Petley 2018). Identification
and mitigation of landslide risk is still a challenging task for local
administrations and policymakers, being the spatial-temporal pre-
diction of such phenomena still affected by large uncertainties. To
this aim, landslide susceptibility assessment is fundamental to
improve the understanding of the occurrence of such phenomena
(Brabb 1984; Gigli et al. 2014; Lagomarsino et al. 2017). Many
methodologies aim at assessing Landslide Susceptibility Mapping
(LSM) and in recent years, a significant boost has been gained
thanks to robust scientific advances, both among numerical deter-
ministic modelling (Jelínek and Wagner 2007; Godt et al. 2008;
Cervi et al. 2010; Formetta et al. 2016; Schilirò et al. 2016; Ciurleo
et al. 2017; Park et al. 2019) and statistical approaches (Van Westen
et al. 2003; Yalcin et al. 2011; Goetz et al. 2015; Reichenbach et al.
2018; Sepe et al. 2019; Huang et al. 2019; Kavoura and Sabatakakis
2019; Xiao et al. 2019). Deterministic models need information
about the physical processes leading to the trigger and hence
involve different approaches according to the different types of

mass movements. On the other hand, the statistical modelling
assumes that the factors that led to slope failure in the past are
to be expected to recurrently trigger landslides. Thus, inventories
of past landslides coupled with environmental factors can be used
to train statistical models (Ermini et al. 2005; Pradhan and Lee
2010; Vorpahl et al. 2012; Corominas et al. 2014; Segoni et al. 2015;
Carotenuto et al. 2017). No standard susceptibility procedure has
ever been established, hence making possible the exploitation of
numerous different algorithms and methodologies. Statistical LSM
methods have been extensively applied in different settings and
spatial scales by performing different models: bivariate statistical
analysis (Constantin et al. 2011; Chen et al. 2018), logistic regres-
sion (Chauhan et al. 2010; Mousavi et al. 2011; Wang et al. 2015;
Trigila et al. 2015; Tsangaratos and Ilia 2016a, b), multivariate
regression (Guzzetti et al. 2006; Akgün and Türk 2011; Felicísimo
et al. 2013; Althuwaynee et al. 2014), weight of evidence (Neuhäuser
et al. 2012; Ilia and Tsangaratos 2016; Teerarungsigul et al. 2016;
Tsangaratos et al. 2017), etc. Spatial distribution of landslides has
been also investigated by mathematical models such as fractals
(Liu et al. 2019). Among the new statistical approaches, machine
learning algorithms (MLAs) are more and more recurrent, gaining
new consideration. Many algorithms have been applied to LSM,
such as artificial neural networks (ANN—Lee et al. 2004; Ermini
et al. 2005; Choi et al. 2012; Gorsevski et al. 2016; Meng et al. 2016;
Chen et al. 2018), decision trees (DT—Yeon et al. 2010; Tsangaratos
and Ilia 2016b), support vector machine (SVM—Yao et al. 2008;
Kavzoglu et al. 2014; Pham et al. 2018, Dou et al. 2019), random
forest (RF—Catani et al. 2013; Chen et al. 2017a, b, Krkač et al.
2017) or treebagger RF (Segoni et al. 2020). Many authors have
proposed methods to minimize uncertainty, which relies on com-
bining the predictions yielded by multiple algorithms, as testified
by the works of Umar et al. (2014), Youssef et al. (2015), Chen et al.
(2017a, b), Pham et al. (2017), Kim et al. (2018) and Bueechi et al.
(2019). The investigation of new ensemble methods (EMs) for
landslide susceptibility mapping is therefore highly necessary, as
also highlighted by Chen et al. (2018). Anyhow, EM provides a solid
contribution to minimize uncertainty and to refine and improve
the prediction accuracy, which is always the key parameter to take
into account when working with LSM. In this work, three different
MLAs were ensembled to assess landslide susceptibility within
some small coastal basins located in the Monterosso al Mare area
(Cinque Terre National Park, La Spezia Province, Italy). Specifical-
ly, ANN, generalized boosting (GBM) and maximum entropy
(MaxEnt) were employed. The study area is highly vulnerable to
rapid shallow landslides, as testified by the rainfall-induced
ground effects produced by the severe rainfalls occurred on Octo-
ber 25, 2011, which affected a large area across Northern Tuscany
and Eastern Liguria reaching intensities of up to 350 mm in 6 h at
Monterosso al Mare Rain Gauge (A.R.P.A.L.-C.F.M.I.-P.C. 2012;
Cevasco et al. 2015). Such rainfall, which caused extensive damage
across the Tyrrhenian basins between Bonassola and Manarola
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and the Magra river basin (Cevasco et al. 2012; D’Amato Avanzi
et al. 2013) triggered more than 500 shallow landslides in the
Vernazza catchment (Cevasco et al. 2013, 2014) and about 260
shallow landslides in the area of Monterosso al Mare (Schilirò
et al. 2018). Thanks to the availability of high-resolution aerial
photographs and field surveys, these landslides were inventoried
at great detail. Thus, the database of Monterosso al Mare land-
slides, represented as points, has been used for susceptibility
modelling. Thirteen predisposing factors (PFs) were also consid-
ered, based on the main characteristics of the territory and of
shallow rapid landslide mechanisms: slope angle, aspect angle,
geo-lithology, planform curvature, profile curvature, distance to
roads, distance to streams, land use, agricultural terraces state of
activity, soil thickness, Topographic Wetness Index (TWI), Topo-
graphic Position Index (TPI) and Stream Power Index (SPI). Spe-
cifically, each single susceptibility model (GBM, ANN and MaxEnt)
was implemented with 100 different landslide data combinations,
every time splitting the landslide database in 80% as data training
and 20% as data testing. The dataset of selected landslides was
performed randomly and, in the end, about 300 different models
have been obtained starting from slightly different datasets. The
final result is therefore represented by a susceptibility map com-
puted by an average of the values of probability of occurrence
previously obtained. With this case study, we aim to promote the
use of MLA to assess landslide susceptibility and to provide an
example showing how Ensemble modelling can support land use
planning activities and landslide hazard management.

