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Multi-year, three-dimensional landslide surface defor-
mation from repeat lidar and response
to precipitation: Mill Gulch earthflow, California

Abstract Slow-moving landslides are often the dominant process
that shapes hillslopes and delivers sediment to channels in weak
lithologies. Understanding what controls their velocities is there-
fore essential for deciphering their role in landscape evolution and
estimating hazards. In this study, we used four sequential airborne
lidar data sets to derive the three-dimensional (3D), 1-m spatial
resolution surface velocity field of the Mill Gulch earthflow, north-
ern California, for three periods of time spanning a decade. Phase
correlation, an image processing technique, applied to the precise-
ly aligned lidar digital elevation models confidently resolved hor-
izontal velocities from 0.2 to 5 m year−1. The velocity field defined
three distinct kinematic zones of the landslide with different sen-
sitivities to precipitation, such that the head moved slowly at 0.3–
0.5 m year−1, the transport zone moved fastest at 2–5 m year−1, and
a forked toe moved intermittently at 0–4 m year−1. Inverting the
3D surface velocity field to infer landslide thickness suggested that
the head was underlain by a 6-m-deep, concave-up slip surface,
while the transport zone likely had a 1–2.5-m-deep translational
slip surface. We hypothesized that velocity in the head was least
sensitive to changing precipitation because of its greater inferred
depth, which likely dampened the amplitude of pore pressure
fluctuations. A lack of major head scarp retrogressions also may
have contributed to the relatively steady velocity in the head, while
buttressing and debuttressing interactions between the landslide’s
toes and the creek running in Mill Gulch may have contributed to
the more dramatic changes in velocity in the transport zone and
toes. Although predicting landslide velocity from precipitation
data alone may therefore be challenging, producing detailed 3D
deformation fields from repeat topographic data can be an impor-
tant tool for deciphering interactions between internal controls,
such as changes to landslide geometry, and external controls, such
as climate, on landslide motion.

Keywords Mill gulch earthflow . Image correlation . Repeat
lidar . 3D change detection . Landslide mechanics

Introduction
In mountainous regions with weak lithologies, slow-moving land-
slides are often the dominant process that erodes hillslopes and
delivers sediment to channels (Kelsey 1978, 1980; Mackey and
Roering 2011; Scheingross et al. 2013; Simoni et al. 2013; Bennett
et al. 2016). Although many of such landslides move slowly or
intermittently for years to millennia (Swanson and Swanston 1977;
Bovis and Jones 1992; Mackey et al. 2009), they may suddenly
accelerate and fail catastrophically, which can be hazardous to
lives and infrastructure (Miller and Sias 1998; Wartman et al.
2016; Handwerger et al. 2019). Monitoring landslide movements
to improve our understanding of the processes that control mo-
tion is therefore essential to determine how landslide erosion rates

respond to climatic and tectonic forcing over geologic time and
estimate hazards on human time scales. In this study, we used
image correlation on four sequential aerial lidar data sets spanning
a decade to document the high-resolution, three-dimensional (3D)
surface deformation field of a slow-moving landslide along the
northern California coast. We then analyzed those displacement
fields and the inferred landslide thickness alongside precipitation
data to interpret plausible relationships between climate and the
landslide’s motion.

Over geologic time scales, landslides can exert a strong influ-
ence on the evolution of landscapes by directly shaping hillslopes
and affecting sediment supply to channels. At the range scale,
landslides are the main hillslope erosion mechanism that can keep
pace with high uplift rates in mountainous, non-glaciated regions,
and in doing so they set the maximum hillslope relief and topo-
graphic gradient of a landscape (Schmidt and Montgomery 1995;
Burbank et al. 1996; Larsen and Montgomery 2012). At a finer
scale, landslides coevolve with low-order channels, thereby sup-
pressing development of a regular drainage network and length-
ening hillslopes (Tarolli and Dalla Fontana 2009; Booth and
Roering 2011; Booth et al. 2013b). Where landslides infringe on
higher-order channels, they often create dams that affect the pat-
tern of channel erosion and deposition for many kilometers along
the river, and these effects can persist for thousands of years or
more (Ouimet et al. 2007; Safran et al. 2011).

Over shorter time scales, landslide movement rates and pat-
terns are a first-order control on hazard and sediment delivery to
channels. In many cases, threshold values of precipitation or pore
pressure required to trigger landslide movement have been iden-
tified (e.g., Prior and Stephens 1972; Iverson and Major 1987;
Handwerger et al. 2013), and furthermore, landslide movement
rates have been shown to correlate with pore pressure in some
cases (e.g., Coe et al. 2003; Corominas et al., 2005). However, not
all landslides show a clear relationship between precipitation or
pore pressure and movement thresholds or rates (van Asch 2005;
Massey et al. 2013, 2016). The observation that landslides may or
may not respond predictably to precipitation highlights the im-
portance of quantitatively documenting spatial and temporal pat-
terns of landslide displacements in order to infer their controlling
mechanisms.

Multi-temporal remote sensing techniques are becoming widely
applied for landslide monitoring, especially for large, slow-moving
landslides (Delacourt et al. 2007; Tofani et al. 2013). Ground-based
techniques that require direct access to a landslide, such as differ-
ential GPS or GNSS (e.g., Malet et al. 2002; Coe et al. 2003), strain
gauges, or borehole inclinometers (e.g., Mikkelsen 1996) can have
high accuracy, precision, and temporal resolution, but typically
have low spatial resolution due to access and cost constraints. The
main advantage of remote sensing data is higher spatial resolution,
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and three types of air- or space-based multi-temporal remote
sensing products have especially contributed to advancing land-
slide monitoring studies: optical images, synthetic aperture radar
(SAR), and airborne lidar (Tofani et al. 2013).

Optical imagery can have centimeter-scale resolution, and re-
peat imagery has been successfully used to monitor landslide
movements with manual feature tracking (e.g., Mackey and
Roering 2011) and image correlation techniques (e.g., Delacourt
et al. 2004; Lacroix et al. 2015; Roering et al. 2015). Image correla-
tion has also been widely applied to measure glacier deformation
(e.g., Bindschadler and Scambos 1991; Kääb 2002) and fault slip
(e.g., Van Puymbroeck et al. 2000). Although displacements mea-
sured with optical images are usually 2D, traditional photogram-
metry and structure-from-motion (SfM) techniques can produce
digital elevation models to quantify geomorphic changes (e.g., Del
Soldato et al. 2018; Riquelme et al. 2019) or surface displacements
in 3D (Casson et al. 2005; Lucieer et al. 2013).