Study area

Geological and geomorphological settings
The study area (Fig. 1), approximately 5.5 km2 wide, is located in
the Cinque Terre National Park, within the territory of Monterosso
al Mare municipality, along the easternmost Ligurian coast
(Northern Italy, La Spezia Province). It includes six small catch-
ments: Rio delle Rocche, Rio Pastanelli, Fosso Serra, Rio Gaggia,
Corone and Fosso Molinaro. The extent of these water basins
ranges from 3.2 km2 (Rio Pastanelli) to 0.1 km2 (Fosso Serra).
The Cinque Terre area is a UNESCO World Heritage Site, since
1997 (https://whc.unesco.org/en/list/826/) and a National Park
since 1999. This area is worldwide known as a typical example of
man-made landscape, characterized by widespread century-old
agricultural terraces retained by dry-stone walls. The Cinque Terre
National Park, and in particular its western sector, is geologically
belonging to an NW–SE oriented segment of the Northern Apen-
nine, an orogenic chain formed during the Tertiary period (Abbate
et al. 1969; Terranova et al. 2006). This sector of the belt is made up
of a nappe sequence that includes five overlapping tectonic units,
from the top to the bottom: Gottero Unit, Ottone Unit,Marra Unit,
Canetolo Unit and Tuscan Nappe (Raso et al. 2019a) (Fig. 2). The
Gottero Unit crops out in the westernmost sector of Cinque Terre
National Park, along the Punta Mesco promontory, and mainly
consists of ophiolite rocks (Jurassic), followed by a turbidite se-
quence (Late Cretaceous). The Ottone, Canetolo and Marra units
are localized in the western side of the Monterosso al Mare village
and in the central sector of the national park. The first one is
prevalently composed of pelitic rocks (Monte Veri Monte Veri
Complex Fm.); Canetolo and Marra occupy a narrow NW–SE-
oriented stretch of land encompassing the coastal villages of

Manarola and Corniglia and they include claystone with lime-
stones and silty arenaceous turbiditic rocks. The Tuscan Nappe
occupies most of the Cinque Terre National Park as it crops out on
the eastern, central and western sectors; in the Monterosso al Mare
area, this unit is represented by thick sandstone-claystone turbi-
dites (Macigno Fm.), largely cropping out along the coast and
along the Rio Pastanelli catchment. The geomorphological setting
of the area is strictly linked to the tectonic history of the Apennine
orogeny, which experienced an earlier compressive phase first, and
a ductile extensive phase then (Carmignani et al. 1994). The Cinque
Terre National Park territory is bounded by the sea at SW and S,
with a 15-km-long coastal configuration and highest elevations
reaching 800 m a.s.l. along the NW–SE-orientated main mountain
ridge, located at a very short distance from the coastline. The geo-
structural and lithological setting strongly influences the local
morphology, including slope orientation: most of the slopes are
SE to SW-oriented, showing high slope gradient values (over 60°)
for more than 74% of the total surface. The Monterosso al Mare
territory is nevertheless characterized by slightly different slope
orientation and steepness, being N–NE oriented and showing
more gentle slopes, mainly due to the weathering affecting gabbros
and serpentinites belonging to the Liguridi tectonics units. The
tectonic activity influenced also the stream network configuration:
the main streams, Fegina (which gives the name to the homony-
mous hamlet) and Pastanelli, have a very steep profile and are
short, with anti-Apennine direction, imposed on approximately
N–S faulting systems. These creeks mostly show a torrential be-
haviour, characterized by high rates of solid transport mainly due
to the erosional processes affecting the surrounding slopes: espe-
cially in the occurrence of extraordinary rainfall events, very
frequent in the area, these high amounts of material strongly
contribute to feed the beach deposits that interrupt the continuity
of the rocky sea cliffs. Among the natural factors, slope steepness,
tectonic setting and the role of exogenous agents (i.e. rainfall and
anthropic activity) made the area of Monterosso al Mare prone to
landslides over time. Many landslides are reported, besides those
of the 2011 event, such as the ones affecting the Mesco promontory
along with the western sector of the coastline. A fundamental role
to slope stability is also played by agricultural terraces, which
strongly reshape the surrounding landscape and therefore contrib-
ute to providing a worldwide knowledge of the Cinque Terre
National Park (D’Onofrio and Trusiani 2018). As noted before,
Cinque Terre is characterized by an average annual precipitation
rate of 900 mm; however, extraordinary rainfall event is very
frequent due to its geomorphological configuration. The ridge,
running parallel to the coast, represents, indeed, a barrier for
cumulonimbus coming from S to SW. Furthermore, in the ongoing
climate change climatic context, a general increase of precipitation
extremes is recognizable, leading thus to an intensification of the
frequency of flash floods and landslides.