Satellite-based differential interferometric SAR (D-InSAR) can
measure landslide displacements with centimeter-scale precision
in the satellite line-of-sight direction over weekly to monthly time
scales, which has proven useful for time series analysis of landslide
deformation (e.g., Handwerger et al. 2015; Tong and Schmidt 2016;
Intieri et al. 2018). Recently, airborne D-InSAR has been able to
measure 3D displacement fields of landslides by optimizing flight
paths to resolve three independent components of surface dis-
placements (Delbridge et al. 2016; Handwerger et al. 2019). The
persistent scatterer (PS) technique, which tracks features with
distinctive amplitudes in the SAR images, has also successfully
been used to map slow-moving landslide displacements and pro-
duce time series (e.g., Hilley et al. 2004; Bianchini et al. 2018;
Cohen-Waeber et al. 2018; Solari et al. 2018). Combining ascending
and descending orbits with PS can also resolve 3D surface dis-
placements in some cases (Raucoules et al., 2013).

The main strengths of airborne lidar for landslide monitoring
are its high spatial resolution, which is typically 1 m or better, and
especially its ability to penetrate gaps in the vegetation to image
the ground surface itself in 3D (Corsini et al. 2007; Jaboyedoff et al.
2010; Daehne and Corsini 2012). Due to relatively high costs,
acquisition of repeat lidar data is rare compared with optical
images and SAR, with typically on the order of years between data
sets. Airborne lidar is routinely used for change detection analysis,
in which digital elevation models (DEMs) are differenced vertically
to measure volume changes (Burns et al. 2010; Ventura et al. 2011;
DeLong et al. 2012). More recently, repeat airborne lidar has been
used to measure the 3D displacement fields of slow-moving land-
slides, which is not possible with other remote sensing techniques
in vegetated areas (Daehne and Corsini 2012; Booth et al. 2018). In
this study, we specifically advance the use of repeat airborne lidar
data to measure landslide surface deformation in 3D and at high
spatial resolution to determine how multi-year precipitation re-
lates to landslide motion.

Study site and methods

Study site: Mill Gulch earthflow, California
The Mill Gulch earthflow is a 450-m-long and 50–100-m-wide
slow-moving landslide located 2 km southeast of Fort Ross on
the northern California coast (Fig. 1a, b). The landslide is best
described as a “composite earth slide-earth flow” (Cruden and

Varnes 1996), as movement likely occurs through a combination
of frictional slip on a discrete basal failure surface and flow, where
internal deformation is distributed throughout the landslide’s
body (Manson et al. 2006). Such landslides are widespread
throughout the northern California Coast Ranges (Keefer and
Johnson 1983; Mackey and Roering 2011; Bennett et al. 2016) and
commonly referred to as “earthflows.” The upper part of the Mill
Gulch landslide has a typical earthflow geometry consisting of an
amphitheater-shaped head below an arcuate head scarp, which
transitions to a narrower, gullied transport zone downslope
(Kelsey 1978). The transport zone of the Mill Gulch earthflow then
diverges into two smaller, bulbous toes that end in Mill Gulch at
the foot of the slope.

The landscape in the vicinity of the landslide reflects the re-
gional tectonic and geologic setting. The right-lateral San Andreas
Fault (SAF) runs northwest-southeast between the landslide and
the coast (Fig. 1a), subparallel to the coastline and to the regional
trend of the main range crests. This segment of the fault ruptured
during the 1906 San Francisco earthquake and was offset by
approximately 3 m (Lawson 1908). The SAF juxtaposes interbed-
ded sandstones and mudstones of Miocene age to the southwest
against late Eocene to late Cretaceous wacke of the Franciscan
Complex to the northeast (Blake et al. 2002). Deep-seated land-
slides are widespread in the Franciscan Complex rocks, especially
where those units intersect the coast and near the SAF (Manson
et al. 2006). Mill Gulch extends 3 km from a prominent ridge to the
Pacific Ocean to the southwest and is offset by 80–100 m across the
SAF (Muhs et al. 2003). Southwest of the fault, the stream has
incised approximately 35 m through an uplifted marine terrace.
The lowest marine terrace at Fort Ross has been correlated to the
lowest terrace at Point Arena, to the north of the study area, which
has been dated to the 80-ka Marine Isotope Stage 5a sea-level high
stand (Muhs et al. 1994, 2003; Arrowsmith and Crosby 2006). This
yields an uplift rate of 0.4 mm year−1, which is typical for coastal
northern California (Muhs et al. 1992; Bowles and Cowgill 2012;
DeLong et al. 2017). Cosmogenic radionuclide-derived, catchment-
averaged erosion rates in nearby Russian Gulch and the Gualala
River watershed are lower at 0.2 mm year−1, and the Mill Gulch
earthflow itself was responsible for 0.3 mm year−1 of erosion from
2003 to 2007, averaged over the entire area of the Mill Gulch
catchment (DeLong et al. 2012, 2017).

Coastal northern California has a Mediterranean climate with
dry summers and most precipitation falling as rain from October
to May. Monthly precipitation data at Fort Ross was available from
the California Department of Water Resources for the 2003
through 2013 water years of the study period, but 19 months of
data were missing from that 132-month record. To fill in those
gaps, we correlated the monthly precipitation at Fort Ross with
monthly precipitation at Venado, 23 km northeast of the landslide,
which was the closest station with continuously available data
(Fig. 2). A linear fit was given by

FRR ¼ 0:75þ 0:58VEN ð1Þ

where FRR is precipitation at Fort Ross and VEN is precipitation
at Venado, measured in centimeters, which explained 89% of the
variance with the largest discrepancies occurring for the wettest
months when precipitation exceeded 30 cm at Venado. We used
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that linear fit to estimate monthly precipitation at Fort Ross when
no data were available there and produce a continuous precipita-
tion time series to compare to the landslide’s surface velocity.