Land use setting
The landscape of the Cinque Terre area has been almost totally
modified by human activity during the last centuries through
agricultural terraces building (Terranova 1984; Brandolini 2017).
The agricultural terraced slopes at Cinque Terre area (Fig. 3) ex-
tend from the shoreline, just above the cliff edge or from the toes
of coastal landslides to an average altitude of 400–450 a.s.l., and in
some cases up to 500 m (Terranova 1984; Terranova et al. 2006).
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The necessity of claiming new spaces to allocate agricultural ac-
tivities, mainly for vineyards and olive groves, led the local farmers
to rework and retain the shallow eluvial–colluvial soil covers by
constructing dry-stone walls, over the most suitable bedrock
(Brandolini 2017). Terraced areas are almost entirely distributed
over some specific geological formations: most of the cultivations
can be found on terraces built on the Macigno sandstones belong-
ing to the Tuscan Unit or over the limestones and silty sandstones
belonging to the Canetolo Unit or to the Ottone Unit, while few
terraced areas can be counted on the sandstones, gabbros and
serpentinites that crop out in the Monterosso al Mare area and
are part of the Gottero Unit. According to Terranova (1984), about
60% of the territory of the Cinque Terre area is covered by terraced
areas, and the sum of the linear extent of dry-stone walls can be
estimated to approximately 6000 km. Considering an average dry-
stone wall height of 2 m (however varying, according to slope
steepness and wall width), the total volume of reworked stones is
calculated to be approximately 8 × 106 m3 (Terranova 1984).

The lack of maintenance of the dry-stone walls and the clogging
of drainage channels due to farmland abandonment are consid-
ered some of the main causes of the increase in landslide suscep-
tibility of terraced slopes within the Cinque Terre National Park
(Canuti et al. 2004; Tarolli et al. 2014; Cevasco et al. 2014;
Brandolini et al. 2018). In this area, agricultural terrace abandon-
ment started between the two World Wars and accelerated after
the 1950s, leading to widespread and intense erosion and land
degradation issues. According to a recent inventory, more than
80% of the whole terraced areas are nowadays abandoned
(Brandolini 2017) and have been replaced by pine trees and by
Mediterranean scrub, peculiar land-use features in the Liguria
region. Although the slopes were almost entirely terraced during
the past centuries for vineyards and olive yards, only 19% of the
total terraced areas are still cultivated. This issue denotes how the
social changes that took place in the second half of the 1950s
affected the land use at Cinque Terre area (Schilirò et al. 2018).
On abandoned terraced areas, vegetation spreads quite rapidly, as
well as scrubs grow up sparsely. After a time span of about 25–
30 years, dense vegetation constituted by forest tree species (main-
ly pine, mixed woods, chestnut woods, holm oak woods) or by
Mediterranean scrub covers abandoned terraces (Brandolini et al.
2018). Such land-use modifications concurred to increase the
propension of the Cinque Terre territory to be affected by land-
slides, as confirmed by previous studies which investigated the
relationship between agricultural terrace abandonment and the
magnitude of rainfall-induced shallow landslides (Cevasco et al.
2013, 2014; Galve et al. 2015; Pepe et al. 2019).

Data and methods

Landslide inventory
The Cinque Terre area has been historically affected by recurring
landslide events, mainly in response to extreme rainfall events
related to the peculiar rainfall regime (Cevasco et al. 2015). A
complete landslide inventory map of the Cinque Terre National
Park was redacted by Raso et al. (2019a, b), in which a total of 459
landslides characterized by an extension higher than 100 m2 were
identified and classified according to Cruden and Varnes (1996)
and Hungr et al. (2014). A large number of debris slides (22.9%)
can be related to the vulnerability of dry-stone terraces, while

rockfalls (17.6%) are concentrated along the coast. Debris flows
(11.1%) are also very spread, especially in the western sector of the
Cinque Terre area (Monterosso al Mare and Vernazza municipali-
ties); most of them were triggered by the October 25, 2011 rainfall
event, between 9 and 15 UTC. The Monterosso al Mare rain gauge
recorded very high hourly rainfall peaks (i.e. 92 mm/h), for a total
of 382 mm of rain falling during the entire event (A.R.P.A.L.-
C.F.M.-P.C. 2012). As a consequence of such an extreme event,
numerous shallow landslides and dry stone wall collapses were
triggered, more than 250 in the Monterosso al Mare catchment
alone (Fig. 4), where the mobilization of enormous amounts of
material caused severe damage to Monterosso al Mare village
(Cevasco et al. 2015).

The landslide inventory used in this study was prepared in the
aftermath of the October 25, 2011 event (Fig. 4) through aerial
ortophotogrammetry and field survey (Schilirò et al. 2018). Two
hundred and sixty shallow landslides and dry-stone wall collapses
were triggered following the abundant precipitations and therefore
mapped. Most of these landslides were classified as debris ava-
lanches, as defined by Hungr et al. (2001), namely shallow and very
fast flow-like movements (velocity between 3 m/min to 5 m/s,
Cruden and Varnes 1996) of partially or completely saturated
debris on very steep slopes. Furthermore, having available the
surveyed landslides as polygons, only one the highest point, char-
acterized by the highest altitude in the detachment area, has been
selected. This operation has been conducted in order to make
possible the run of the different models requiring points as input
data.

Predisposing factors
According to the most representative local morphological and
spatial features, 13 PFs were selected (Fig. 5). PFs include slope
angle; aspect angle; planform curvature; profile curvature; distance
to roads; distance to streams; Topographic Wetness Index, Topo-
graphic Position Index and Stream Power Index; agricultural ter-
races state of activity; land use; geo-lithology and soil thickness.
The analysis is focused on environmental variables since it does
not take into consideration the triggering factors (e.g. intense
rainfall or earthquakes). Since most of the variables were derived
from the digital terrain model (DTM) of 5 × 5 m cells, all the
elements were set to equal DTM resolution.

A brief description of the PFs is available as Supplementary
Information (Supplementary 1).

Modelling methods
Three different MLAs, included in the package “biomod2”
(Thuiller et al. 2016), developed in R environment (R Development
Core Team 2019) were used. Specifically, artificial neural network
(ANN), generalized boosting model (GBM) and maximum entropy
(MaxEnt) algorithms, well-known for their good performance in
species distribution modelling (Elith et al. 2006), were adopted. A
brief description of the algorithms is provided as follows, whereas
extended descriptions are available as Supplementary Information
(Supplementary 2).

To implement and evaluate models obtained with the different
MLAs, the k-fold cross-validation approach was used. Cross-
validation is one of the most widely accepted approaches for
testing the predictive accuracy of species distribution models
(SDMs). A random part of the data is kept for calibration (i.e.,
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training data) while the remainder is used to test (i.e., testing data)
the prediction of the model; the whole approach is then repeated
several times for a single model and the average predictive accu-
racy is finally reported (Araujo et al. 2005; Thuiller et al. 2009).
Therefore, each SDM was carried out 100 times splitting the pop-
ulation in 80% for training and the remaining part for testing.

Artificial neural network
ANN simulates the structure and/or functional aspects of biolog-
ical neural networks of the brain, in order to process information
(Zurada 1992). Similarly, ANN models are composed by a large
number of nodes and connections, arranged in various layers, with
the input layer containing the data being processed, many hidden
layers and the output layer that represents the final result of the
model. Input data, in our case, are the environmental variables,
each represented by a node. Connections between nodes and
hidden layers may be characterized by specific weights that are
randomly assigned at the beginning of the process and later
updated for algorithm optimization by means of back-
propagation processes (Pijanowski et al. 2002).

Generalized boosting model
The boosting principle was originally developed, among the MLAs,
to improve classification procedures (Schapire 1990) and consists
of an ensemble of several logistic regression or decision trees. In
such an algorithm, a starting model is built by relying on some
randomly chosen trees and its performance is then improved by
iteratively adding new randomly chosen decision trees that im-
prove the accuracy of the previous iteration’s model.

Maximum entropy
Conceptually, MaxEnt relies on the distribution of an event in the space,
related to the distribution on the landscape of the factors characterizing
the events (Philips and Dudik 2008). MaxEnt method compares the
probability density functions (PDFs) of environmental variables at
event’s occurrence places with the PDFs of the same variables on the
remaining landscape; the difference is regarded as the “relative entropy”
(Elith et al. 2011, Convertino et al. 2013). MaxEnt algorithm finds the
PDFs of environmental variables characterizing the events that approx-
imate the PDFs on the landscape, i.e. by maximizing the entropy of
information. Hence, the aim of MaxEnt is to recognize the PDFs of
variables thatmay induce patterns to happen (Kornejady et al. 2017). The
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maximized entropy provides information to forecast those patters with
high precision. Since MaxEnt does not specifically model the presence
data but rather the density of the environmental conditions used, raw
outputs are then transformed into logistic values to be interpreted
directly as the probability of an event to occur.

Ensemble modelling
The approach of an Ensemble modelling (EM) is relatively recent and
was first introduced by Burnham and Anderson (2002), who made the
average of different regression models. The basic principle of multi-
model inference is to avoid selecting the best model and to rely on
more models indicated; in such a way, uncertainty and bias of both
variables and models are minimized. The procedure of modelling is
visible in Fig. 6 and can be subdivided into different steps. The first one
allows recognizing landslide occurrence data as the response variable
and the predisposing factors as predictors. In the second step, to reduce
the collinearity among predictors, the variance inflation factor (VIF)
was measured and a value of 0.7 was set as threshold. VIF is based on
the square of the multiple correlations coefficients resulting from
regressing a predictor variable against all other predictor variables. It,

therefore, detects multicollinearities that cannot always be easily de-
tected through a simple correlation. In detail, two different strategies to
exclude highly collinear variables using a gradual procedure were
chosen. Vifcor (cor stands for correlation) was used; first, it finds a pair
of variables that has the maximum linear correlation and excludes the
one having the largest VIF. The procedure is repeated until there is no
variable with a higher correlation coefficient (greater than the thresh-
old) between another variable. Vifstep calculates the VIF for all variables,
excludes the one with the highest VIF (greater than the threshold) and
repeats the procedure until there are variables with VIF greater than the
remainder (Guisan et al. 2017). In the next step, the third, the above
mentioned SDMs were performed to model susceptibility over the
study area. Furthermore, during this phase, the importance of each
variable related to the probability of event occurrence was acquired.
Once the models are trained, the variables’ importance is obtained, by
making a correlation between the individual variables (Pearson’s cor-
relation, by default). A good correlation score between two predictors
means that one of the two variables has low influence, and it is
considered not important for the model. On the contrary, a low
correlation means that both variables have a high influence on the
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Fig. 3 Example of the agricultural terraced area in the Cinque Terre area, both active, in the central sector of the slope, and inactive, in the lower and upper part of the
slope. On the background, Manarola hamlet