Lidar processing and alignment
To measure the earthflow’s 3D surface displacements, we used four
airborne lidar data sets collected in February 2003, April 2007,
September 2010, and October 2013 (Table 1). These data sets are
publicly available through the National Science Foundation-
supported OpenTopography Facility (https://opentopography.org/
) and the National Oceanic and Atmospheric Administration’s
Digital Coast program (https://coast.noaa.gov/digitalcoast/). Al-
though each of these data sets was independently georeferenced
by the vendor responsible for the lidar acquisition, to measure the
relative displacements between each collection date as precisely as
possible, we realigned and gridded the raw point clouds as follows.
First, we extracted all points classified as ground returns in a 350 ×
500-m box centered on the landslide. The average ground point
densities for each cloud ranged from 0.9 to 4.9 pts. m−2 (Table 1).
We then used the iterative closest point algorithm (Besl and Mckay
1992), implemented in the open-source software CloudCompare
(http://www.cloudcompare.org/), to precisely align each point
cloud with that of the previous date, using all points on the stable
terrain surrounding the active landslide. The number of points
used for each alignment was 635,724 (2003–2007 alignment) or

798,585 (2007–2010 and 2010–2013 alignments). The average root-
mean-square error (RMSE) on these alignments was 0.4 m
(Table 1), which we take as an estimate of the overall relative
uncertainty on the position of each point that includes instrumen-
tal error, point spacing, and error due to different points on the
irregular ground surface being imaged in each lidar scan
(Oppikofer et al. 2009).

We then interpolated each aligned point cloud to a 1-m resolu-
tion DEM using the natural neighbor algorithm (Sibson 1981),
which is well suited to gridding lidar data for three reasons
(Sambridge et al. 1995). First, the elevation interpolated at a point
depends only on its nearest neighbors, which limits spatial corre-
lation of errors and works well on irregularly spaced points with
varying spatial density. Second, the interpolated surface is contin-
uously differentiable, which ensures that topography varies
smoothly from point to point on the interpolated grid. Third, the
interpolated elevation exactly matches the elevation of the original
data points at those coordinates. We chose 1 m spatial resolution
because it corresponded to the lowest ground point densities of
the 2003 and 2010 data sets.

3D surface deformation fields
A landslide’s 3D surface deformation field is defined by the x-, y-,
and z-components of its surface displacements, which can be
described in two different reference frames that differ in their

Fig. 1 a Orthorectified aerial photograph taken April 9, 2011, of the area surrounding the Mill Gulch earthflow. b The earthflow annotated with its main morphologic
features interpreted from the aerial photo and lidar data (“Lidar processing and alignment”)
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representation of the vertical component of motion (Delbridge
et al. 2016). In an Eulerian reference frame, the vertical component
of displacement is defined at each fixed point in space and can be
measured directly by vertically differencing two DEMs. Horizontal
displacements can then be measured independently to complete
the 3D surface displacement field (Casson et al. 2005; Daehne and
Corsini 2012; Booth et al. 2013a, 2018). In a Lagrangian reference
frame, the vertical component of displacement is instead defined
as the elevation change each point experienced as it moved from
one location on the landslide to another. The 3D surface displace-
ment field can therefore be measured directly by tracking the
displacement of a feature in a 3D point cloud (Teza et al. 2007;
Oppikofer et al. 2009), or the vertical component can be measured
by interpolating the elevations at each end of a horizontal dis-
placement vector and then differencing them (Aryal et al. 2015;
Avouac and Leprince 2015). In this study, we determined 3D
surface displacements in both reference frames, with the Eulerian
reference frame results presented in the main article and Lagrang-
ian reference frame results presented in the Supplementary Mate-
rial. We highlight results in the Eulerian reference frame because
vertical changes to the land surface elevation can be measured
everywhere, independent of whether or not horizontal displace-
ments are defined.

To measure the horizontal components of the earthflow’s dis-
placement field, we used the phase correlation method, a common
image correlation technique, on the aligned DEMs. Phase

correlation depends on the Fourier shift theorem, which states
that the relative offset of two images can be determined from the
phase difference of their Fourier transforms (Leprince et al. 2007;
Oppenheim and Schafer 2010). Specifically, it calculates the corre-
lation coefficient, C, as a function of possible offsets in the x- and
y-directions, i and j, respectively, as

C i; jð Þ ¼ F−1 ℤ 1 ωx;ωy
� �

ℤ *
2 ωx;ωy
� �

ℤ 1 ωx;ωy
� �

ℤ *
2

�
ωx;ωy

����
���

0

B@

1

CA ð2Þ

where ℤ1, 2 denotes the Fourier transform of the first or second
image, ωx, y denotes frequency in the x- or y-direction, the asterisk
indicates the complex conjugate, and the vertical bars indicate the
magnitude (Kuglin and Hines 1975; Brown 1992; Heid and Kääb
2012). The location of the peak in the correlation coefficient matrix
then defines the relative offset between the two images, which has
subpixel precision by interpolating C. We implemented Eq. (2) in a
moving window routine following the open-source program
ImGRAFT (Messerli and Grinsted 2015) to measure the offset of
the window centered at each location in each pair of sequential
DEMs. Specifically, for each pixel in the first DEM, we defined a
24 m × 24 m window centered on that pixel and computed C for all
offsets within a 48 m × 48 m search window centered on that same

Fig. 2 Monthly precipitation measured at Fort Ross (FRR) vs. monthly precipitation at Venado (VEN) from 1999 to 2018. Dashed line is a linear fit used to estimate
precipitation at Fort Ross during months when no data were available there

Table 1 Summary of lidar data properties

Year Data set name Average point
spacing (pts m−2)

Number of points
used for alignment

RMSE on alignment to
previous date (m)

2003 Northern San Andreas Faulta 0.9 – –

2007 EarthScope Northern California LiDAR projecta 1.9 635,724 0.39

2010 California Coastal Conservancy Lidarb 1.0 798,585 0.36

2013 UMD-NASA Carbon Mapping/Sonoma County Vege-
tation Mapping and LiDAR Programa

4.9 798,585 0.43

a Available from OpenTopography
b Available from NOAA Digital Coast
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pixel in the second DEM. While choice of these window sizes is
arbitrary (Delacourt et al. 2007; Avouac and Leprince 2015), at the
Mill Gulch study site smaller windows tended to produce high
numbers of physically incorrect displacement measurements due
to lidar data uncertainty, while larger window sizes tended to
overly smooth the abrupt changes in displacement at the bound-
aries of the earthflow (Supplementary Material). Physically incor-
rect displacements were identified as being greater than several
meters in length in randomly distributed orientations, including
uphill, on the landslide as well as on stable parts of the study area.

The phase correlation technique assumes rigid body trans-
lation with no rotation, which may be violated by many parts
of a landslide’s heterogeneous displacement field, and we
made several modifications to the technique to produce reli-
able displacement fields for the Mill Gulch earthflow. First, we
applied a low-pass filter to the Fourier spectra that excluded
all frequencies greater than the Nyquist frequency, which was
0.5 m−1 for our 1-m-resolution DEMs (Booth et al. 2018). We
then excluded locations that had a poorly defined peak in the
correlation coefficient matrix, C, which otherwise led to phys-
ically incorrect displacements such as in the upslope direction
or with a drastically different magnitude than neighboring
locations. Those poorly defined correlation coefficient matri-
ces had several isolated peaks of similar magnitude corre-
sponding to different offsets, while well-defined peaks
consisted of a cluster of high correlation coefficients centered
on the true offset (Booth et al. 2018). Applying the criterion
that the highest and second highest coefficients in C had to
be adjacent to one another to be considered a well-defined
peak effectively filtered out the majority of the physically
incorrect displacements in a single step. Alternatively, apply-
ing a threshold signal strength or signal-to-noise ratio of the
correlation coefficients to identify incorrect displacements
(Delacourt et al. 2004) did not eliminate most of the physi-
cally incorrect displacements at our study site. Furthermore,
we avoided making direct assumptions about landslide behav-
ior by using the general properties of the correlation coeffi-
cient matrix itself to exclude incorrect displacements, rather
than retroactively using characteristics of the displacement
field (Lacroix et al. 2015).

To complete the 3D surface displacement fields, vertical eleva-
tion changes in an Eulerian reference frame were measured by
subtracting each pair of DEMs. Vertical components of landslide
displacements in a Lagrangian reference frame were measured by
subtracting the final elevation from the starting elevation of each
horizontal displacement vector (Supplementary Material).

Earthflow slip surface inversion
Landslide surface displacements measured in 3D may be used
qualitatively (Hutchinson 1983; Casson et al. 2005; Guerriero
et al. 2017) and quantitatively to infer the basal slip surface geom-
etry (Booth et al. 2013a; Aryal et al. 2015; Delbridge et al. 2016).
Quantitative approaches are based on conservation of mass, which
states that at every point on the landslide (in an Eulerian reference
frame),

∂ ρhð Þ
∂t

¼ −∇ � ρqð Þ þ ε˙ ð3Þ

where ρ is the depth-averaged density of the landslide material, h
is landslide thickness, t is time, q is horizontal flux per unit width,
and ε̇ is the rate of direct addition or removal of mass due to
deposition or erosion, respectively. Expanding the derivatives in
Eq. (3) results in

h
∂ρ
∂t

þ ρ
∂h
∂t

¼ −ρ
∂qx
∂x

−ρ
∂qy
∂y

−qx
∂ρ
∂x

−qy
∂ρ
∂y

þ ε˙ ð4Þ

where qx and qy indicate the x- and y-components of q, which
highlights the relative importance of changes in flux, changes in
density, and direct surface deposition or erosion on the landslide
thickness. On the left hand side of Eq. (4), the first term describes a
change in mass due to a change in density of landslide material
with time, and the second term describes a change in mass due to a
change in thickness with time. Those changes in mass are balanced
by the terms on the right-hand side of Eq. (4), which are the
contributions of spatial gradients in the flux (first two terms),
spatial gradients in the density (third and fourth terms), and direct
deposition or erosion (last term). Although density may in general
vary spatially or with time as landslide material dilates or com-
pacts, those gradients are likely much smaller than gradients in the
flux at the Mill Gulch earthflow. For example, the bulk modulus of
clay-rich landslide debris is typically of order 107 Pa (U.S. Army
Corps of Engineers 1990), indicating that a given change in pres-
sure causes a roughly seven order of magnitude smaller change in
the relative density. Assuming changes to pressure at the slip
surface of a 1–10-m-deep landslide are the same magnitude as
the lithostatic pressure at those depths (Delbridge et al. 2016),
relative changes in density should be less than 1%. Similarly,
dilation of a clay-rich shear zone is expected to cause at most just
a few centimeters of vertical thickening (Iverson 2005), which
would cause a change in depth-averaged density of about 1% for
a landslide that is of order meters deep. Overall, the contribution
of those changes in density to changes in the landslide thickness is
small compared with measured elevation changes of up to
0.5 m year−1 in magnitude at the Mill Gulch earthflow (“3D dis-
placement fields”) and likely much less than the vertical uncer-
tainty of the airborne lidar data. Direct deposition or erosion is
also likely negligible on nearly all the landslide surfaces over the
decadal time scale of this study, except in localized gullies where
overland flow of water is possible during intense rainstorms and at
the faces of the toes where they are directly exposed to stream
erosion by the creek running in Mill Gulch. Those locations occu-
py less than 1% of the landslide’s surface area and therefore have a
minimal effect of the overall inversion procedure described below,
which weights all locations on the landslide equally. To further
minimize the effects of direct surface erosion or deposition on the
thickness inversion, we only inverted the well-defined velocity
field from 2007 to 2010, which was when the landslide moved the
least and when precipitation was lowest, suggesting limited over-
land flow in gullies.