Fig. 4 Landslide inventory map of the study area; in yellow are the urban patterns of Monterosso al Mare and Fegina
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model. In the ‘VarImportance’ output, the values given correspond to 1
minus the correlation score. The higher the value, the more important
the prediction variable is in the model. To assess the reliability of the
results of each SDMs, ROC (receiver operating characteristic) and TSS
(true skill statistic) methods were chosen. TSS takes into account both
omission and commission errors and ranges from − 1 to 1, not being
affected by prevalence differently from Kappa (Allouche et al. 2006).
Values ranging from 0.2 to 0.5 were considered poor, from 0.5 to 0.8
useful and values larger than 0.8 were considered good to excellent (as
in Coetzee et al. 2009). Moreover, ROC/AUC was used as an alternative
measure of accuracy. ROC use is very spread in literature: Cantarino
et al. (2019) even applied a classification scheme of susceptibility levels
based on ROC analysis. Prediction accuracy is considered to be similar
to random for ROC/AUC values lower than 0.5; poor, for values in the
range 0.5–0.7; fair in the range 0.7–0.9 and excellent for values greater
than 0.9 (Swets 1988; Fressard et al. 2014). Since ROC/AUC curves show
higher performance values and it is more consolidated in literature, the
ensemble modelling has been used. The outputs of the models were
combined by implementing four ensemble techniques and the variabil-
ity of the modelling outputs was calculated by executing the coefficient
of variation.

In detail, four kinds of representative ensemble models were
chosen, namely (Thuiller et al. 2016):

– Mean of probabilities (PM)—this ensemble method corre-
sponds to the mean probabilities over each selected model

– Median of probabilities (PME)—this ensemble model corre-
sponds to the median probability over the selected models. The
median is less sensitive to outliers than the mean

– Committee averaging (CA)—to do this model, the probabilities
from the selected models are first transformed into binary data.
It is built on the analogy of a simple vote. Each model votes for
the landslides being either present or absent. The interesting
feature of this measure is that it gives both a prediction and a
measure of uncertainty. When the prediction is close to 0 or 1,
it means that all the models agree to predict 0 and 1 respec-
tively; when the prediction is around 0.5, it means that half the
models predict 1 and the other half 0

– Weighted mean of probabilities (PMW)—this algorithm
returns the mean weighted (or, more precisely, this is the
weighted sum) by the selected evaluation method scores

To measure the role of the chosen EM on the prediction output,
the spatial variability between mean, weighted mean and median-
based final predictions by means of ANOVA test (Analysis of
Variance test, Fisher 2006) was tested. ANOVA provides a statisti-
cal test of whether two or more population means are equal, and it
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Fig. 5 Maps of the PFs used for the susceptibility models. a Slope angle. b Slope aspect. c Planar curvature. d Profile curvature. e Distance to roads. f Distance to rivers. g
TWI. h TPI. i SPI. j Terrace state of activity. k Land use. l Geo-lithological map. m Soil thickness
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is based on the law of total variance, where the observed variance
in a particular variable is partitioned into components attributable
to different sources of variation. Furthermore, pairwise differences
between methods were verified by means of the Tukey honestly
significant difference test (Tukey 1953), one of the most recom-
mended and used procedures for controlling Type I error rate
when making multiple pairwise comparisons.

Results

Ensemble forecasting
Each single ML model (ANN, GBM and MaxEnt) was applied with
100 different test and training combinations (Fig. 7). Every sus-
ceptibility map generated in this phase is characterized by small
variations and with different values of errors and evaluation
scores, subsequently reduced in the EM phase. The average AUC
score of the 100 iterations for each model is resumed in Table 1,
where it is evident that the best result is obtained by GBM and
MaxEnt (0.84 and 0.83, respectively), while ANN result is slightly
lower (0.74). Therefore, the three models showed fair results,
according to Swets (1988) charts.

Thus, EM was performed by using four different Ensemble
techniques: mean of probabilities (PM), median of probabilities
(PME), committee averaging (CA) and weighted mean of proba-
bilities (PMW).

The first landslide susceptibility map, shown in Fig. 8a, has
been generated through the mean of probabilities (PM). Such
map shows a probability of occurrence with a minimum and
maximum of 5 and 93%, respectively. It is worth to underline that
in all maps, susceptibility was showed using continuous data,
without any division in classes, as often adopted in Italy in the
framework of landslide risk management. The landslide distribu-
tion within the range of susceptibility value is reported in Table 2:
the highest concentration of landslide can be found between the
values 0.8 and 0.9. Moreover, the landslide distribution is charac-
terized by an increasing trend when going from the lowest to the
highest value of susceptibility. Conversely, the areal distribution of
the susceptibility values shows a decreasing trend, with large parts
of the territory characterized by low values of susceptibility and a
limited extent for those characterized by higher values. As for the
validation metrics, ROC/AUC test gave a value of 0.910, while the
TSS test value was 0.658.

The second susceptibility map has been produced with the
median of probability (PME) EM (Fig. 8b). In this case, the values
are ranging between a minimum and maximum value of 0.02 and
0.97, respectively. As previously observed, the main concentration
of landslides is located within the areas with a higher level of
susceptibility, with an increasing trend (from the lowest to the
highest value of susceptibility) (Table 2). The areal distribution is
also characterized by a decreasing trend, with a larger extent of
lower-susceptibility areas. ROC/AUC and TSS for the selected zone
are 0.901 and 0.637, respectively.