Following Booth et al. (2013a), we therefore drop the terms in
Eq. (4) that involve density gradients and direct erosion or depo-
sition, which implies conservation of volume rather than mass:

∂h
∂t

¼ −∇ � uh
� �

; ð5Þ

Landslides 17 & (2020) 1287



where u is the depth-averaged landslide velocity. Equation (5)
extends the established balanced cross-section approach that has
been previously applied to landslides to estimate their depths at
the head scarp or toe (Hutchinson 1983; Bishop 1999) to the entire
landslide. Since repeat lidar is capable of measuring changes to the
landslide’s surface, we further assumed that the change in land-
slide thickness was equivalent to the change in its surface eleva-
tion, z, at a point, and that the depth-averaged velocity was equal
to the measured horizontal surface velocity, usurf, leading to

∂z
∂t

¼ −∇ � usurfhð Þ: ð6Þ

Setting u ¼ usurf assumes that at every point on the landslide
deformation occurs by sliding on a narrow shear zone with mate-
rial above transported as a rigid plug, as is commonly observed for
earthflows (Keefer and Johnson 1983). Relaxing this assumption to
allow for a thicker shear zone and implying a more flow-like
behavior would proportionately increase the inferred landslide
thickness at all points, but would not change the spatial pattern
of thickness variations (Booth et al. 2013a, b). We measured ∂z/∂t
by differencing the DEMs in the vertical direction and measured
usurf with the phase correlation technique (“3D surface deforma-
tion fields”). We then rearranged Eq. (6) as a system of linear
equations and solved for h that minimizes the value of

Ah−bk k2 þ α2 ∇2hk k2 ð7Þ

where A is a diagonally dominant matrix containing the velocity
data, b is a vector containing the change in elevation data, and α is
a damping parameter (Booth et al. 2013a), which we chose by the
L-curve method (Aster et al., 2011; Delbridge et al., 2016). In
summary, the resulting inferred thickness represents the best
model that does not violate conservation of volume, assumes the
surface velocity equals the depth-averaged velocity, and is consis-
tent with the uncertainty of the measured elevation changes. Since
inversion of Eq. (6) does not incorporate possible changes in
density, direct surface erosion or deposition, multiple active slip
surfaces at different depths, or deformation by flow, we refer to the
resulting thickness as the “inferred thickness” to be consistent
with the assumptions described above.

Results

3D displacement fields
Horizontal surface displacement rates of the Mill Gulch earthflow
greater than 0.2 m year−1 and less than 5 m year−1 were confidently
measured with the phase correlation technique (Fig. 3a–c). We
defined the horizontal minimum detectable displacement (MDD)
and MDD rate for each time interval as three times the standard
deviation (99% confidence) of apparent displacements or rates,
respectively, measured on the stable hillslopes and marine terraces
to the south and west of the active earthflow (Table 2). While
image correlation can in theory be much more precise, the MDD
in this case was limited by the uncertainty of the airborne lidar
data. The maximum measured displacement of 20 m, correspond-
ing to a rate of 5 m year−1, was limited by changes to the ground
surface texture due to landslide deformation. Only small patches

of the landslide surface that traveled downslope as relatively co-
herent blocks and contained distinctive surface features were
measured at that maximum displacement. Vertical displacement
rates greater than an MDD rate of 0.06 m year−1 (Table 2) in an
Eulerian reference frame were measured over most of the land-
slide’s surface and ranged up to 0.5 m year−1 in magnitude (Fig.
3d–f). The vertical MDD was also defined as three times the
standard deviation of apparent vertical changes of the stable areas.
The large apparent vertical changes along the eastern boundary of
the study site, as well as some spurious horizontal displacements
and areas of no data, are largely artifacts due to interpolation of
low ground return density lidar data under thick forest cover there
(Fig. 1). Vertical displacement rates measured in a Lagrangian
reference frame ranged up to 2 m year−1 in magnitude, and
generally followed the local topographic gradient (Supplementary
Material, Fig. S2).

The spatial pattern of horizontal displacements in all three time
intervals corresponded to the main morphologic features of the
earthflow. The head moved slowly to the south as a relatively
coherent mass at a rate of less than 1 m year−1. The transition
from the head to the narrower transport zone was abrupt at an
arcuate internal scarp (Fig. 3b), and rates downslope of that scarp
were much faster at up to 5 m year−1 to the southeast. Horizontal
displacements were undefined over large areas of the transport
zone in 2003–2007 and 2010–2013 when displacements were
greatest, especially near its boundaries, where non-rigid deforma-
tion of the landslide material changed the surface texture substan-
tially (Fig. 4), resulting in poorly defined correlation coefficient
peaks. However, large measurable vertical changes at those loca-
tions indicated that those parts of the landslide were also active. At
the landslide’s toe, horizontal movement rates were slower than
those of the transport zone and ranged from less than the MDD
rate to 4 m year−1.

The spatial pattern of vertical deformation was consistent with
the spatial pattern of horizontal displacements, indicating defla-
tion of the head and transport zone of the landslide and accumu-
lation in the two toes. At long length scales, vertical displacements
were generally negative, indicating downward motion, in the head
and transport zone, and generally positive in the toes of the
earthflow. At shorter length scales of several meters, localized
vertical changes resulted from individual landslide hummocks
and other surface roughness elements translating downslope
(Fig. 4c). Direct erosion or deposition in localized areas, such as
at the downslope faces of the landslide’s toes and in the creek
flowing through Mill Gulch, also occurred (e.g., Fig. 3e), but was
not detectable on the surface of the landslide itself.

Over the 10-year time period of the study, the earthflow’s head
moved at a relatively constant rate (0.3–0.5 m year−1), but move-
ment of the transport zone and toe varied dramatically with time
(0–5 m year−1). We selected five small patches of terrain (Fig. 3c)
where horizontal displacements were defined for each time inter-
val to construct a time series of landslide movement rates repre-
sentative of the head, transport zone, and south toe (Fig. 5;
Table 3). For comparison, Fig. 5 also shows a time series of
cumulative monthly precipitation for each water year at Fort Ross
(“Study site: Mill Gulch earthflow, California”).