By means of the committee averaging (CA) method, values
ranging between 0 and 1 were obtained (Fig. 8c). Moreover, the
average landslide distribution trend is slightly different, with a
quasi-exponential trend, being more than 60% of landslides locat-
ed in areas with susceptibility values between 0.9 and 1 (Table 2).
The areal extent of susceptibility pixels is different as well: larger
areas are both distributed in the lower and higher levels of

susceptibility. Both aforementioned aspects are nevertheless con-
ditioned by the CA method, which is based on the calculation of
binary average values, identified by a cut-off value, to establish the
susceptibility. It is indeed a method which tends to overestimate
areas with higher susceptibility values, but which can provide an
excellent instrument for local administrators and decision-makers
since it could represent an application of a “precautionary ap-
proach”. ROC/AUC and TSS scores with the CA method are 0.89
and 0.66, respectively.

Finally, the weighted mean of probabilities method (PMW) has
been implemented (Fig. 8d). In this case, minimum and maximum
values are 0.05 and 0.93, respectively. As in the previous cases,
most of the landslides are distributed over the more susceptible

Fig. 6 Scheme of the proposed approach for landslide susceptibility modelling
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areas, as well as the areal distribution presents a decreasing trend,
with lower susceptibility values distributed over larger areas
(Table 2). ROC/AUC and TSS values are similar to the previous
scores, in this case, 0.91 and 0.658, respectively.

To summarize, the use of EM has improved the evaluation
scores and therefore the model reliability. The obtained results
are also comparable to each other, being all characterized by
excellent values of AUC and a good score of TSS (Table 1).

Another significant outcome was obtained, by applying
biomod2 library, which allows the assessment of the variable
importance for each model. Through this peculiar function,
landslide dynamics in the study area and the role of represen-
tative PFs can be assessed. Tables 3 and 4 show every variable’s
importance for each applied SDM. The first table represents
the average importance value of all the environmental variables
for each stand-alone model. The sum of all predictors, to any
model, is not equal to 1; this is because, as explained in the
“Modelling methods” section, every variable must be consid-
ered individually. Aspect and slope variables exhibited a higher
score respect to the others in all models. The other PFs showed
moderate levels of importance, such as land use and terraces
state of activity. Table 4 exhibits the important value for each
variable in all ensemble models. In this case, five PFs (i.e.
“slope angle”, “slope aspect”, “planar curvature”, “terraces”
and “land use”) show significant values in all the ensemble
models.

Uncertainties and similarities of the models
To compare the results obtained from all the performed EMs and
to assess their uncertainty, the coefficient of variation (CV) has
been computed. CV of probabilities (i.e. standard deviation/mean
of each pixel) is a measure of uncertainty of the ensemble models,
and it assumes relevant importance when there is a great avail-
ability of data. If CV exhibits a high evaluation score, the uncer-
tainty of a given data is high, while the lower the score, the better
are the models’ outputs (Fig. 9). As can be seen from Fig. 9, the
central and NE areas of theMonterosso al Mare catchment showed
lower CV values (light areas), while the other portions of the basin
showed high CV values (dark areas). This is an expected pattern,
taking into account that the ensemble models highlighted analo-
gous values of susceptibility in the central and NE study areas.

However, areas with high CV values can be identified where
mainly low susceptibility values are located. In general, the CV
map gives a more powerful basis to estimate landslide-susceptible
areas of Monterosso al Mare basin along with ensemble maps.
However, the CV map could not take into account uncertainty
coming from predisposing factors; thus, uncertainties from vari-
ables were reduced by using the same input variables for each
SDM.

In this study, a matrix-based approach was used to analyse the
relationship between the ensemble models and the uncertainty
map (i.e. CV), to generate a “confidence” map (Kim et al. 2018);
in this way, the reliability of ensemble models has been assessed.
The susceptibility values derived from EM were subdivided into
five groups (1–5), while the CV map was categorized into six
classes (1–6); in both maps, the Natural Breaks method was ap-
plied (Jenks 1967). The matrix was generated across the table to
recognize the efficacy of the ensemble map in terms of reducing
the uncertainty from the various SDMs. The value of 51 in the
matrix table highlights pixels characterized by high landslide like-
lihood with low variability. Conversely, a value of 16 means that a
pixel has a high uncertainty with a low proneness to collapse. The
maps in Fig. 10 presents areas with two different typologies, name-
ly, zones with a high probability of landslide occurrence and low
uncertainty (i.e. 41, 51) and areas with pixels with low susceptibility

Fig. 7 Examples of stand-alone susceptibility maps. a ANN. b GBM. c MaxEnt

Table 1 AUC and TSS scores for the stand-alone ML algorithm used, on the top,
and for EM on the bottom

AUC TSS

GBM 0.84 0.55

ANN 0.74 0.4

MAXENT 0.83 0.54

AUC TSS

Mean (PM) 0.91 0.658

Median (PME) 0.901 0.637

Committee averaging (CA) 0.899 0.66

Weighted mean (PMW) 0.91 0.658
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and low uncertainty (i.e. 12, 22). Areas with high landslide suscep-
tibility and high uncertainty (56, 55) were hard to recognize.

However, small areas with low probabilities and high uncer-
tainty (i.e. 15, 16) can also be identified. The graphs represented in
Fig. 11 confirmed the statistical analyses performed on these maps.