From 2003 to 2007, the patch centered in the landslide’s head
moved to the south at 0.5 ± 0.1 m year−1 (mean ± standard devia-
tion), while the three transport zone patches moved to the
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southeast at 4.7 ± 0.1 m year−1 (Fig. 5; Table 3). Over large areas of
the transport zone, horizontal displacements were undefined dur-
ing this time interval, but the broad pattern of relatively large
vertical changes there indicated that substantial movement took
place (Fig. 3a, d). Specifically, the surface elevation decreased at

rates as high as 0.5 m year−1 throughout the head and transport
zone, and the two toes increased in surface elevation and advanced
into Mill Gulch. The small patch with defined displacements on
the south toe moved more slowly than the transport zone at 3.9 ±
0.01 m year−1, and surface uplift over the entire toe indicated that

Fig. 3 Lidar-derived slope maps overlain with a subsample of velocity vectors and colored according to the magnitude of the horizontal velocity (a–c) or rate of vertical
elevation change (d–f) of the Mill Gulch earthflow for three time intervals between 2003 and 2013. Dashed black boxes in b and e indicate extend of Fig. 4. Yellow boxes
labeled Head, Transport zone, and Toe in c are patches used to generate the velocity time series in Fig. 5. Profile SS’ in b is a streamline used to show the inferred
landslide thickness in Fig. 6
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movement also occurred outside of that patch. The north toe also
experienced surface uplift at a rate of up to 0.5 m year−1. A shallow
landslide occurred on the east bank of Mill Gulch directly across
from the north toe, likely contributing sediment that aggraded the
channel upstream of the south toe (Fig. 3d; DeLong et al. 2012).
Seasonal precipitation was slightly below to well above average
during this time period with Fort Ross receiving 83%, 86%, 95%,
and 152% of average each water year (Fig. 5; Table 3).

From 2007 to 2010, the entire landslide slowed down, with
the head moving at 0.3 ± 0.1 m year−1, the transport zone mov-
ing at 1.5 ± 0.03 m year−1 , and the south toe at 0.1 ±
0.01 m year−1, which is less than the MDD rate, suggesting that
it had stopped (Fig. 5; Table 3). Horizontal displacements were
defined over most of the landslide’s surface during this time
interval, highlighting the abrupt change in velocity from the
landslide’s head to transport zone, where the movement direc-
tion changed from south to southeast, and the rate increased by
a factor of 5 over a distance of just a few meters. The head of the
earthflow continued to decrease in surface elevation over this
time interval, while the transport zone’s overall surface eleva-
tion remained steady, with downslope translation of meter-scale

roughness elements causing localized positive or negative
changes (Fig. 4c). While the south toe was not moving during
this time interval, its downslope face was eroded by the creek
running in Mill Gulch (Fig. 3e). However, the north toe
remained active, advancing into Mill Gulch and increasing its
surface elevation. Due to changes to the surface texture, hori-
zontal displacement rates of the north toe were again undefined.
Precipitation was considerably below average to average over
this interval of time with Fort Ross receiving 71%, 78%, 64%,
and 103% of average each water year (Fig. 5; Table 3).

From 2010 to 2013, the entire landslide was active again, moving
faster than in 2007–2010, but slower than in 2003–2007. The head
moved at a rate of 0.4 ± 0.05 m year−1, the transport zone at a rate
of 4.1 ± 0.1 m year−1, and the south toe at a rate of 1.8 ±
0.01 m year−1. Like in 2003–2007, both the head and transport
zone broadly decreased in surface elevation, and both toes in-
creased in surface elevation as they advanced into Mill Gulch.
Localized areas of bank erosion and aggradation indicate that
the active channel in Mill Gulch migrated laterally where it
interacted with the landslide’s toes during this time period (Fig.
3f). Precipitation was below average during this period with Fort

Table 2 Minimum detectable displacements (MDD) and rates

Time interval MDD (m) MDD rate (m year−1)
Horizontal Vertical Horizontal Vertical

2003–2007 0.79 0.27 0.19 0.06

2007–2010 0.59 0.20 0.17 0.06

2010–2013 0.54 0.18 0.18 0.06

Fig. 4 Detail maps of black dashed box in Fig. 3b and e showing horizontal (a, b) and vertical (c) displacement rates of part of the Mill Gulch earthflow’s transport zone
for 2007–2010. Displacement vectors are shown as their actual length at the scale of the image. Backgrounds are lidar derived slope maps from 2007 (a) or 2010 (b, c). An
abandoned gully feature can be clearly seen translating to the southeast on the landslide’s surface (a, b), and the shape of this feature causes a pattern of alternating
negative and positive elevation changes (c)
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Ross receiving 92%, 76%, and 87% of average each water year
(Fig. 6; Table 3).

Earthflow slip surface geometry and sediment flux
We performed the landslide slip surface inversion using the 2007–
2010 displacement field, which had the best-defined horizontal
velocity field of the three time intervals studied. This well-
defined velocity field suggests that changes in the depth-averaged
density of landslide material and direct surface erosion or depo-
sition that could change the surface texture were small, such that
our conservation of volume approach (“Earthflow slip surface
inversion”) is reasonable for inferring the landslide’s thickness at
that time. We prepared the velocity field for the inversion by
manually masking the few remaining small patches of terrain with
physically incorrect displacements that the filtering process (“3D
surface deformation fields”) did not identify. We then used natural
neighbor interpolation to fill in the undefined horizontal velocities
and produce a complete 1-m resolution displacement field for the
inversion.

Profile SS’ (Fig. 3b) is a streamline that follows the velocity field
down the center of the earthflow, and it illustrates the main
characteristics of the inferred slip surface geometry and earthflow
sediment flux per unit width, defined as the landslide thickness
multiplied by the surface horizontal velocity (Fig. 6 (Eulerian
reference frame) and Fig. S3 (Lagrangian reference frame)).
Starting at the head scarp of the earthflow, located at 15 m along
profile SS’, the depth to its inferred slip surface increased in the

downslope direction until reaching a maximum of 6 m at 50 m
along profile SS’ near the center of the landslide’s head. Although
we do not have independent estimates of the landslide’s thickness
because of access constraints, the dip of the inferred failure plane
matched the dip of the exposed head scarp, providing an impor-
tant independent check that the inversion results were reasonable
(Fig. 6b; Fig. S3b). Head scarp erosion that would reduce its slope
was not detected from the four lidar data sets and was likely
minimal over the decadal time scale of this study (Avouac 1993;
Hanks 2000), but the scarp’s dip should conservatively be consid-
ered a close lower bound on its initial dip. Sediment flux also
increased in the downslope direction from 15 to 75 m along profile
SS’, reaching a local maximum of 2 m2 year−1 at the lower part of
the earthflow’s head (Fig. 6a). Farther downslope, the earthflow’s
inferred thickness decreased to 1 m at the internal scarp (Fig. 3b),
located at 110 m along profile SS’, indicating that the head had a
rotational component to its motion. Sediment flux reached a local
minimum of 1 m2 year−1 at the internal scarp. Depth to the inferred
slip surface then increased gradually in the downslope direction to
2.5 m in the lower part of the transport zone, from 110 to 330 m
along profile SS’, before shallowing to zero at the downslope end of
the transport zone near the inactive south toe. The transport zone
of the landslide was therefore predominantly a translational fail-
ure. Sediment flux also increased gradually with distance through
the transport zone to reach a maximum of 3.5 m2 year−1 on the
lower part of the transport zone before decreasing to zero at the
inactive toe.