As can be observed from the graph in Fig. 11a, most of the
landslides (about 75%), in all ensemble models, fall into classes 51
and 41 (i.e. high susceptibility and low uncertainty), confirming
how EM correctly identified potential triggering areas, with a low

uncertainty value. In addition, landslides falling into low-
susceptibility classes are about 3%. The second graph (Fig. 11b)
confirms that the largest areas are those with low susceptibility,
although the degree of uncertainty varies from low to moderate
(classes 13, 14, 15). Nevertheless, pixels with higher susceptibility
values are mainly distributed (about 90%) in correspondence of
the classes 41 and 51. Therefore, highly susceptible areas are not
particularly extended, contrary to those with low susceptibility,
and assume low values of uncertainty.

Fig. 8 EM susceptibility maps. a Mean ensemble susceptibility map. b Median ensemble susceptibility map. c Committee averaging susceptibility map. d Weighted mean
susceptibility map
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A further comparison between the ensemble susceptibility
maps was produced in terms of the spatial distribution of the
susceptibility values. Indeed, the spatial similarity between the
different models was analysed (Fig. 12). As previously reported,
the ensemble maps have been divided into five classes (1–5).
Subsequently, an intersection operation between the different
maps has been performed. It should be stated that the CA map
was not considered in the study since it could have a strong
influence on the result, because it tends to overestimate the highest
and the lowest susceptibility values. It should be noted that the CA
first transforms the probabilities of all ensemble maps into binary
values and then it calculates their average. Each pixel of the
intersection map represents the different combinations that the
individual models can assume. Thus, values labelled as 111 repre-
sented pixels in which all models have low susceptibility. Similarly,
the pixels labelled as 555 represented areas where all models have
high susceptibility. During this operation, intermediate combina-
tions have been also obtained as output (e.g. 121), in which the first
and third models have a low susceptibility while the second one
has a higher susceptibility.

As in the previous analyses, an intersection operation between
the landslides and the output map was performed, to acquire
further information. In Table 5, the number of landslides in each
specific class and the relative percentage are represented. About
84% of the total landslides fall within “coherent” susceptibility
values (e.g. 555, 444, etc.), while the remaining 16% in “non-coher-
ent” classes (Fig. 13a; Table 5). Furthermore, 55% of the total
landslides fall into the 555 class, in which all the models are
characterized by very high susceptibility. Lastly, about 80% of the
landslides fall into the classes with moderate to very high suscep-
tibility. Figure 13b represents the obtained areal extension for each
classes. Coherent classes represent 83% of the total study area,
where the main part (42%) is characterized by the lowest suscep-
tibility level (class 111), while about 15% is represented by the non-
coherent classes (Table 5).

Discussion and conclusions
Landslide susceptibility mapping represents an essential tool in
terms of landslide risk mitigation, especially if carried out in a
rigorous way and supported by an accurate dataset. To this,
statistic-probabilistic methods represent an ideal synthesis,

especially if applied to large areas and when the interaction be-
tween geological, geomorphological, hydrological and anthropic
PFs is extremely high. However, one of the constraints of statistical
methods is represented by the uncertainty associated with every
process. Even if many methodologies with the aim of assessing the
reliability and evaluating the goodness of statistical methods (such
as ROC/AUC, etc.) could be implemented, a percentage of unpre-
dictability is always strictly linked to statistical modelling. One of
the main objectives of this work is, therefore, the minimization of
such effects, by using different ML methods.

The rationale behind using and merging several models is that
two or more models may have very similar predictive performance
even when they contain different environmental predictors and/or
they yield vastly different spatial predictions, making difficult to
know which of the equivalent candidate models to use (Guisan
et al. 2017). Furthermore, the “best” model may not be automat-
ically the best one for predictions in a different area or under new
conditions (Randin et al. 2006). Combination of several models dem-
onstrates that they produce robust and more stable outputs than single

Table 2 Distribution of landslides according to the probability of occurrence value for each Ensemble model

Mean (PM) Median (PME) Committee averaging (CA) Weighted mean (PMW)

0–0.1 1 1 9 1

0.1–0.2 8 10 2 8

0.2–0.3 10 15 7 10

0.3–0.4 17 13 9 17

0.4–0.5 22 21 4 23

0.5–0.6 34 18 10 34

0.6–0.7 41 40 10 43

0.7–0.8 57 63 15 56

0.8–0.9 66 61 31 64

0.9–1 4 18 163 4

Table 3 Variable score for the stand-alone ML models

Variables GBM ANN MAXENT

Slope aspect 0.40 0.52 0.29

Planar curvature 0.08 0.37 0.11

Profile curvature 0.08 0.34 0.10

Slope angle 0.17 0.36 0.17

Geo-lithology 0.01 0.18 0.03

TPI 0.05 0.05 0.11

TWI 0.06 0.03 0.09

Cover thickness 0.02 0.01 0.03

SPI 0.00 0.02 0.01

Terraces state of activity 0.10 0.06 0.09

Land use 0.12 0.06 0.12

River 0.00 0.00 0.06

Roads 0.00 0.01 0.04
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models, which is called “ensemble forecasting” (Araújo and New 2007).
The ensemble modelling draws both the main trend (i.e. mean, median,
weighted mean) and the general variation (and thus uncertainty)
through all models.

In this work, the EM multiple modelling has been carried out
100 times, every time with a different combination of training and
test data, for each of the three stand-alone selected methods; later
on, a first data calibration has been achieved. The different EMs,
obtained by averaging the result of every model, was useful to
obtain a summary of all data and therefore to get available infor-
mation with a strong uncertainty minimization. Ensemble results
seem therefore to be encouraging and improved with respect to
stand-alone methods, showing ROC/AUC values higher than 0.9,
hence excellent according to the various classifications available in
the literature (Fressard et al. 2014). Additionally, also TSS values
are good (higher than 0.6). As to confirm, landslide distribution in the
Monterosso al Mare catchments is mainly concentrated in the areas
characterized by high susceptibility. A further refinement of EM

reliability has been achieved comparing the ensemble susceptibility
maps with the uncertainty value, computed through the CV. Susceptible
areas with low uncertainty value provide high-quality outputs, which
may be especially useful for decision-makers, willing to obtain trustwor-
thy information. Likewise, non-susceptible areas with low uncertainty
valuemay represent areas where new social and economic activitiesmay
potentially be addressed. Moreover, the spatial comparison done
through the intersection of the different outcomes of each EM shows a
general consistency, with a very high coincidence (about 84%) of sus-
ceptible areas computed in different ways, and a general presence of
inventoried landslides almost exclusively in high susceptible coherent
areas. By using the ANOVA test, no significant differences between the
three different ensembling methods have been found (F= 0.244, p=
0.783) and confirmed by the general similarity of AUC of each different
ensemble model applied (ranging between 0.9 and 0.91).

The environmental variables chosen as PFs have been selected
according to the main characteristics of the territory. Such an
assumption is fundamental because many aspects presented here

Table 4 Variable score for the Ensemble models

Mean (PM) Median (PME) Committee averaging (CA) Weighted mean (PMW)

Slope aspect 0.38 0.39 0.43 0.38

Planar curvature 0.12 0.11 0.15 0.12

Profile curvature 0.10 0.10 0.13 0.09

Slope angle 0.18 0.17 0.22 0.18

Geo-lithology 0.03 0.03 0.05 0.03

TPI 0.05 0.06 0.07 0.05

TWI 0.04 0.06 0.06 0.05

Cover thickness 0.01 0.01 0.02 0.01

SPI 0.00 0.00 0.00 0.00

Terraces state of activity 0.08 0.09 0.10 0.08

Land use 0.07 0.08 0.09 0.07

River 0.01 0.02 0.02 0.01

Roads 0.00 0.00 0.00 0.00

Fig. 9 Matrix resulting from the all possible interaction between the coefficient of variation and landslide susceptibility
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are strictly related to peculiar slope processes occurring within the
Cinque Terre area. Indeed, the selection of PFs influencing the
landslide triggering is not based on universally recognized guide-
lines, but it was determined according to the type of landslides and
the slope dynamics of Cinque Terre area. By analysing the score
derived from the stand-alone and ensemble susceptibility compu-
tation, it is possible to observe that geomorphological variables,
such as slope and aspect, are very significant and influences the
debris cover deposition, the hydrological circulation, evapotrans-
piration processes and thus erosion, land use and slope dynamics.
Among the other variables, an important role is played by those
strongly influenced by human activities, such as the presence of terraces
and their state of activity and land use. The influence of these factors has

been already highlighted in previous works (Cevasco et al. 2013, 2014;
Brandolini et al. 2018; Pepe et al. 2019), revealing that terraces abandoned
for a short time showed the highest landslide susceptibility. Moreover,
slope failures affecting cultivated zones were characterized by a lower
magnitude than those occurring on abandoned terraced slopes. Further-
more, the role of vegetation may also be positive, both increasing the
evapotranspiration potential and controlling the erosional processes.
Besides, the constant maintenance of dry-stone walls, and thus terraces
conservation, is a key aspect to preserve the function of dissipating the
pore water pressure excess generated behind the wall and subsequently
protect and conserve a uniqueman-made landscape (Camera et al. 2012,
2014). However, a further refinement of input data, such as constant

Fig. 10 “Confidence map” resulting from the intersection between coefficient of variation and landslide susceptibility. a Mean (PM). b Median (PME). c Committee
averaging (CA). d Weighted mean (PMW). For the colour legend, refer to the matrix of Fig. 9
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Fig. 11 Graph resuming the results of the cross-comparison between landslides and each class of the confidence map (a). Graph resuming the results of the cross-
comparison between the number of pixels and each class of the confidence map (b)

Fig. 12 Spatial distribution of susceptibility classes for each coherent susceptibility level
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update and new-data implementation, is advisable to obtain susceptibil-
ity models whichmay consider all potential factors leading to instability.

As a final consideration on the methodology applied in this
work, further improvements and latest knowledge acquisition
about ML algorithms for landslide susceptibilitymapping are necessary,
to obtain more accurate and less uncertain estimations. A further
improvement toward amore refined and precise forecasting of landslide
occurrence, both in time and space, can be achieved with the integration
of landslide triggering factors such as rainfalls (Segoni et al. 2018), which
can support the national civil protection agency in setting-up early
warning systems. Moreover, a field cross-validation of LSM is always
recommendable to have as most reliable as possible maps, especially

when such products are dedicated to public administrations and
stakeholders.

Indeed, such tools may be applied in a more suitable way once
further and more complete predisposing factors will be identified
on the whole Cinque Terre area. These tools will represent poten-
tially a fundamental tool for the safety of people living in the area
and for many tourists that every year visit the Cinque Terre
National Park. It is worth to underline that in an extremely
dynamic and variable environment, such an advanced instrument
will be suitable for the management of agricultural terraces, since
many cooperatives and wine-makers have started a land recovery
during these last years. For all these reasons, an update of envi-
ronmental variables and therefore of the susceptibility assessment
is necessary to guarantee informed land management policies.
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