Fig. 5 Time series of average velocity (left axis) of the head, transport zone, and toe of the Mill Gulch earthflow, and cumulative monthly precipitation (right axis) by
water year at Fort Ross. Horizontal error bars indicate the time intervals between lidar acquisitions over which velocities were averaged, and vertical error bars indicate the
standard deviation of velocity

Table 3 Summary of landslide velocities and precipitation

Time
interval

Head velocity
(m year−1)

Transport zone velocity
(m year−1)

Toe velocity
(m year−1)

Percent of average precipitation in
water year

2003–2007 0.5 ± 0.1 4.7 ± 0.1 3.9 ± 0.01 83%, 86%, 95%, 152%

2007–2010 0.3 ± 0.1 1.5 ± 0.03 < MDD rate 71%, 78%, 64%, 103%

2010–2013 0.4 ± 0.05 4.1 ± 0.1 1.8 ± 0.01 92%, 76%, 87%
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Discussion

Evaluation of image correlation for measuring landslide displacements
Our results demonstrate that image correlation of repeat airborne
lidar DEMs is capable of producing 3D, high-resolution (of order
1 m), and high-precision (± 0.5 m horizontal and ± 0.2 m vertical)
landslide displacement fields. As repeat airborne lidar data be-
come increasingly available, and this technique becomes more
widely applicable, several considerations are important to take
into account to ensure useful results at other sites. First, the
uncertainty of the lidar data limits the MDD, rather than the image
correlation technique itself, which can be accurate to a small
fraction of a pixel dimension (Leprince et al. 2007). For correlation
of airborne lidar data in general, we therefore expect an MDD of a
few decimeters. Second, the maximum measureable displacements
are instead likely to be highly variable depending on how site-
specific landslide kinematics and superimposed sediment trans-
port processes affect the ground surface texture. This variability
was apparent within our study site, where the technique was
capable of measuring at least 20 m of total displacement where
the landslide moved coherently with little disruption to the surface
texture, but did not successfully measure comparable or smaller
displacements elsewhere. The main areas where displacements
were undefined were areas where the surface texture changed
dramatically, resulting in poor correlation coefficients. This issue
was most prevalent in areas with large displacements, areas of
non-rigid landslide deformation, such as shear, shortening, exten-
sion, or rotation indicated by spatial gradients in the velocity field
(Figs. 3a–c and 4a, b), and localized areas of direct surface erosion,
such as the faces of the landslide’s toes. Although the earthflow’s
surface was not forested, other parts of study area that had low
lidar ground point densities also produced undefined or unreliable
displacements. Last, selecting ground returns, aligning, and inter-
polating lidar point clouds likely influences the ability of image
correlation techniques to measure displacements, especially if
different procedures are used to process each data set. Filtering
for ground returns and interpolating can affect the surface texture,
while misaligned data sets can introduce systematic biases in the
measured offsets. Nonetheless, quickly correlating independently
gridded and georeferenced lidar DEMs over broad areas as they

become available may be sufficient as a reconnaissance tool for
active landslide identification.

Comparison with previous work
Our 3D surface displacement fields were consistent with pre-
vious work on the Mill Gulch earthflow that used the same
2003 and 2007 lidar data sets to document vertical changes
with DEM differencing and estimate horizontal displacements
with manual feature tracking (DeLong et al. 2012). For exam-
ple, DeLong et al. (2012) estimated an average velocity of
0.5 m year−1 in the earthflow’s head, and a maximum velocity
of 5 m year−1 in the transport zone, compared with our phase
correlation-derived average velocity measurements of 0.5 ±
0.1 m year−1 and 4.7 ± 0.1 m year−1, respectively. That study
also estimated a net loss of sediment from the earthflow and
the hillslope opposite its toe of 3800 m3 by integrating the
elevation changes over the area of the earthflow. That calcu-
lation included contributions from both the shallow landslide
on the southeast side of Mill Gulch (Fig. 3d) and the Mill
Gulch earthflow itself, which experienced toe erosion and
possibly overland flow erosion in gullies. Using our average
inferred landslide thickness of 2.5 m, average velocity of
4.7 m year−1, and width of 60 m in the transport zone, we
roughly estimate that 3000 m3 of sediment translated through
the transport zone over that same time period. This suggests
that the Mill Gulch earthflow and the shallow landslide on the
southeast side of Mill Gulch lost more sediment than was
moved through the earthflow’s transport zone. That discrep-
ancy likely resulted from a combination of the inclusion of
sediment mobilized by the shallow landslide on the southeast
side of Mill Gulch and possible localized gully erosion, which
is thought to be typical of northern California earthflows
(Kelsey 1978; Mackey and Roering 2011). However, by extend-
ing our analysis through two additional time periods to span a total
of 10 years, we have shown that theMill Gulch earthflow’s 3D velocity
field is highly heterogeneous in both space and time, such that its
behavior over a time span of several years may not be representative
of its longer-term contribution to the catchment’s sediment budget.
In the following section, we suggest plausible mechanisms that may
contribute to the observed changes in the velocity field.

Fig. 6 a Profiles of land surface elevation and slip surface position (left axis) and sediment flux (right axis) along profile SS’ (Fig. 3b) estimated by inverting the 2007–
2012 3D surface displacement field. b Zoom-in of gray shaded box in a of land surface elevation and slip surface position shown with no vertical exaggeration at the head
scarp
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Controls on landslide motion
Forecasting a landslide’s response to changing climate is an im-
portant goal of hazard analysis and for predicting sediment deliv-
ery to channels (Crozier 2010). While previous work has shown
that a landslide’s threshold for initiating movement or its move-
ment rate can be predicted from climatic data (Iverson and Major
1987; Coe 2012; Zerathe et al. 2016), other studies have documented
more complex responses (Allison and Brunsden 1990; van Asch
2005; Massey et al. 2013; Schulz et al. 2018). The Mill Gulch
earthflow generally moved faster during wetter periods of time
(Fig. 5), but different parts of the landslide were more or less
sensitive to changes in multi-year precipitation, and movement
rates did not clearly correspond entirely to that precipitation.
Specifically, total seasonal precipitation was below to above nor-
mal at 83%, 86%, 95%, and 152% of average each water year during
the first time period of the study when the landslide moved the
fastest; precipitation was below normal to approximately normal
at 71%, 78%, 64%, and 103% of average during the second time
period when the landslide moved the slowest; and then precipita-
tion was less than normal at 92%, 76%, and 87% of average during
the last time period when the landslide moved at an intermediate
rate (Table 3). The head of the landslide was least sensitive to
precipitation changes, as its velocity varied by ± 25% despite sea-
sonal precipitation varying from 64 to 152% of average. In contrast,
the transport zone velocity dropped from 4.7 to 1.5 m year−1 during
the second time period of drier conditions, but then accelerated to
4.1 m year−1, nearly its previous high rate, during a period of below
average seasonal precipitation. The south toe stopped moving
completely during the driest second time period, but then
reactivated to move at about half its previous velocity during the
following average to dry years.

We interpret that the different zones of the landslide were more
or less sensitive to precipitation because of three main mecha-
nisms. First, the landslide’s inferred thickness varied from the 6-
m-deep head to the 1–2.5-m-deep transport zone, which likely
affected the magnitude and timing of pore pressure response to
infiltrating precipitation (Reid 1994). Since the magnitude of pore
pressure response decays exponentially with depth, in the deep
head pore pressure may be relatively insensitive to precipitation
changes, allowing that part of the slide to move steadily down
slope with driving and resisting stresses approximately balanced.
Pore pressures at the shallower inferred slip surface of the trans-
port zone likely fluctuated more strongly with precipitation, caus-
ing the effective normal stress, and therefore frictional strength, to
similarly fluctuate. Since the south toe was not detectably active
from 2007 to 2010, its thickness was not inferred, but we hypoth-
esize that its active thickness is similar to that of the transport zone
since its velocity was also more sensitive to multi-year precipita-
tion patterns than the head. Pore pressure response decreasing
with depth is consistent with pore pressure measurements at
comparable depths in another nearby earthflow in the Franciscan
Complex rocks of northern California (Iverson and Major 1987)
and similar clay-rich, landslide-prone slopes (Berti and Simoni
2010, 2012). Second, changes to the stress field as mass is
redistributed within an earthflow and its geometry changes can
obscure climatically driven changes to the effective normal stress,
especially for small earthflows that experience toe erosion or head
scarp retrogression (Bovis and Jones 1992; Booth et al. 2018). For
example, sediment accumulation in Mill Gulch from 2003 to 2007

may have buttressed the south toe and contributed to it stopping
during 2007–2010, while subsequent toe erosion may have
debuttressed it and contributed to its reactivation during 2010–
2013 (Fig. 3d, e). In contrast, there were no major retrogressions of
the head scarp during the study period, and the head moved at a
relatively constant rate. Third, antecedent moisture conditions
may also affect the landslide’s response to precipitation and ob-
scure a possible relationship between multi-year velocity and
average precipitation. For example, periods of drought have been
shown to produce preferential flow paths for water to infiltrate
earthflows and cause them to respond more rapidly to precipita-
tion compared with more typical climatic conditions (Mcsaveney
and Griffiths 1987). Such a mechanism may explain the observa-
tion that the transport zone moved nearly as fast during a dry to
average climatic period that followed several years of dry condi-
tions (4.1 m year−1 from 2010 to 2013) as it moved during a wet
time period (4.7 m year−1 from 2003 to 2007). Specifically, the
velocity was only 15% faster during 2003–2007, which included a
year with 152% of average precipitation, than during 2010–2013.
Expanding the velocity time series with other remote sensing data
sets and additional lidar data to span a wider range of climatic
conditions may help determine whether or not the earthflow’s
velocity can be predicted from precipitation data.

Conclusions
We measured the 3D and 1-m spatial resolution surface velocity
field of the Mill Gulch earthflow in coastal northern California
using publicly available repeat airborne lidar collected in 2003,
2007, 2010, and 2013. To measure horizontal displacements, we
used phase correlation, an image processing technique, on the
precisely aligned DEMs. To measure vertical displacements in an
Eulerian reference frame we subtracted the DEMs, and to measure
vertical displacements in a Lagrangian reference frame we
differenced starting and ending elevations of the horizontal dis-
placement vectors. The minimum detectable velocity was
0.2 m year−1 (horizontal) or 0.06 m year−1 (vertical), and horizon-
tal velocities of up to 5 m year−1 were confidently measured where
landslide deformation was well approximated by rigid body trans-
lation. The earthflow’s head moved steadily at 0.3–0.5 m year−1 on
an inferred 6-m-deep, concave-up slip surface, then thinned to 1–
2.5 m deep and was faster at 1.5–4.7 m year−2 through its transport
zone, which supplied sediment flux to two intermittently active
toes terminating in Mill Gulch. Comparing the landslide’s velocity
to monthly precipitation data showed that it moved fastest during
2003–2007 when seasonal precipitation was 83%, 86%, 95%, and
152% of average in each water year, slowest during 2007–2010
when precipitation was 71%, 78%, 64%, and 103% of average, and
at an intermediate rate during 2010–2013 when precipitation was
92%, 76%, and 87% of average. Although velocity broadly
corresponded to precipitation, different parts of the landslide were
more or less sensitive to changing precipitation. We hypothesized
that the landslide’s head was least sensitive to changing precipita-
tion because of its inferred greater depth and lack of major head
scarp retrogressions that could perturb the stress field. Conversely,
the transport zone and south toe were likely more sensitive to
changing precipitation because of their inferred shallower depth,
and their velocities may have also been more variable due to
buttressing and debuttressing interactions with the creek running
in Mill Gulch. These results suggest that predicting the landslide’s
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response to future climate may be challenging, but analyzing
repeat, high-resolution, 3D surface velocity fields may be a useful
technique for constraining the roles of internal forcing, such as
changes to landslide geometry, and external forcing, such as cli-
mate, in affecting landslide motion.
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